Skip to content

Benchmark Suites

vLLM provides comprehensive benchmarking tools for performance testing and evaluation:

Benchmark CLI

This section guides you through running benchmark tests with the extensive datasets supported on vLLM. It's a living document, updated as new features and datasets become available.

Dataset Overview

Dataset Online Offline Data Path
ShareGPT wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
ShareGPT4V (Image) wget https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_instruct_gpt4-vision_cap100k.json
Note that the images need to be downloaded separately. For example, to download COCO's 2017 Train images:
wget http://images.cocodataset.org/zips/train2017.zip
ShareGPT4Video (Video) git clone https://huggingface.co/datasets/ShareGPT4Video/ShareGPT4Video
BurstGPT wget https://github.com/HPMLL/BurstGPT/releases/download/v1.1/BurstGPT_without_fails_2.csv
Sonnet (deprecated) Local file: benchmarks/sonnet.txt
Random synthetic
RandomMultiModal (Image/Video) 🟡 🚧 synthetic
Prefix Repetition synthetic
HuggingFace-VisionArena lmarena-ai/VisionArena-Chat
HuggingFace-MMVU yale-nlp/MMVU
HuggingFace-InstructCoder likaixin/InstructCoder
HuggingFace-AIMO AI-MO/aimo-validation-aime, AI-MO/NuminaMath-1.5, AI-MO/NuminaMath-CoT
HuggingFace-Other lmms-lab/LLaVA-OneVision-Data, Aeala/ShareGPT_Vicuna_unfiltered
HuggingFace-MTBench philschmid/mt-bench
HuggingFace-Blazedit vdaita/edit_5k_char, vdaita/edit_10k_char
Spec Bench wget https://raw.githubusercontent.com/hemingkx/Spec-Bench/refs/heads/main/data/spec_bench/question.jsonl
Custom Local file: data.jsonl

Legend:

  • ✅ - supported
  • 🟡 - Partial support
  • 🚧 - to be supported

Note

HuggingFace dataset's dataset-name should be set to hf. For local dataset-path, please set hf-name to its Hugging Face ID like

--dataset-path /datasets/VisionArena-Chat/ --hf-name lmarena-ai/VisionArena-Chat

Examples

🚀 Online Benchmark

Show more

First start serving your model

vllm serve NousResearch/Hermes-3-Llama-3.1-8B

Then run the benchmarking script

# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
vllm bench serve \
  --backend vllm \
  --model NousResearch/Hermes-3-Llama-3.1-8B \
  --endpoint /v1/completions \
  --dataset-name sharegpt \
  --dataset-path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
  --num-prompts 10

If successful, you will see the following output

============ Serving Benchmark Result ============
Successful requests:                     10
Benchmark duration (s):                  5.78
Total input tokens:                      1369
Total generated tokens:                  2212
Request throughput (req/s):              1.73
Output token throughput (tok/s):         382.89
Total Token throughput (tok/s):          619.85
---------------Time to First Token----------------
Mean TTFT (ms):                          71.54
Median TTFT (ms):                        73.88
P99 TTFT (ms):                           79.49
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms):                          7.91
Median TPOT (ms):                        7.96
P99 TPOT (ms):                           8.03
---------------Inter-token Latency----------------
Mean ITL (ms):                           7.74
Median ITL (ms):                         7.70
P99 ITL (ms):                            8.39
==================================================
Custom Dataset

If the dataset you want to benchmark is not supported yet in vLLM, even then you can benchmark on it using CustomDataset. Your data needs to be in .jsonl format and needs to have "prompt" field per entry, e.g., data.jsonl

{"prompt": "What is the capital of India?"}
{"prompt": "What is the capital of Iran?"}
{"prompt": "What is the capital of China?"}
# start server
VLLM_USE_V1=1 vllm serve meta-llama/Llama-3.1-8B-Instruct
# run benchmarking script
vllm bench serve --port 9001 --save-result --save-detailed \
  --backend vllm \
  --model meta-llama/Llama-3.1-8B-Instruct \
  --endpoint /v1/completions \
  --dataset-name custom \
  --dataset-path <path-to-your-data-jsonl> \
  --custom-skip-chat-template \
  --num-prompts 80 \
  --max-concurrency 1 \
  --temperature=0.3 \
  --top-p=0.75 \
  --result-dir "./log/"

You can skip applying chat template if your data already has it by using --custom-skip-chat-template.

