Skip to content

vllm.v1.worker.gpu_model_runner

AttnMetadataDict module-attribute

AttnMetadataDict: TypeAlias = dict[str, AttentionMetadata]

PerLayerAttnMetadata module-attribute

PerLayerAttnMetadata: TypeAlias = Union[
    list[AttnMetadataDict], AttnMetadataDict
]

logger module-attribute

logger = init_logger(__name__)

AsyncGPUModelRunnerOutput

Bases: AsyncModelRunnerOutput

Source code in vllm/v1/worker/gpu_model_runner.py
class AsyncGPUModelRunnerOutput(AsyncModelRunnerOutput):

    def __init__(
        self,
        model_runner_output: ModelRunnerOutput,
        sampled_token_ids: torch.Tensor,
        invalid_req_indices: list[int],
        async_output_copy_stream: torch.cuda.Stream,
    ):
        self._model_runner_output = model_runner_output
        self._invalid_req_indices = invalid_req_indices

        # Event on the copy stream so we can synchronize the non-blocking copy.
        self._async_copy_ready_event = torch.cuda.Event()

        # Keep a reference to the device tensor to avoid it being
        # deallocated until we finish copying it to the host.
        self._sampled_token_ids = sampled_token_ids

        # Initiate the copy on a separate stream, but do not synchronize it.
        default_stream = torch.cuda.current_stream()
        with torch.cuda.stream(async_output_copy_stream):
            async_output_copy_stream.wait_stream(default_stream)
            self._sampled_token_ids_cpu = self._sampled_token_ids.to(
                'cpu', non_blocking=True)
            self._async_copy_ready_event.record()

    def get_output(self) -> ModelRunnerOutput:
        """Copy the device tensors to the host and return a ModelRunnerOutput.

        This function blocks until the copy is finished.
        """
        self._async_copy_ready_event.synchronize()

        # Release the device tensor once the copy has completed
        del self._sampled_token_ids

        valid_sampled_token_ids = self._sampled_token_ids_cpu.tolist()
        for i in self._invalid_req_indices:
            valid_sampled_token_ids[i].clear()

        output = self._model_runner_output
        output.sampled_token_ids = valid_sampled_token_ids
        return output

_async_copy_ready_event instance-attribute

_async_copy_ready_event = Event()

_invalid_req_indices instance-attribute

_invalid_req_indices = invalid_req_indices

_model_runner_output instance-attribute

_model_runner_output = model_runner_output

_sampled_token_ids instance-attribute

_sampled_token_ids = sampled_token_ids

_sampled_token_ids_cpu instance-attribute

_sampled_token_ids_cpu = to('cpu', non_blocking=True)

__init__

__init__(
    model_runner_output: ModelRunnerOutput,
    sampled_token_ids: Tensor,
    invalid_req_indices: list[int],
    async_output_copy_stream: Stream,
)
Source code in vllm/v1/worker/gpu_model_runner.py
def __init__(
    self,
    model_runner_output: ModelRunnerOutput,
    sampled_token_ids: torch.Tensor,
    invalid_req_indices: list[int],
    async_output_copy_stream: torch.cuda.Stream,
):
    self._model_runner_output = model_runner_output
    self._invalid_req_indices = invalid_req_indices

    # Event on the copy stream so we can synchronize the non-blocking copy.
    self._async_copy_ready_event = torch.cuda.Event()

    # Keep a reference to the device tensor to avoid it being
    # deallocated until we finish copying it to the host.
    self._sampled_token_ids = sampled_token_ids

    # Initiate the copy on a separate stream, but do not synchronize it.
    default_stream = torch.cuda.current_stream()
    with torch.cuda.stream(async_output_copy_stream):
        async_output_copy_stream.wait_stream(default_stream)
        self._sampled_token_ids_cpu = self._sampled_token_ids.to(
            'cpu', non_blocking=True)
        self._async_copy_ready_event.record()

get_output

get_output() -> ModelRunnerOutput

Copy the device tensors to the host and return a ModelRunnerOutput.

This function blocks until the copy is finished.

Source code in vllm/v1/worker/gpu_model_runner.py
def get_output(self) -> ModelRunnerOutput:
    """Copy the device tensors to the host and return a ModelRunnerOutput.

    This function blocks until the copy is finished.
    """
    self._async_copy_ready_event.synchronize()

    # Release the device tensor once the copy has completed
    del self._sampled_token_ids

    valid_sampled_token_ids = self._sampled_token_ids_cpu.tolist()
    for i in self._invalid_req_indices:
        valid_sampled_token_ids[i].clear()

    output = self._model_runner_output
    output.sampled_token_ids = valid_sampled_token_ids
    return output

GPUModelRunner

Bases: LoRAModelRunnerMixin, KVConnectorModelRunnerMixin

Source code in vllm/v1/worker/gpu_model_runner.py
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):

    def __init__(
        self,
        vllm_config: VllmConfig,
        device: torch.device,
    ):
        self.vllm_config = vllm_config
        self.model_config = vllm_config.model_config
        self.cache_config = vllm_config.cache_config
        self.compilation_config = vllm_config.compilation_config
        self.lora_config = vllm_config.lora_config
        self.load_config = vllm_config.load_config
        self.parallel_config = vllm_config.parallel_config
        self.scheduler_config = vllm_config.scheduler_config
        self.speculative_config = vllm_config.speculative_config
        self.observability_config = vllm_config.observability_config

        from vllm.model_executor.models.utils import set_cpu_offload_max_bytes
        set_cpu_offload_max_bytes(
            int(self.cache_config.cpu_offload_gb * 1024**3))
        from vllm.model_executor.layers.batch_invariant import (
            init_batch_invariance)
        init_batch_invariance()

        model_config = self.model_config
        cache_config = self.cache_config
        scheduler_config = self.scheduler_config
        parallel_config = self.parallel_config
        self.device = device
        self.pin_memory = is_pin_memory_available()
        self.dtype = self.model_config.dtype
        if cache_config.cache_dtype == "auto":
            self.kv_cache_dtype = self.dtype
        else:
            self.kv_cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[
                cache_config.cache_dtype]

        self.is_pooling_model = (model_config.runner_type == 'pooling')
        self.enable_prompt_embeds = model_config.enable_prompt_embeds
        self.is_multimodal_raw_input_only_model = (
            model_config.is_multimodal_raw_input_only_model)
        # This will be overridden in load_model()
        self.is_multimodal_pruning_enabled = False
        self.max_model_len = model_config.max_model_len
        self.dcp_world_size = self.parallel_config.decode_context_parallel_size
        self.max_num_tokens = scheduler_config.max_num_batched_tokens
        self.max_num_reqs = scheduler_config.max_num_seqs

        # Broadcast PP output for external_launcher (torchrun)
        # to make sure we are synced across pp ranks
        # TODO: Support overlapping mirco-batches
        # https://github.com/vllm-project/vllm/issues/18019
        self.broadcast_pp_output = (
            self.parallel_config.distributed_executor_backend
            == "external_launcher" and len(get_pp_group().ranks) > 0)

        # Model-related.
        self.num_query_heads = model_config.get_num_attention_heads(
            parallel_config)
        self.hidden_size = model_config.get_hidden_size()
        self.attention_chunk_size = model_config.attention_chunk_size
        # Only relevant for models using ALiBi (e.g, MPT)
        self.use_alibi = check_use_alibi(model_config)

        self.cascade_attn_enabled = not self.model_config.disable_cascade_attn

        # Multi-modal data support
        self.mm_registry = MULTIMODAL_REGISTRY
        self.uses_mrope = model_config.uses_mrope
        self.supports_mm_inputs = self.mm_registry.supports_multimodal_inputs(
            model_config)

        if self.model_config.is_encoder_decoder:
            # Maximum length of the encoder input, only for encoder-decoder
            # models.
            self.max_encoder_len = scheduler_config.\
                            max_num_encoder_input_tokens
        else:
            self.max_encoder_len = 0

        # Sampler
        self.sampler = Sampler(logprobs_mode=self.model_config.logprobs_mode)

        self.eplb_state: Optional[EplbState] = None
        """
        State of the expert parallelism load balancer.