VisionArena Benchmark for Vision Language Models
# need a model with vision capability here
vllm serve Qwen/Qwen2-VL-7B-Instruct
vllm bench serve \
  --backend openai-chat \
  --model Qwen/Qwen2-VL-7B-Instruct \
  --endpoint /v1/chat/completions \
  --dataset-name hf \
  --dataset-path lmarena-ai/VisionArena-Chat \
  --hf-split train \
  --num-prompts 1000
InstructCoder Benchmark with Speculative Decoding
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
    --speculative-config $'{"method": "ngram",
    "num_speculative_tokens": 5, "prompt_lookup_max": 5,
    "prompt_lookup_min": 2}'
vllm bench serve \
    --model meta-llama/Meta-Llama-3-8B-Instruct \
    --dataset-name hf \
    --dataset-path likaixin/InstructCoder \
    --num-prompts 2048
Spec Bench Benchmark with Speculative Decoding
VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
    --speculative-config $'{"method": "ngram",
    "num_speculative_tokens": 5, "prompt_lookup_max": 5,
    "prompt_lookup_min": 2}'

SpecBench dataset

Run all categories:

# Download the dataset using:
# wget https://raw.githubusercontent.com/hemingkx/Spec-Bench/refs/heads/main/data/spec_bench/question.jsonl

vllm bench serve \
    --model meta-llama/Meta-Llama-3-8B-Instruct \
    --dataset-name spec_bench \
    --dataset-path "<YOUR_DOWNLOADED_PATH>/data/spec_bench/question.jsonl" \
    --num-prompts -1

Available categories include [writing, roleplay, reasoning, math, coding, extraction, stem, humanities, translation, summarization, qa, math_reasoning, rag].

Run only a specific category like "summarization":

vllm bench serve \
    --model meta-llama/Meta-Llama-3-8B-Instruct \
    --dataset-name spec_bench \
    --dataset-path "<YOUR_DOWNLOADED_PATH>/data/spec_bench/question.jsonl" \
    --num-prompts -1
    --spec-bench-category "summarization"
Other HuggingFaceDataset Examples
vllm serve Qwen/Qwen2-VL-7B-Instruct

lmms-lab/LLaVA-OneVision-Data:

vllm bench serve \
  --backend openai-chat \
  --model Qwen/Qwen2-VL-7B-Instruct \
  --endpoint /v1/chat/completions \
  --dataset-name hf \
  --dataset-path lmms-lab/LLaVA-OneVision-Data \
  --hf-split train \
  --hf-subset "chart2text(cauldron)" \
  --num-prompts 10

Aeala/ShareGPT_Vicuna_unfiltered:

vllm bench serve \
  --backend openai-chat \
  --model Qwen/Qwen2-VL-7B-Instruct \
  --endpoint /v1/chat/completions \
  --dataset-name hf \
  --dataset-path Aeala/ShareGPT_Vicuna_unfiltered \
  --hf-split train \
  --num-prompts 10

AI-MO/aimo-validation-aime:

vllm bench serve \
    --model Qwen/QwQ-32B \
    --dataset-name hf \
    --dataset-path AI-MO/aimo-validation-aime \
    --num-prompts 10 \
    --seed 42

philschmid/mt-bench:

vllm bench serve \
    --model Qwen/QwQ-32B \
    --dataset-name hf \
    --dataset-path philschmid/mt-bench \
    --num-prompts 80

vdaita/edit_5k_char or vdaita/edit_10k_char:

vllm bench serve \
    --model Qwen/QwQ-32B \
    --dataset-name hf \
    --dataset-path vdaita/edit_5k_char \
    --num-prompts 90 \
    --blazedit-min-distance 0.01 \
    --blazedit-max-distance 0.99
Running With Sampling Parameters

When using OpenAI-compatible backends such as vllm, optional sampling parameters can be specified. Example client command:

vllm bench serve \
  --backend vllm \
  --model NousResearch/Hermes-3-Llama-3.1-8B \
  --endpoint /v1/completions \
  --dataset-name sharegpt \
  --dataset-path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
  --top-k 10 \
  --top-p 0.9 \
  --temperature 0.5 \
  --num-prompts 10
Running With Ramp-Up Request Rate

The benchmark tool also supports ramping up the request rate over the duration of the benchmark run. This can be useful for stress testing the server or finding the maximum throughput that it can handle, given some latency budget.