        Will be lazily initialized when the model is loaded.
        """

        # Lazy initializations
        # self.model: nn.Module  # Set after load_model
        # Initialize in initialize_kv_cache
        self.kv_caches: list[torch.Tensor] = []
        # indexes: [kv_cache_group_id][attn_group]
        self.attn_groups: list[list[AttentionGroup]] = []
        # self.kv_cache_config: KVCacheConfig

        # mm_hash ->  encoder_output
        self.encoder_cache: dict[str, torch.Tensor] = {}

        self.use_aux_hidden_state_outputs = False
        # Set up speculative decoding.
        # NOTE(Jiayi): currently we put the entire draft model on
        # the last PP rank. This is not ideal if there are many
        # layers in the draft model.
        if self.speculative_config and get_pp_group().is_last_rank:
            if self.speculative_config.method == "ngram":
                self.drafter = NgramProposer(self.vllm_config)
            elif self.speculative_config.use_eagle():
                self.drafter = EagleProposer(self.vllm_config, self.device,
                                             self)  # type: ignore
                if self.speculative_config.method == "eagle3":
                    self.use_aux_hidden_state_outputs = True
            elif self.speculative_config.method == "medusa":
                self.drafter = MedusaProposer(
                    vllm_config=self.vllm_config,
                    device=self.device)  # type: ignore
            else:
                raise ValueError("Unknown speculative decoding method: "
                                 f"{self.speculative_config.method}")
            self.rejection_sampler = RejectionSampler()

        # Request states.
        self.requests: dict[str, CachedRequestState] = {}
        self.comm_stream = torch.cuda.Stream()

        # Input Batch
        # NOTE(Chen): Ideally, we should initialize the input batch inside
        # `initialize_kv_cache` based on the kv cache config. However, as in
        # https://github.com/vllm-project/vllm/pull/18298, due to some unknown
        # reasons, we have to initialize the input batch before `load_model`,
        # quantization + weight offloading will fail otherwise. As a temporary
        # solution, we initialize the input batch here, and re-initialize it
        # in `initialize_kv_cache` if the block_sizes here is different from
        # the block_sizes in the kv cache config.
        self.input_batch = InputBatch(
            max_num_reqs=self.max_num_reqs,
            # We need to use the encoder length for encoder-decoer
            # because of KV cache for cross-attention.
            max_model_len=max(self.max_model_len, self.max_encoder_len),
            max_num_batched_tokens=self.max_num_tokens,
            device=self.device,
            pin_memory=self.pin_memory,
            vocab_size=self.model_config.get_vocab_size(),
            block_sizes=[self.cache_config.block_size],
            is_spec_decode=bool(self.vllm_config.speculative_config),
            logitsprocs=build_logitsprocs(
                self.vllm_config, self.device, self.pin_memory,
                self.is_pooling_model,
                self.vllm_config.model_config.logits_processors),
            is_pooling_model=self.is_pooling_model,
        )

        self.use_async_scheduling = self.scheduler_config.async_scheduling
        self.async_output_copy_stream = torch.cuda.Stream() if \
            self.use_async_scheduling else None

        # TODO(woosuk): Provide an option to tune the max cudagraph batch size.
        # The convention is different.
        # self.cudagraph_batch_sizes sorts in ascending order.
        # The batch sizes in the config are in descending order.
        if self.compilation_config.cudagraph_capture_sizes and \
                self.compilation_config.cudagraph_mode != CUDAGraphMode.NONE:
            self.cudagraph_batch_sizes = list(
                reversed(self.compilation_config.cudagraph_capture_sizes))

        # Cache the device properties.
        self._init_device_properties()

        # Persistent buffers for CUDA graphs.
        self.input_ids = self._make_buffer(self.max_num_tokens,
                                           dtype=torch.int32)
        self.positions = self._make_buffer(self.max_num_tokens,
                                           dtype=torch.int64)
        self.query_start_loc = self._make_buffer(self.max_num_reqs + 1,
                                                 dtype=torch.int32)
        self.seq_lens = self._make_buffer(self.max_num_reqs, dtype=torch.int32)
        # Because inputs_embeds may be bfloat16 and we don't need a numpy
        # version of this tensor, avoid a RuntimeError by not creating a
        # numpy buffer.
        self.inputs_embeds = self._make_buffer(self.max_num_tokens,
                                               self.hidden_size,
                                               dtype=self.dtype,
                                               numpy=False)
        self.is_token_ids = self._make_buffer(self.max_num_tokens,
                                              dtype=torch.bool)
        self.discard_request_indices = self._make_buffer(self.max_num_reqs,
                                                         dtype=torch.int64)
        self.num_discarded_requests = 0

        self.num_decode_draft_tokens = self._make_buffer(self.max_num_reqs,
                                                         dtype=torch.int32)
        self.num_accepted_tokens = self._make_buffer(self.max_num_reqs,
                                                     dtype=torch.int64)

        # Only relevant for multimodal models
        if self.supports_mm_inputs:
            self.is_mm_embed = self._make_buffer(self.max_num_tokens,
                                                 dtype=torch.bool)

        # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
        if self.uses_mrope:
            # NOTE: `mrope_positions` is implemented with one additional dummy
            # position on purpose to make it non-contiguous so that it can work
            # with torch compile.
            # See detailed explanation in https://github.com/vllm-project/vllm/pull/12128#discussion_r1926431923

            # NOTE: When M-RoPE is enabled, position ids are 3D regardless of
            # the modality of inputs. For text-only inputs, each dimension has
            # identical position IDs, making M-RoPE functionally equivalent to
            # 1D-RoPE.
            # See page 5 of https://arxiv.org/abs/2409.12191
            self.mrope_positions = self._make_buffer(
                (3, self.max_num_tokens + 1), dtype=torch.int64)

        # CUDA event to synchronize use of reused CPU tensors between steps
        # when async scheduling is enabled.
        self.prepare_inputs_event: Optional[torch.cuda.Event] = None
        if self.use_async_scheduling:
            self.prepare_inputs_event = torch.cuda.Event()
            # Start in a completed state.
            self.prepare_inputs_event.record(torch.cuda.default_stream())

        # None in the first PP rank. The rest are set after load_model.
        self.intermediate_tensors: Optional[IntermediateTensors] = None

        # OPTIMIZATION: Cache the tensors rather than creating them every step.
        # Keep in int64 to avoid overflow with long context
        self.arange_np = np.arange(max(self.max_num_reqs + 1,
                                       self.max_model_len,
                                       self.max_num_tokens),
                                   dtype=np.int64)

        # Layer pairings for cross-layer KV sharing.
        # If an Attention layer `layer_name` is in the keys of this dict, it
        # means this layer will perform attention using the keys and values
        # from the KV cache of `shared_kv_cache_layers[layer_name]`.
        self.shared_kv_cache_layers: dict[str, str] = {}
        self.kv_sharing_fast_prefill_eligible_layers: set[str] = set()

        self.kv_sharing_fast_prefill_logits_indices = None
        if self.cache_config.kv_sharing_fast_prefill:
            self.kv_sharing_fast_prefill_logits_indices = torch.zeros(
                self.max_num_tokens, dtype=torch.int32, device=self.device)

        self.uniform_decode_query_len = 1 if not self.speculative_config else \
            1 + self.speculative_config.num_speculative_tokens

        # Cudagraph dispatcher for runtime cudagraph dispatching.
        self.cudagraph_dispatcher = CudagraphDispatcher(self.vllm_config)

        self.mm_budget = MultiModalBudget(
            self.model_config,
            self.scheduler_config,
            self.mm_registry,
        ) if self.supports_mm_inputs else None

        self.reorder_batch_threshold: Optional[int] = None

        # Attention layers that are only in the KVCacheConfig of the runner
        # (e.g., KV sharing, encoder-only attention), but not in the
        # KVCacheConfig of the scheduler.
        self.runner_only_attn_layers: set[str] = set()

        # Cached outputs.
        self._draft_token_ids: Optional[Union[list[list[int]],
                                              torch.Tensor]] = None
        self.transfer_event = torch.cuda.Event()
        self.sampled_token_ids_pinned_cpu = torch.empty(
            (self.max_model_len, 1),
            dtype=torch.int64,
            device="cpu",
            pin_memory=self.pin_memory)

    def _get_positions(self, num_tokens: Any):
        if isinstance(num_tokens, int):
            if self.uses_mrope:
                return self.mrope_positions.gpu[:, :num_tokens]
            return self.positions.gpu[:num_tokens]
        else:
            if self.uses_mrope:
                return self.mrope_positions.gpu[:, num_tokens]
            return self.positions.gpu[num_tokens]

    def _make_buffer(self,
                     *size: Union[int, torch.SymInt],
                     dtype: torch.dtype,
                     numpy: bool = True) -> CpuGpuBuffer:
        return CpuGpuBuffer(*size,
                            dtype=dtype,
                            device=self.device,
                            pin_memory=self.pin_memory,
                            with_numpy=numpy)

    def _init_model_kwargs(self, num_tokens: int):
        model_kwargs = dict[str, Any]()

        if not self.is_pooling_model:
            return model_kwargs

        num_reqs = self.input_batch.num_reqs
        pooling_params = self.input_batch.get_pooling_params()

        token_type_id_requests = dict[int, Any]()
        for i, param in enumerate(pooling_params):
            if param.extra_kwargs is not None and \
            (token_types := param.extra_kwargs.get(
                "compressed_token_type_ids")) is not None:
                token_type_id_requests[i] = token_types

        if len(token_type_id_requests) == 0:
            return model_kwargs

        seq_lens = self.seq_lens.gpu[:num_reqs]
        token_type_ids = []

        for i in range(num_reqs):
            pos = token_type_id_requests.get(i, seq_lens[i])
            ids = (torch.arange(seq_lens[i]) >= pos).int()
            token_type_ids.append(ids)

        model_kwargs["token_type_ids"] = torch.concat(token_type_ids).to(
            device=self.device)
        return model_kwargs

    def _may_reorder_batch(self, scheduler_output: "SchedulerOutput") -> None:
        """
        Update the order of requests in the batch based on the attention
        backend's needs. For example, some attention backends (namely MLA) may
        want to separate requests based on if the attention computation will be
        compute-bound or memory-bound.

        Args:
            scheduler_output: The scheduler output.
        """
        # Attention free models have zero kv_cache_goups, however models
        # like Mamba are also attention free but use the kv_cache for
        # keeping its internal state. This is why we check the number
        # of kv_cache groups instead of solely checking
        # for self.model_config.is_attention_free.
        if len(self.kv_cache_config.kv_cache_groups) == 0:
            return

        if self.reorder_batch_threshold is not None:
            # NOTE(lucas): currently no backend supports the custom masking
            #  required for DCP with q_len > 1, so we assert here. Remove this
            #  assert once the custom mask is support is added to FA3.
            if self.dcp_world_size > 1:
                assert self.reorder_batch_threshold == 1, \
                    "DCP not support reorder_batch_threshold > 1 now."
            reorder_batch_to_split_decodes_and_prefills(
                self.input_batch,
                scheduler_output,
                decode_threshold=self.reorder_batch_threshold)

    # Note: used for model runner override.
    def _init_device_properties(self) -> None:
        """Initialize attributes from torch.cuda.get_device_properties
        """
        self.device_properties = torch.cuda.get_device_properties(self.device)
        self.num_sms = self.device_properties.multi_processor_count

    # Note: used for model runner override.
    def _sync_device(self) -> None:
        torch.cuda.synchronize()

    def _update_states(self, scheduler_output: "SchedulerOutput") -> None:
        """Update the cached states and the persistent batch with the scheduler
        output.

        The updated states are used by the `_prepare_inputs` function to create
        the input GPU tensors for the model.

        The SamplingMetadata is updated and copied to the GPU if there is a
        new/resumed/paused/finished request in the batch.
        """
        # Remove finished requests from the cached states.
        for req_id in scheduler_output.finished_req_ids:
            self.requests.pop(req_id, None)
        # Remove the finished requests from the persistent batch.
        # NOTE(woosuk): There could be an edge case where finished_req_ids and
        # scheduled_req_ids overlap. This happens when a request is aborted and
        # then resubmitted with the same ID. In this case, we treat them as two
        # distinct requests - clearing the cached states for the first request
        # and handling the second as a new request.
        for req_id in scheduler_output.finished_req_ids:
            self.input_batch.remove_request(req_id)

        # Free the cached encoder outputs.
        for mm_hash in scheduler_output.free_encoder_mm_hashes:
            self.encoder_cache.pop(mm_hash, None)

        # Remove the unscheduled requests from the persistent batch.
        # NOTE(woosuk): The unscheduled requests are either preempted requests
        # or running requests that are not scheduled in this step. We remove
        # them from the persistent batch but keep their cached states since
        # they will be scheduled again sometime in the future.
        scheduled_req_ids = scheduler_output.num_scheduled_tokens.keys()
        cached_req_ids = self.input_batch.req_id_to_index.keys()
        unscheduled_req_ids = cached_req_ids - scheduled_req_ids
        # NOTE(woosuk): The persistent batch optimization assumes that
        # consecutive batches contain mostly the same requests. If batches
        # have low request overlap (e.g., alternating between two distinct
        # sets of requests), this optimization becomes very inefficient.
        for req_id in unscheduled_req_ids:
            self.input_batch.remove_request(req_id)

        reqs_to_add: list[CachedRequestState] = []
        # Add new requests to the cached states.
        for new_req_data in scheduler_output.scheduled_new_reqs:
            req_id = new_req_data.req_id
            sampling_params = new_req_data.sampling_params
            pooling_params = new_req_data.pooling_params

            if sampling_params and \
                sampling_params.sampling_type == SamplingType.RANDOM_SEED:
                generator = torch.Generator(device=self.device)
                generator.manual_seed(sampling_params.seed)
            else:
                generator = None

            if self.is_pooling_model:
                assert pooling_params is not None
                task = pooling_params.task
                assert task is not None, "You did not set `task` in the API"

                model = cast(VllmModelForPooling, self.get_model())
                to_update = model.pooler.get_pooling_updates(task)
                to_update.apply(pooling_params)

            req_state = CachedRequestState(
                req_id=req_id,
                prompt_token_ids=new_req_data.prompt_token_ids,
                prompt_embeds=new_req_data.prompt_embeds,
                mm_features=new_req_data.mm_features,
                sampling_params=sampling_params,
                pooling_params=pooling_params,
                generator=generator,
                block_ids=new_req_data.block_ids,
                num_computed_tokens=new_req_data.num_computed_tokens,
                output_token_ids=[],
                lora_request=new_req_data.lora_request,
            )
            self.requests[req_id] = req_state

            # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
            if self.uses_mrope:
                self._init_mrope_positions(req_state)

            reqs_to_add.append(req_state)

        # Update the states of the running/resumed requests.
        is_last_rank = get_pp_group().is_last_rank
        req_data = scheduler_output.scheduled_cached_reqs
        for i, req_id in enumerate(req_data.req_ids):
            req_state = self.requests[req_id]
            num_computed_tokens = req_data.num_computed_tokens[i]
            new_block_ids = req_data.new_block_ids[i]
            resumed_from_preemption = req_data.resumed_from_preemption[i]