Two ramp-up strategies are supported:

  • linear: Increases the request rate linearly from a start value to an end value.
  • exponential: Increases the request rate exponentially.

The following arguments can be used to control the ramp-up:

  • --ramp-up-strategy: The ramp-up strategy to use (linear or exponential).
  • --ramp-up-start-rps: The request rate at the beginning of the benchmark.
  • --ramp-up-end-rps: The request rate at the end of the benchmark.

📈 Offline Throughput Benchmark

Show more
vllm bench throughput \
  --model NousResearch/Hermes-3-Llama-3.1-8B \
  --dataset-name sonnet \
  --dataset-path vllm/benchmarks/sonnet.txt \
  --num-prompts 10

If successful, you will see the following output

Throughput: 7.15 requests/s, 4656.00 total tokens/s, 1072.15 output tokens/s
Total num prompt tokens:  5014
Total num output tokens:  1500
VisionArena Benchmark for Vision Language Models
vllm bench throughput \
  --model Qwen/Qwen2-VL-7B-Instruct \
  --backend vllm-chat \
  --dataset-name hf \
  --dataset-path lmarena-ai/VisionArena-Chat \
  --num-prompts 1000 \
  --hf-split train

The num prompt tokens now includes image token counts

Throughput: 2.55 requests/s, 4036.92 total tokens/s, 326.90 output tokens/s
Total num prompt tokens:  14527
Total num output tokens:  1280
InstructCoder Benchmark with Speculative Decoding
VLLM_WORKER_MULTIPROC_METHOD=spawn \
VLLM_USE_V1=1 \
vllm bench throughput \
    --dataset-name=hf \
    --dataset-path=likaixin/InstructCoder \
    --model=meta-llama/Meta-Llama-3-8B-Instruct \
    --input-len=1000 \
    --output-len=100 \
    --num-prompts=2048 \
    --async-engine \
    --speculative-config $'{"method": "ngram",
    "num_speculative_tokens": 5, "prompt_lookup_max": 5,
    "prompt_lookup_min": 2}'
Throughput: 104.77 requests/s, 23836.22 total tokens/s, 10477.10 output tokens/s
Total num prompt tokens:  261136
Total num output tokens:  204800
Other HuggingFaceDataset Examples

lmms-lab/LLaVA-OneVision-Data:

vllm bench throughput \
  --model Qwen/Qwen2-VL-7B-Instruct \
  --backend vllm-chat \
  --dataset-name hf \
  --dataset-path lmms-lab/LLaVA-OneVision-Data \
  --hf-split train \
  --hf-subset "chart2text(cauldron)" \
  --num-prompts 10

Aeala/ShareGPT_Vicuna_unfiltered:

vllm bench throughput \
  --model Qwen/Qwen2-VL-7B-Instruct \
  --backend vllm-chat \
  --dataset-name hf \
  --dataset-path Aeala/ShareGPT_Vicuna_unfiltered \
  --hf-split train \
  --num-prompts 10

AI-MO/aimo-validation-aime:

vllm bench throughput \
  --model Qwen/QwQ-32B \
  --backend vllm \
  --dataset-name hf \
  --dataset-path AI-MO/aimo-validation-aime \
  --hf-split train \
  --num-prompts 10

Benchmark with LoRA adapters:

# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
vllm bench throughput \
  --model meta-llama/Llama-2-7b-hf \
  --backend vllm \
  --dataset_path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
  --dataset_name sharegpt \
  --num-prompts 10 \
  --max-loras 2 \
  --max-lora-rank 8 \
  --enable-lora \
  --lora-path yard1/llama-2-7b-sql-lora-test

🛠️ Structured Output Benchmark

Show more

Benchmark the performance of structured output generation (JSON, grammar, regex).

Server Setup
vllm serve NousResearch/Hermes-3-Llama-3.1-8B
JSON Schema Benchmark
python3 benchmarks/benchmark_serving_structured_output.py \
  --backend vllm \
  --model NousResearch/Hermes-3-Llama-3.1-8B \
  --dataset json \
  --structured-output-ratio 1.0 \
  --request-rate 10 \
  --num-prompts 1000
Grammar-based Generation Benchmark
python3 benchmarks/benchmark_serving_structured_output.py \
  --backend vllm \
  --model NousResearch/Hermes-3-Llama-3.1-8B \
  --dataset grammar \
  --structure-type grammar \
  --request-rate 10 \
  --num-prompts 1000
Regex-based Generation Benchmark
python3 benchmarks/benchmark_serving_structured_output.py \
  --backend vllm \
  --model NousResearch/Hermes-3-Llama-3.1-8B \
  --dataset regex \
  --request-rate 10 \
  --num-prompts 1000
Choice-based Generation Benchmark
python3 benchmarks/benchmark_serving_structured_output.py \
  --backend vllm \
  --model NousResearch/Hermes-3-Llama-3.1-8B \
  --dataset choice \
  --request-rate 10 \
  --num-prompts 1000
XGrammar Benchmark Dataset
python3 benchmarks/benchmark_serving_structured_output.py \
  --backend vllm \
  --model NousResearch/Hermes-3-Llama-3.1-8B \
  --dataset xgrammar_bench \
  --request-rate 10 \
  --num-prompts 1000

📚 Long Document QA Benchmark

Show more

Benchmark the performance of long document question-answering with prefix caching.

Basic Long Document QA Test
python3 benchmarks/benchmark_long_document_qa_throughput.py \
  --model meta-llama/Llama-2-7b-chat-hf \
  --enable-prefix-caching \
  --num-documents 16 \
  --document-length 2000 \
  --output-len 50 \
  --repeat-count 5
Different Repeat Modes
# Random mode (default) - shuffle prompts randomly
python3 benchmarks/benchmark_long_document_qa_throughput.py \
  --model meta-llama/Llama-2-7b-chat-hf \
  --enable-prefix-caching \
  --num-documents 8 \
  --document-length 3000 \
  --repeat-count 3 \
  --repeat-mode random

# Tile mode - repeat entire prompt list in sequence
python3 benchmarks/benchmark_long_document_qa_throughput.py \
  --model meta-llama/Llama-2-7b-chat-hf \
  --enable-prefix-caching \
  --num-documents 8 \
  --document-length 3000 \
  --repeat-count 3 \
  --repeat-mode tile

# Interleave mode - repeat each prompt consecutively
python3 benchmarks/benchmark_long_document_qa_throughput.py \
  --model meta-llama/Llama-2-7b-chat-hf \
  --enable-prefix-caching \
  --num-documents 8 \
  --document-length 3000 \
  --repeat-count 3 \
  --repeat-mode interleave

🗂️ Prefix Caching Benchmark

Show more

Benchmark the efficiency of automatic prefix caching.

Fixed Prompt with Prefix Caching
python3 benchmarks/benchmark_prefix_caching.py \
  --model meta-llama/Llama-2-7b-chat-hf \
  --enable-prefix-caching \
  --num-prompts 1 \
  --repeat-count 100 \
  --input-length-range 128:256
ShareGPT Dataset with Prefix Caching
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json

python3 benchmarks/benchmark_prefix_caching.py \
  --model meta-llama/Llama-2-7b-chat-hf \
  --dataset-path /path/ShareGPT_V3_unfiltered_cleaned_split.json \
  --enable-prefix-caching \
  --num-prompts 20 \
  --repeat-count 5 \
  --input-length-range 128:256
Prefix Repetition Dataset
vllm bench serve \
  --backend openai \
  --model meta-llama/Llama-2-7b-chat-hf \
  --dataset-name prefix_repetition \
  --num-prompts 100 \
  --prefix-repetition-prefix-len 512 \
  --prefix-repetition-suffix-len 128 \
  --prefix-repetition-num-prefixes 5 \
  --prefix-repetition-output-len 128

⚡ Request Prioritization Benchmark

Show more

Benchmark the performance of request prioritization in vLLM.

Basic Prioritization Test
python3 benchmarks/benchmark_prioritization.py \
  --model meta-llama/Llama-2-7b-chat-hf \
  --input-len 128 \
  --output-len 64 \
  --num-prompts 100 \
  --scheduling-policy priority
Multiple Sequences per Prompt
python3 benchmarks/benchmark_prioritization.py \
  --model meta-llama/Llama-2-7b-chat-hf \
  --input-len 128 \
  --output-len 64 \
  --num-prompts 100 \
  --scheduling-policy priority \
  --n 2

👁️ Multi-Modal Benchmark

Show more

Benchmark the performance of multi-modal requests in vLLM.