            # Update the cached states.
            req_state.num_computed_tokens = num_computed_tokens

            if not is_last_rank:
                # When using PP, the scheduler sends the sampled tokens back,
                # because there's no direct communication between the first-
                # stage worker and the last-stage worker.
                new_token_ids = req_data.new_token_ids[i]
                # Add the sampled token(s) from the previous step (if any).
                # This doesn't include "unverified" tokens like spec tokens.
                num_new_tokens = (num_computed_tokens + len(new_token_ids) -
                                  req_state.num_tokens)
                if num_new_tokens == 1:
                    # Avoid slicing list in most common case.
                    req_state.output_token_ids.append(new_token_ids[-1])
                elif num_new_tokens > 0:
                    req_state.output_token_ids.extend(
                        new_token_ids[-num_new_tokens:])

            # Update the block IDs.
            if not resumed_from_preemption:
                if new_block_ids is not None:
                    # Append the new blocks to the existing block IDs.
                    for block_ids, new_ids in zip(req_state.block_ids,
                                                  new_block_ids):
                        block_ids.extend(new_ids)
            else:
                assert new_block_ids is not None
                # The request is resumed from preemption.
                # Replace the existing block IDs with the new ones.
                req_state.block_ids = new_block_ids

            req_index = self.input_batch.req_id_to_index.get(req_id)
            if req_index is None:
                # The request is not in the persistent batch.
                # The request was either preempted and resumed later, or was not
                # scheduled in the previous step and needs to be added again.
                reqs_to_add.append(req_state)
                continue

            # Update the persistent batch.
            self.input_batch.num_computed_tokens_cpu[req_index] = (
                num_computed_tokens)
            if new_block_ids is not None:
                self.input_batch.block_table.append_row(
                    new_block_ids, req_index)

            # For the last rank, we don't need to update the token_ids_cpu
            # because the sampled tokens are already cached.
            if not is_last_rank:
                # Add new_token_ids to token_ids_cpu.
                start_token_index = num_computed_tokens
                end_token_index = num_computed_tokens + len(new_token_ids)
                self.input_batch.token_ids_cpu[
                    req_index,
                    start_token_index:end_token_index] = new_token_ids
                self.input_batch.num_tokens_no_spec[
                    req_index] = end_token_index
                self.input_batch.num_tokens[req_index] = end_token_index

            # Add spec_token_ids to token_ids_cpu.
            spec_token_ids = (
                scheduler_output.scheduled_spec_decode_tokens.get(req_id, ()))
            if spec_token_ids:
                num_spec_tokens = len(spec_token_ids)
                start_index = self.input_batch.num_tokens_no_spec[req_index]
                end_token_index = start_index + num_spec_tokens
                self.input_batch.token_ids_cpu[
                    req_index, start_index:end_token_index] = spec_token_ids
                # NOTE(woosuk): `num_tokens` here may include spec tokens.
                self.input_batch.num_tokens[req_index] += num_spec_tokens

        # Add the new or resumed requests to the persistent batch.
        # The smaller empty indices are filled first.
        for request in reqs_to_add:
            self.input_batch.add_request(request)

        # Condense the batched states if there are gaps left by removed requests
        self.input_batch.condense()
        # Allow attention backend to reorder the batch, potentially
        self._may_reorder_batch(scheduler_output)
        # Refresh batch metadata with any pending updates.
        self.input_batch.refresh_metadata()

    def _update_states_after_model_execute(
            self, output_token_ids: torch.Tensor) -> None:
        """Update the cached states after model execution.

        This is used for MTP/EAGLE for hybrid models, as in linear attention,
        only the last token's state is kept. In MTP/EAGLE, for draft tokens
        the state are kept util we decide how many tokens are accepted for
        each sequence, and a shifting is done during the next iteration
        based on the number of accepted tokens.
        """
        if not self.model_config.is_hybrid or not self.speculative_config:
            return

        # Find the number of accepted tokens for each sequence.
        num_accepted_tokens = (torch.cat(
            [
                output_token_ids,
                torch.full((output_token_ids.size(0), 1),
                           -1,
                           device=output_token_ids.device),
            ],
            dim=1) == -1).int().argmax(-1).cpu().numpy()
        for i, num_tokens in enumerate(num_accepted_tokens):
            self.input_batch.num_accepted_tokens_cpu[i] = num_tokens

    def _init_mrope_positions(self, req_state: CachedRequestState):
        image_grid_thw = []
        video_grid_thw = []
        second_per_grid_ts = []
        audio_feature_lengths = []
        use_audio_in_video = False
        for mm_feature in req_state.mm_features:
            mm_item = mm_feature.data
            if mm_item is None:
                continue
            mm_input = mm_item.get_data()
            if (t := mm_input.get("image_grid_thw")) is not None:
                image_grid_thw.append(t.tolist())
            if (t := mm_input.get("video_grid_thw")) is not None:
                video_grid_thw.append(t.tolist())
            if (t := mm_input.get("second_per_grid_ts")) is not None:
                second_per_grid_ts.append(t)
            if (t := mm_input.get("audio_feature_lengths")) is not None:
                audio_feature_lengths.append(t)
            if mm_input.get("use_audio_in_video") is True:
                use_audio_in_video = True

        if supports_mrope(self.model):
            req_state.mrope_positions, req_state.mrope_position_delta = \
                self.model.get_mrope_input_positions(
                    req_state.prompt_token_ids,
                    hf_config=self.model_config.hf_config,
                    image_grid_thw=image_grid_thw,
                    video_grid_thw=video_grid_thw,
                    second_per_grid_ts=second_per_grid_ts,
                    audio_feature_lengths=audio_feature_lengths,
                    use_audio_in_video=use_audio_in_video,
                )
        else:
            req_state.mrope_positions, req_state.mrope_position_delta = \
                MRotaryEmbedding.get_input_positions_tensor(
                    req_state.prompt_token_ids,
                    hf_config=self.model_config.hf_config,
                    image_grid_thw=image_grid_thw,
                    video_grid_thw=video_grid_thw,
                    second_per_grid_ts=second_per_grid_ts,
                    audio_feature_lengths=audio_feature_lengths,
                    use_audio_in_video=use_audio_in_video,
                )

    def _extract_mm_kwargs(
        self,
        scheduler_output: "SchedulerOutput",
    ) -> BatchedTensorInputs:
        if not scheduler_output or not self.is_multimodal_raw_input_only_model:
            return {}

        mm_kwargs = list[MultiModalKwargsItem]()
        for req in scheduler_output.scheduled_new_reqs:
            for feature in req.mm_features:
                if feature.data is not None:
                    mm_kwargs.append(feature.data)

        # Input all modalities at once
        model = cast(SupportsMultiModal, self.model)
        mm_kwargs_combined: BatchedTensorInputs = {}
        for _, _, mm_kwargs_group in group_mm_kwargs_by_modality(
                mm_kwargs,
                device=self.device,
                pin_memory=self.pin_memory,
                merge_by_field_config=model.merge_by_field_config,
        ):
            mm_kwargs_combined.update(mm_kwargs_group)

        return mm_kwargs_combined

    def _dummy_mm_kwargs(self, num_seqs: int) -> BatchedTensorInputs:
        if not self.is_multimodal_raw_input_only_model:
            return {}

        mm_budget = self.mm_budget
        assert mm_budget is not None

        dummy_modality = mm_budget.get_modality_with_max_tokens()
        return self._get_mm_dummy_batch(dummy_modality, num_seqs)

    def _get_cumsum_and_arange(
        self,
        num_tokens: np.ndarray,
        cumsum_dtype: Optional[np.dtype] = None,
    ) -> tuple[np.ndarray, np.ndarray]:
        """Get the cumulative sum and batched arange of the given array.
        # E.g., [2, 5, 3] -> ([2, 7, 10], [0, 1, 0, 1, 2, 3, 4, 0, 1, 2])
        # Equivalent to but faster than:
        # np.concatenate([np.arange(n) for n in num_tokens])
        """
        # Step 1. [2, 5, 3] -> [2, 7, 10]
        cu_num_tokens = np.cumsum(num_tokens, dtype=cumsum_dtype)
        total_num_tokens = cu_num_tokens[-1]
        # Step 2. [2, 7, 10] -> [0, 0, 2, 2, 2, 2, 2, 7, 7, 7]
        cumsums_offsets = np.repeat(cu_num_tokens - num_tokens, num_tokens)
        # Step 3. [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
        arange = self.arange_np[:total_num_tokens] - cumsums_offsets

        return cu_num_tokens, arange

    def _prepare_input_ids(self, total_num_scheduled_tokens: int,
                           cu_num_tokens: np.ndarray) -> None:
        """Prepare the input IDs for the current batch.