Images (ShareGPT4V)

Start vLLM:

python -m vllm.entrypoints.openai.api_server \
  --model Qwen/Qwen2.5-VL-7B-Instruct \
  --dtype bfloat16 \
  --limit-mm-per-prompt '{"image": 1}' \
  --allowed-local-media-path /path/to/sharegpt4v/images

Send requests with images:

vllm bench serve \
  --backend openai-chat \
  --model Qwen/Qwen2.5-VL-7B-Instruct \
  --dataset-name sharegpt \
  --dataset-path /path/to/ShareGPT4V/sharegpt4v_instruct_gpt4-vision_cap100k.json \
  --num-prompts 100 \
  --save-result \
  --result-dir ~/vllm_benchmark_results \
  --save-detailed \
  --endpoint /v1/chat/completions
Videos (ShareGPT4Video)

Start vLLM:

python -m vllm.entrypoints.openai.api_server \
  --model Qwen/Qwen2.5-VL-7B-Instruct \
  --dtype bfloat16 \
  --limit-mm-per-prompt '{"video": 1}' \
  --allowed-local-media-path /path/to/sharegpt4video/videos

Send requests with videos:

vllm bench serve \
  --backend openai-chat \
  --model Qwen/Qwen2.5-VL-7B-Instruct \
  --dataset-name sharegpt \
  --dataset-path /path/to/ShareGPT4Video/llava_v1_5_mix665k_with_video_chatgpt72k_share4video28k.json \
  --num-prompts 100 \
  --save-result \
  --result-dir ~/vllm_benchmark_results \
  --save-detailed \
  --endpoint /v1/chat/completions
Synthetic Random Images (random-mm)

Generate synthetic image inputs alongside random text prompts to stress-test vision models without external datasets.

Notes:

  • Works only with online benchmark via the OpenAI backend (--backend openai-chat) and endpoint /v1/chat/completions.
  • Video sampling is not yet implemented.

Start the server (example):

vllm serve Qwen/Qwen2.5-VL-3B-Instruct \
  --dtype bfloat16 \
  --max-model-len 16384 \
  --limit-mm-per-prompt '{"image": 3, "video": 0}' \
  --mm-processor-kwargs max_pixels=1003520

Benchmark. It is recommended to use the flag --ignore-eos to simulate real responses. You can set the size of the output via the arg random-output-len.

Ex.1: Fixed number of items and a single image resolution, enforcing generation of approx 40 tokens:

vllm bench serve \
  --backend openai-chat \
  --model Qwen/Qwen2.5-VL-3B-Instruct \
  --endpoint /v1/chat/completions \
  --dataset-name random-mm \
  --num-prompts 100 \
  --max-concurrency 10 \
  --random-prefix-len 25 \
  --random-input-len 300 \
  --random-output-len 40 \
  --random-range-ratio 0.2 \
  --random-mm-base-items-per-request 2 \
  --random-mm-limit-mm-per-prompt '{"image": 3, "video": 0}' \
  --random-mm-bucket-config '{(224, 224, 1): 1.0}' \
  --request-rate inf \
  --ignore-eos \
  --seed 42

The number of items per request can be controlled by passing multiple image buckets:

  --random-mm-base-items-per-request 2 \
  --random-mm-num-mm-items-range-ratio 0.5 \
  --random-mm-limit-mm-per-prompt '{"image": 4, "video": 0}' \
  --random-mm-bucket-config '{(256, 256, 1): 0.7, (720, 1280, 1): 0.3}' \

Flags specific to random-mm:

  • --random-mm-base-items-per-request: base number of multimodal items per request.
  • --random-mm-num-mm-items-range-ratio: vary item count uniformly in the closed integer range [floor(n·(1−r)), ceil(n·(1+r))]. Set r=0 to keep it fixed; r=1 allows 0 items.
  • --random-mm-limit-mm-per-prompt: per-modality hard caps, e.g. '{"image": 3, "video": 0}'.
  • --random-mm-bucket-config: dict mapping (H, W, T) → probability. Entries with probability 0 are removed; remaining probabilities are renormalized to sum to 1. Use T=1 for images. Set any T>1 for videos (video sampling not yet supported).