        Carefully handles the `prev_sampled_token_ids` which can be cached
        from the previous engine iteration, in which case those tokens on the
        GPU need to be copied into the corresponding slots into input_ids."""

        if self.input_batch.prev_sampled_token_ids is None:
            # Normal scheduling case
            self.input_ids.copy_to_gpu(total_num_scheduled_tokens)
            if self.enable_prompt_embeds:
                self.inputs_embeds.copy_to_gpu(total_num_scheduled_tokens)
                self.is_token_ids.copy_to_gpu(total_num_scheduled_tokens)
            return

        # Async scheduling case, where some decode requests from the previous
        # iteration won't have entries in input_ids_cpu and need to be copied
        # on the GPU from prev_sampled_token_ids.
        prev_req_id_to_index = self.input_batch.prev_req_id_to_index
        assert prev_req_id_to_index is not None
        flattened_indices = []
        prev_common_req_indices = []
        indices_match = True
        max_flattened_index = -1
        for req_id, cur_index in self.input_batch.req_id_to_index.items():
            if (prev_index := prev_req_id_to_index.get(req_id)) is not None:
                prev_common_req_indices.append(prev_index)
                # We need to compute the flattened input_ids index of the
                # last token in each common request.
                flattened_index = cu_num_tokens[cur_index].item() - 1
                flattened_indices.append(flattened_index)
                indices_match &= (prev_index == flattened_index)
                max_flattened_index = max(max_flattened_index, flattened_index)
        num_commmon_tokens = len(flattened_indices)
        if num_commmon_tokens < total_num_scheduled_tokens:
            # If not all requests are decodes from the last iteration,
            # We need to copy the input_ids_cpu to the GPU first.
            self.input_ids.copy_to_gpu(total_num_scheduled_tokens)
            if self.enable_prompt_embeds:
                self.inputs_embeds.copy_to_gpu(total_num_scheduled_tokens)
                self.is_token_ids.copy_to_gpu(total_num_scheduled_tokens)
        if num_commmon_tokens == 0:
            # No requests in common with the previous iteration
            # So input_ids_cpu will have all the input ids.
            return
        if indices_match and max_flattened_index == (num_commmon_tokens - 1):
            # Common-case optimization: the batch is unchanged
            # and no reordering happened.
            # The indices are both the same permutation of 0..N-1 so
            # we can copy directly using a single slice.
            self.input_ids.gpu[:num_commmon_tokens].copy_(
                self.input_batch.prev_sampled_token_ids[:num_commmon_tokens,
                                                        0],
                non_blocking=True)
            if self.enable_prompt_embeds:
                self.is_token_ids.gpu[:num_commmon_tokens] = True
            return
        # Upload the index tensors asynchronously
        # so the scatter can be non-blocking.
        input_ids_index_tensor = torch.tensor(flattened_indices,
                                              dtype=torch.int64,
                                              pin_memory=self.pin_memory).to(
                                                  self.device,
                                                  non_blocking=True)
        prev_common_req_indices_tensor = torch.tensor(
            prev_common_req_indices,
            dtype=torch.int64,
            pin_memory=self.pin_memory).to(self.device, non_blocking=True)
        self.input_ids.gpu.scatter_(
            dim=0,
            index=input_ids_index_tensor,
            src=self.input_batch.prev_sampled_token_ids[
                prev_common_req_indices_tensor, 0])

    def _get_encoder_seq_lens(
        self,
        scheduler_output: "SchedulerOutput",
        kv_cache_spec: KVCacheSpec,
        num_reqs: int,
    ) -> Optional[np.ndarray]:
        if not isinstance(kv_cache_spec, CrossAttentionSpec):
            return None

        # Build encoder_seq_lens array mapping request indices to
        # encoder lengths for inputs scheduled in this batch
        encoder_seq_lens = np.zeros(num_reqs, dtype=np.int32)
        for req_id in scheduler_output.scheduled_encoder_inputs:
            req_index = self.input_batch.req_id_to_index[req_id]
            encoder_seq_lens[req_index] = self.max_encoder_len

        return encoder_seq_lens

    def _prepare_inputs(
        self, scheduler_output: "SchedulerOutput"
    ) -> tuple[PerLayerAttnMetadata, torch.Tensor,
               Optional[SpecDecodeMetadata], np.ndarray,
               Optional[CommonAttentionMetadata], int, Optional[UBatchSlices],
               Optional[torch.Tensor], bool]:
        """
        :return: tuple[
            attn_metadata: layer-to-attention_metadata mapping,
            logits_indices, spec_decode_metadata,
            num_scheduled_tokens, spec_decode_common_attn_metadata,
            max_num_scheduled_tokens, use_cascade_attn
        ]
        """
        total_num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
        assert total_num_scheduled_tokens > 0
        num_reqs = self.input_batch.num_reqs
        assert num_reqs > 0

        # OPTIMIZATION: Start copying the block table first.
        # This way, we can overlap the copy with the following CPU operations.
        self.input_batch.block_table.commit_block_table(num_reqs)

        # Get the number of scheduled tokens for each request.
        req_ids = self.input_batch.req_ids
        tokens = [scheduler_output.num_scheduled_tokens[i] for i in req_ids]
        num_scheduled_tokens = np.array(tokens, dtype=np.int32)
        max_num_scheduled_tokens = max(tokens)

        # Get request indices.
        # E.g., [2, 5, 3] -> [0, 0, 1, 1, 1, 1, 1, 2, 2, 2]
        req_indices = np.repeat(self.arange_np[:num_reqs],
                                num_scheduled_tokens)

        # cu_num_tokens: [2, 5, 3] -> [2, 7, 10]
        # arange: [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
        cu_num_tokens, arange = self._get_cumsum_and_arange(
            num_scheduled_tokens)

        # Get positions.
        positions_np = self.positions.np[:total_num_scheduled_tokens]
        np.add(self.input_batch.num_computed_tokens_cpu[req_indices],
               arange,
               out=positions_np)

        # Calculate M-RoPE positions.
        # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
        if self.uses_mrope:
            self._calc_mrope_positions(scheduler_output)

        # Get token indices.
        # E.g., [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
        # -> [0, 1, M, M + 1, M + 2, M + 3, M + 4, 2 * M, 2 * M + 1, 2 * M + 2]
        # where M is the max_model_len.
        token_indices = (positions_np +
                         req_indices * self.input_batch.token_ids_cpu.shape[1])
        token_indices_tensor = torch.from_numpy(token_indices)

        # NOTE(woosuk): We use torch.index_select instead of np.take here
        # because torch.index_select is much faster than np.take for large
        # tensors.
        torch.index_select(self.input_batch.token_ids_cpu_tensor.flatten(),
                           0,
                           token_indices_tensor,
                           out=self.input_ids.cpu[:total_num_scheduled_tokens])
        if self.enable_prompt_embeds:
            is_token_ids = self.input_batch.is_token_ids.flatten()
            torch.index_select(
                is_token_ids,
                0,
                token_indices_tensor,
                out=self.is_token_ids.cpu[:total_num_scheduled_tokens])

        # Because we did not pre-allocate a massive prompt_embeds CPU tensor on
        # the InputBatch, we need to fill in the prompt embeds into the expected
        # spots in the GpuModelRunner's pre-allocated prompt_embeds tensor.
        if self.input_batch.req_prompt_embeds:
            output_idx = 0
            for req_idx in range(num_reqs):
                num_sched = num_scheduled_tokens[req_idx]

                # Skip if this request doesn't have embeddings
                if req_idx not in self.input_batch.req_prompt_embeds:
                    output_idx += num_sched
                    continue

                # Skip if no tokens scheduled
                if num_sched <= 0:
                    output_idx += num_sched
                    continue

                req_embeds = self.input_batch.req_prompt_embeds[req_idx]
                start_pos = self.input_batch.num_computed_tokens_cpu[req_idx]

                # Skip if trying to read beyond available embeddings
                if start_pos >= req_embeds.shape[0]:
                    output_idx += num_sched
                    continue

                # Copy available embeddings
                end_pos = start_pos + num_sched
                actual_end = min(end_pos, req_embeds.shape[0])
                actual_num_sched = actual_end - start_pos

                if actual_num_sched > 0:
                    self.inputs_embeds.cpu[output_idx:output_idx +
                                           actual_num_sched].copy_(
                                               req_embeds[start_pos:actual_end]
                                           )

                output_idx += num_sched

        self.input_batch.block_table.compute_slot_mapping(
            req_indices, positions_np)
        self.input_batch.block_table.commit_slot_mapping(
            total_num_scheduled_tokens)

        # Prepare the attention metadata.
        self.query_start_loc.np[0] = 0
        self.query_start_loc.np[1:num_reqs + 1] = cu_num_tokens
        # Note: pad query_start_loc to be non-decreasing, as kernels
        # like FlashAttention requires that
        self.query_start_loc.np[num_reqs + 1:].fill(cu_num_tokens[-1])
        self.query_start_loc.copy_to_gpu()
        query_start_loc = self.query_start_loc.gpu[:num_reqs + 1]

        num_tokens_unpadded = scheduler_output.total_num_scheduled_tokens
        num_tokens_padded = num_tokens_unpadded + self.get_local_padding(
            num_tokens_unpadded)
        uniform_decode = \
            (max_num_scheduled_tokens == self.uniform_decode_query_len) and \
            (total_num_scheduled_tokens == num_reqs * max_num_scheduled_tokens)
        ubatch_slices, num_tokens_after_padding = \
            ubatch_split(num_scheduled_tokens,
                         num_tokens_unpadded,
                         num_tokens_padded,
                         uniform_decode=uniform_decode,
                         vllm_config=self.vllm_config)

        self.seq_lens.np[:num_reqs] = (
            self.input_batch.num_computed_tokens_cpu[:num_reqs] +
            num_scheduled_tokens)
        # Fill unused with 0 for full cuda graph mode.
        self.seq_lens.np[num_reqs:].fill(0)
        self.seq_lens.copy_to_gpu()
        seq_lens = self.seq_lens.gpu[:num_reqs]
        max_seq_len = self.seq_lens.np[:num_reqs].max().item()

        num_tokens = [
            self.requests[r].num_tokens for r in self.input_batch.req_ids
        ]
        num_tokens_np = np.array(num_tokens, dtype=np.int32)

        # Record the index of requests that should not be sampled,
        # so that we could clear the sampled tokens before returning
        discard_requests_mask = self.seq_lens.np[:num_reqs] < num_tokens_np
        discard_request_indices = np.nonzero(discard_requests_mask)[0]
        self.num_discarded_requests = len(discard_request_indices)
        self.discard_request_indices.np[:self.num_discarded_requests] = (
            discard_request_indices)

        self.discard_request_indices.copy_to_gpu(self.num_discarded_requests)

        # Copy the tensors to the GPU.
        self._prepare_input_ids(total_num_scheduled_tokens, cu_num_tokens)

        if self.uses_mrope:
            # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
            self.mrope_positions.gpu[:, :total_num_scheduled_tokens].copy_(
                self.mrope_positions.cpu[:, :total_num_scheduled_tokens],
                non_blocking=True)
        else:
            # Common case (1D positions)
            self.positions.copy_to_gpu(total_num_scheduled_tokens)

        use_spec_decode = len(
            scheduler_output.scheduled_spec_decode_tokens) > 0
        if not use_spec_decode:
            # NOTE(woosuk): Due to chunked prefills, the batch may contain
            # partial requests. While we should not sample any token
            # from these partial requests, we do so for simplicity.
            # We will ignore the sampled tokens from the partial requests.
            # TODO: Support prompt logprobs.
            logits_indices = query_start_loc[1:] - 1
            num_draft_tokens = None
            spec_decode_metadata = None
        else:
            # Get the number of draft tokens for each request.
            # Iterate over the dictionary rather than all requests since not all
            # requests have draft tokens.
            num_draft_tokens = np.zeros(num_reqs, dtype=np.int32)
            # For chunked prefills, use -1 as mask rather than 0, as guided
            # decoding may rollback speculative tokens.
            num_decode_draft_tokens = np.full(num_reqs, -1, dtype=np.int32)
            for req_id, draft_token_ids in (
                    scheduler_output.scheduled_spec_decode_tokens.items()):
                req_idx = self.input_batch.req_id_to_index[req_id]
                num_draft_tokens[req_idx] = len(draft_token_ids)
                num_decode_draft_tokens[req_idx] = (len(draft_token_ids) if (
                    self.input_batch.num_computed_tokens_cpu[req_idx]
                    >= self.input_batch.num_prompt_tokens[req_idx]) else -1)
            spec_decode_metadata = self._calc_spec_decode_metadata(
                num_draft_tokens, cu_num_tokens)
            logits_indices = spec_decode_metadata.logits_indices

            # For DECODE only cuda graph of some attention backends (e.g., GDN).
            self.num_decode_draft_tokens.np[:
                                            num_reqs] = num_decode_draft_tokens
            self.num_decode_draft_tokens.np[num_reqs:].fill(-1)
            self.num_decode_draft_tokens.copy_to_gpu()

        logits_indices_padded = None
        if self.cache_config.kv_sharing_fast_prefill:
            logits_indices_padded = self._prepare_kv_sharing_fast_prefill(
                logits_indices)

        attn_metadata: PerLayerAttnMetadata = {}
        if ubatch_slices is not None:
            attn_metadata = [dict() for _ in range(len(ubatch_slices))]
        use_cascade_attn = False

        # Used in the below loop.
        query_start_loc_cpu = self.query_start_loc.cpu[:num_reqs + 1]
        seq_lens_cpu = self.seq_lens.cpu[:num_reqs]
        num_computed_tokens_cpu = (
            self.input_batch.num_computed_tokens_cpu_tensor[:num_reqs])
        spec_decode_common_attn_metadata = None
        if use_spec_decode:
            self.num_accepted_tokens.np[:num_reqs] = (
                self.input_batch.num_accepted_tokens_cpu[:num_reqs])
            self.num_accepted_tokens.np[num_reqs:].fill(1)
            self.num_accepted_tokens.copy_to_gpu()

        # Prepare the attention metadata for each KV cache group and make layers
        # in the same group share the same metadata.
        for kv_cache_group_id, kv_cache_group_spec in enumerate(
                self.kv_cache_config.kv_cache_groups):
            encoder_seq_lens = self._get_encoder_seq_lens(
                scheduler_output, kv_cache_group_spec.kv_cache_spec, num_reqs)

            if isinstance(kv_cache_group_spec.kv_cache_spec,
                          EncoderOnlyAttentionSpec):
                # Encoder-only layers do not have KV cache, so we need to
                # create a dummy block table and slot mapping for them.
                blk_table_tensor = torch.zeros(
                    (num_reqs, 1),
                    dtype=torch.int32,
                    device=self.device,
                )
                slot_mapping = torch.zeros(
                    (total_num_scheduled_tokens, ),
                    dtype=torch.int64,
                    device=self.device,
                )
                num_common_prefix_blocks = 0
            else:
                blk_table = self.input_batch.block_table[kv_cache_group_id]
                blk_table_tensor = blk_table.get_device_tensor(num_reqs)
                slot_mapping = blk_table.slot_mapping.gpu[:
                                                          total_num_scheduled_tokens]