Behavioral notes:

  • If the requested base item count cannot be satisfied under the provided per-prompt limits, the tool raises an error rather than silently clamping.

How sampling works:

  • Determine per-request item count k by sampling uniformly from the integer range defined by --random-mm-base-items-per-request and --random-mm-num-mm-items-range-ratio, then clamp k to at most the sum of per-modality limits.
  • For each of the k items, sample a bucket (H, W, T) according to the normalized probabilities in --random-mm-bucket-config, while tracking how many items of each modality have been added.
  • If a modality (e.g., image) reaches its limit from --random-mm-limit-mm-per-prompt, all buckets of that modality are excluded and the remaining bucket probabilities are renormalized before continuing. This should be seen as an edge case, and if this behavior can be avoided by setting --random-mm-limit-mm-per-prompt to a large number. Note that this might result in errors due to engine config --limit-mm-per-prompt.
  • The resulting request contains synthetic image data in multi_modal_data (OpenAI Chat format). When random-mm is used with the OpenAI Chat backend, prompts remain text and MM content is attached via multi_modal_data.

Performance Benchmarks

The performance benchmarks are used for development to confirm whether new changes improve performance under various workloads. They are triggered on every commit with both the perf-benchmarks and ready labels, and when a PR is merged into vLLM.

Manually Trigger the benchmark

Use vllm-ci-test-repo images with vLLM benchmark suite. For CPU environment, please use the image with "-cpu" postfix.

Here is an example for docker run command for CPU.

docker run -it --entrypoint /bin/bash -v /data/huggingface:/root/.cache/huggingface  -e HF_TOKEN=''  --shm-size=16g --name vllm-cpu-ci  public.ecr.aws/q9t5s3a7/vllm-ci-test-repo:1da94e673c257373280026f75ceb4effac80e892-cpu

Then, run below command inside the docker instance.

bash .buildkite/nightly-benchmarks/scripts/run-performance-benchmarks.sh

When run, benchmark script generates results under benchmark/results folder, along with the benchmark_results.md and benchmark_results.json.

Runtime environment variables

  • ON_CPU: set the value to '1' on Intel® Xeon® Processors. Default value is 0.
  • SERVING_JSON: JSON file to use for the serving tests. Default value is empty string (use default file).
  • LATENCY_JSON: JSON file to use for the latency tests. Default value is empty string (use default file).
  • THROUGHPUT_JSON: JSON file to use for the throughout tests. Default value is empty string (use default file).
  • REMOTE_HOST: IP for the remote vLLM service to benchmark. Default value is empty string.
  • REMOTE_PORT: Port for the remote vLLM service to benchmark. Default value is empty string.

For more results visualization, check the visualizing the results.

The latest performance results are hosted on the public vLLM Performance Dashboard.

More information on the performance benchmarks and their parameters can be found in Benchmark README and performance benchmark description.

Continuous Benchmarking

The continuous benchmarking provides automated performance monitoring for vLLM across different models and GPU devices. This helps track vLLM's performance characteristics over time and identify any performance regressions or improvements.

How It Works

The continuous benchmarking is triggered via a GitHub workflow CI in the PyTorch infrastructure repository, which runs automatically every 4 hours. The workflow executes three types of performance tests:

  • Serving tests: Measure request handling and API performance
  • Throughput tests: Evaluate token generation rates
  • Latency tests: Assess response time characteristics

Benchmark Configuration

The benchmarking currently runs on a predefined set of models configured in the vllm-benchmarks directory. To add new models for benchmarking:

  1. Navigate to the appropriate GPU directory in the benchmarks configuration
  2. Add your model specifications to the corresponding configuration files
  3. The new models will be included in the next scheduled benchmark run

Viewing Results

All continuous benchmarking results are automatically published to the public vLLM Performance Dashboard.

Nightly Benchmarks

These compare vLLM's performance against alternatives (tgi, trt-llm, and lmdeploy) when there are major updates of vLLM (e.g., bumping up to a new version). They are primarily intended for consumers to evaluate when to choose vLLM over other options and are triggered on every commit with both the perf-benchmarks and nightly-benchmarks labels.

The latest nightly benchmark results are shared in major release blog posts such as vLLM v0.6.0.

More information on the nightly benchmarks and their parameters can be found here.