                # Fill unused with -1. Needed for reshape_and_cache in full cuda
                # graph mode.
                blk_table.slot_mapping.gpu[total_num_scheduled_tokens:].fill_(
                    -1)
                num_common_prefix_blocks = (
                    scheduler_output.
                    num_common_prefix_blocks[kv_cache_group_id])

            common_attn_metadata = CommonAttentionMetadata(
                query_start_loc=query_start_loc,
                query_start_loc_cpu=query_start_loc_cpu,
                seq_lens=seq_lens,
                seq_lens_cpu=seq_lens_cpu,
                num_computed_tokens_cpu=num_computed_tokens_cpu,
                num_reqs=num_reqs,
                num_actual_tokens=total_num_scheduled_tokens,
                max_query_len=max_num_scheduled_tokens,
                max_seq_len=max_seq_len,
                block_table_tensor=blk_table_tensor,
                slot_mapping=slot_mapping,
                logits_indices_padded=logits_indices_padded,
                num_logits_indices=logits_indices.size(0),
                causal=True,
                encoder_seq_lens=encoder_seq_lens,
            )

            if (self.speculative_config
                    and spec_decode_common_attn_metadata is None):
                if isinstance(self.drafter, EagleProposer):
                    if (self.drafter.attn_layer_names[0]
                            in kv_cache_group_spec.layer_names):
                        spec_decode_common_attn_metadata = common_attn_metadata
                else:
                    spec_decode_common_attn_metadata = common_attn_metadata

            for attn_group in self.attn_groups[kv_cache_group_id]:
                # Prepare for cascade attention if enabled & beneficial.
                common_prefix_len = 0
                builder = attn_group.get_metadata_builder()
                if self.cascade_attn_enabled:
                    common_prefix_len = self._compute_cascade_attn_prefix_len(
                        num_scheduled_tokens,
                        num_common_prefix_blocks,
                        attn_group.kv_cache_spec,
                        builder,
                    )

                extra_attn_metadata_args = {}
                if use_spec_decode and isinstance(builder,
                                                  GDNAttentionMetadataBuilder):
                    extra_attn_metadata_args = dict(
                        num_accepted_tokens=self.num_accepted_tokens.
                        gpu[:num_reqs],
                        num_decode_draft_tokens_cpu=self.
                        num_decode_draft_tokens.cpu[:num_reqs],
                    )

                if ubatch_slices is not None:
                    common_attn_metadata_list = split_attn_metadata(
                        ubatch_slices, common_attn_metadata)
                    for ubid, common_attn_metadata in enumerate(
                            common_attn_metadata_list):
                        attn_metadata_i = (attn_group.get_metadata_builder(
                            ubatch_id=ubid).build(
                                common_prefix_len=common_prefix_len,
                                common_attn_metadata=common_attn_metadata))
                        for layer_name in kv_cache_group_spec.layer_names:
                            assert type(attn_metadata) is list
                            attn_metadata[ubid][layer_name] = attn_metadata_i
                else:
                    assert isinstance(attn_metadata, dict)
                    attn_metadata_i = builder.build(
                        common_prefix_len=common_prefix_len,
                        common_attn_metadata=common_attn_metadata,
                        **extra_attn_metadata_args)
                    use_cascade_attn |= getattr(attn_metadata_i, "use_cascade",
                                                False)
                    for layer_name in attn_group.layer_names:
                        attn_metadata[layer_name] = attn_metadata_i

        # disable cascade attention when DBO
        if ubatch_slices is not None:
            use_cascade_attn = False

        # Hot-Swap lora model
        if self.lora_config:
            self.set_active_loras(self.input_batch, num_scheduled_tokens)

        return (attn_metadata, logits_indices, spec_decode_metadata,
                num_scheduled_tokens, spec_decode_common_attn_metadata,
                max_num_scheduled_tokens, ubatch_slices,
                num_tokens_after_padding, use_cascade_attn)

    def _compute_cascade_attn_prefix_len(
        self,
        num_scheduled_tokens: np.ndarray,
        num_common_prefix_blocks: int,
        kv_cache_spec: KVCacheSpec,
        attn_metadata_builder: AttentionMetadataBuilder,
    ) -> int:
        """Compute the length of the common prefix for cascade attention.

        NOTE(woosuk): The common prefix length returned by this function
        represents the length used specifically for cascade attention, not the
        actual number of tokens shared between requests. When cascade attention
        is disabled (use_cascade=False), this function returns 0 even if
        requests share common tokens. Additionally, the common prefix length is
        truncated to a multiple of the block size and may be further truncated
        due to implementation details explained below.

        Args:
            num_scheduled_tokens: Number of tokens scheduled per request.
            num_common_prefix_blocks: Number of shared KV cache blocks.

        Returns:
            int: Length of common prefix in tokens.
        """
        common_prefix_len = num_common_prefix_blocks * kv_cache_spec.block_size
        if common_prefix_len == 0:
            # Common case.
            return 0

        # NOTE(woosuk): Cascade attention uses two attention kernels: one
        # for the common prefix and the other for the rest. For the first
        # kernel, we concatenate all the query tokens (possibly from
        # different requests) and treat them as if they are from the same
        # request. Then, we use bi-directional attention to process the
        # common prefix in the KV cache. Importantly, this means that the
        # first kernel does not do any masking.

        # Consider the following example:
        # Request 1's input query: [D, E, X]
        # Request 1's kv cache: [A, B, C, D, E, X]
        # Request 1's num_computed_tokens: 3 (i.e., [A, B, C])
        # Request 2's input query: [E, Y]
        # Request 2's kv cache: [A, B, C, D, E, Y]
        # Request 2's num_computed_tokens: 4 (i.e., [A, B, C, D])

        # If we use [A, B, C, D, E] as the common prefix, then the
        # first kernel will compute the bi-directional attention between
        # input query [D, E, X, E, Y] and common prefix [A, B, C, D, E].
        # However, this is wrong because D in Request 1 should not attend to
        # E in the common prefix (i.e., we need masking).
        # To avoid this, [A, B, C, D] should be the common prefix.
        # That is, the common prefix should be capped by the minimum
        # num_computed_tokens among the requests, and plus one to include
        # the first token of the query.

        # In practice, we use [A, B, C] as the common prefix, instead of
        # [A, B, C, D] (i.e., the common prefix is capped by the minimum
        # num_computed_tokens, without plus one).
        # This is because of an implementation detail: We want to always
        # use two kernels for cascade attention. Let's imagine:
        # Request 3's input query: [D]
        # Request 3's kv cache: [A, B, C, D]
        # Request 3's num_computed_tokens: 3 (i.e., [A, B, C])
        # If we use [A, B, C, D] as the common prefix for Request 1-3,
        # then Request 3 will be processed only by the first kernel,
        # and the second kernel will get an empty input. While this is not
        # a fundamental problem, our current implementation does not support
        # this case.
        num_reqs = len(num_scheduled_tokens)
        common_prefix_len = min(
            common_prefix_len,
            self.input_batch.num_computed_tokens_cpu[:num_reqs].min())
        # common_prefix_len should be a multiple of the block size.
        common_prefix_len = (common_prefix_len // kv_cache_spec.block_size *
                             kv_cache_spec.block_size)
        use_sliding_window = (isinstance(kv_cache_spec, SlidingWindowSpec) or
                              (isinstance(kv_cache_spec, FullAttentionSpec)
                               and kv_cache_spec.sliding_window is not None))
        use_local_attention = (
            isinstance(kv_cache_spec, ChunkedLocalAttentionSpec)
            or (isinstance(kv_cache_spec, FullAttentionSpec)
                and kv_cache_spec.attention_chunk_size is not None))
        assert isinstance(kv_cache_spec, AttentionSpec)
        use_cascade = attn_metadata_builder.use_cascade_attention(
            common_prefix_len=common_prefix_len,
            query_lens=num_scheduled_tokens,
            num_query_heads=self.num_query_heads,
            num_kv_heads=kv_cache_spec.num_kv_heads,
            use_alibi=self.use_alibi,
            use_sliding_window=use_sliding_window,
            use_local_attention=use_local_attention,
            num_sms=self.num_sms,
        )
        return common_prefix_len if use_cascade else 0

    def _calc_mrope_positions(self, scheduler_output: "SchedulerOutput"):
        mrope_pos_ptr = 0
        for index, req_id in enumerate(self.input_batch.req_ids):
            req = self.requests[req_id]
            assert req.mrope_positions is not None

            num_computed_tokens = \
                self.input_batch.num_computed_tokens_cpu[index]
            num_scheduled_tokens = \
                scheduler_output.num_scheduled_tokens[req_id]
            num_prompt_tokens = length_from_prompt_token_ids_or_embeds(
                req.prompt_token_ids, req.prompt_embeds)

            if num_computed_tokens + num_scheduled_tokens > num_prompt_tokens:
                prompt_part_len = max(0,
                                      num_prompt_tokens - num_computed_tokens)
                completion_part_len = max(
                    0, num_scheduled_tokens - prompt_part_len)
            else:
                prompt_part_len = num_scheduled_tokens
                completion_part_len = 0

            assert num_scheduled_tokens == prompt_part_len + completion_part_len

            if prompt_part_len > 0:
                # prompt's mrope_positions are pre-computed
                dst_start = mrope_pos_ptr
                dst_end = mrope_pos_ptr + prompt_part_len
                src_start = num_computed_tokens
                src_end = num_computed_tokens + prompt_part_len

                self.mrope_positions.cpu[:, dst_start:dst_end] = (
                    req.mrope_positions[:, src_start:src_end])
                mrope_pos_ptr += prompt_part_len

            if completion_part_len > 0:
                # compute completion's mrope_positions on-the-fly
                dst_start = mrope_pos_ptr
                dst_end = mrope_pos_ptr + completion_part_len

                MRotaryEmbedding.get_next_input_positions_tensor(
                    out=self.mrope_positions.np,
                    out_offset=dst_start,
                    mrope_position_delta=req.mrope_position_delta,
                    context_len=num_computed_tokens + prompt_part_len,
                    num_new_tokens=completion_part_len,
                )

                mrope_pos_ptr += completion_part_len

    def _calc_spec_decode_metadata(
        self,
        num_draft_tokens: np.ndarray,
        cu_num_scheduled_tokens: np.ndarray,
    ) -> SpecDecodeMetadata:
        # Inputs:
        # cu_num_scheduled_tokens:  [  4, 104, 107, 207, 209]
        # num_draft_tokens:         [  3,   0,   2,   0,   1]
        # Outputs:
        # cu_num_draft_tokens:      [  3,   3,   5,   5,   6]
        # logits_indices:           [  0,   1,   2,   3, 103, 104, 105, 106,
        #                            206, 207, 208]
        # target_logits_indices:    [  0,   1,   2,   5,   6,   9]
        # bonus_logits_indices:     [  3,   4,   7,   8,  10]

        # Compute the logits indices.
        # [4, 1, 3, 1, 2]
        num_sampled_tokens = num_draft_tokens + 1

        # Step 1. cu_num_sampled_tokens: [4, 5, 8, 9, 11]
        # arange: [0, 1, 2, 3, 0, 0, 1, 2, 0, 0, 1]
        cu_num_sampled_tokens, arange = self._get_cumsum_and_arange(
            num_sampled_tokens, cumsum_dtype=np.int32)
        # Step 2. [0, 0, 0, 0, 103, 104, 104, 104, 206, 207, 207]
        logits_indices = np.repeat(
            cu_num_scheduled_tokens - num_sampled_tokens, num_sampled_tokens)
        # Step 3. [0, 1, 2, 3, 103, 104, 105, 106, 206, 207, 208]
        logits_indices += arange

        # Compute the bonus logits indices.
        bonus_logits_indices = cu_num_sampled_tokens - 1

        # Compute the draft logits indices.
        # cu_num_draft_tokens: [3, 3, 5, 5, 6]
        # arange: [0, 1, 2, 0, 1, 0]
        cu_num_draft_tokens, arange = self._get_cumsum_and_arange(
            num_draft_tokens, cumsum_dtype=np.int32)
        # [0, 0, 0, 5, 5, 9]
        target_logits_indices = np.repeat(
            cu_num_sampled_tokens - num_sampled_tokens, num_draft_tokens)
        # [0, 1, 2, 5, 6, 9]
        target_logits_indices += arange

        # TODO: Optimize the CPU -> GPU copy.
        cu_num_draft_tokens = torch.from_numpy(cu_num_draft_tokens).to(
            self.device, non_blocking=True)
        logits_indices = torch.from_numpy(logits_indices).to(self.device,
                                                             non_blocking=True)
        target_logits_indices = torch.from_numpy(target_logits_indices).to(
            self.device, non_blocking=True)
        bonus_logits_indices = torch.from_numpy(bonus_logits_indices).to(
            self.device, non_blocking=True)

        # Compute the draft token ids.
        # draft_token_indices:      [  1,   2,   3, 105, 106, 208]
        draft_token_ids = self.input_ids.gpu[logits_indices]
        draft_token_ids = draft_token_ids[target_logits_indices + 1]

        metadata = SpecDecodeMetadata(
            draft_token_ids=draft_token_ids,
            num_draft_tokens=num_draft_tokens.tolist(),
            cu_num_draft_tokens=cu_num_draft_tokens,
            target_logits_indices=target_logits_indices,
            bonus_logits_indices=bonus_logits_indices,
            logits_indices=logits_indices,
        )
        return metadata

    def _prepare_kv_sharing_fast_prefill(
        self,
        logits_indices: torch.Tensor,
    ) -> torch.Tensor:
        assert self.kv_sharing_fast_prefill_logits_indices is not None
        num_logits = logits_indices.shape[0]
        assert num_logits > 0
        self.kv_sharing_fast_prefill_logits_indices[:num_logits].copy_(
            logits_indices)
        # There might have leftover indices in logits_indices[num_logits:]
        # from previous iterations, whose values may be greater than the
        # batch size in the current iteration. To ensure indices are always
        # valid, we fill the padded indices with the last index.
        self.kv_sharing_fast_prefill_logits_indices[num_logits:].fill_(
            logits_indices[-1].item())
        if (self.compilation_config.cudagraph_mode != CUDAGraphMode.NONE
                and num_logits <= self.cudagraph_batch_sizes[-1]):
            # Use piecewise CUDA graphs.
            # Add padding to the batch size.
            num_logits_padded = self.vllm_config.pad_for_cudagraph(num_logits)
        else:
            num_logits_padded = num_logits
        logits_indices_padded = (
            self.kv_sharing_fast_prefill_logits_indices[:num_logits_padded])
        return logits_indices_padded

    def _batch_mm_kwargs_from_scheduler(
        self,
        scheduler_output: "SchedulerOutput",
    ) -> tuple[list[MultiModalKwargsItem], list[tuple[str, PlaceholderRange]]]:
        """Batch multimodal kwargs from scheduled encoder inputs.

        Args:
            scheduler_output: The scheduler output containing scheduled encoder
                inputs.

        Returns:
            A tuple of (mm_kwargs, req_ids_pos) where:
            - mm_kwargs: List of multimodal kwargs items to be batched
            - mm_hashes_pos: List of (mm_hash, position_info) tuples
        """
        scheduled_encoder_inputs = scheduler_output.scheduled_encoder_inputs
        if not scheduled_encoder_inputs:
            return [], []
        # Batch the multi-modal inputs.
        mm_kwargs = list[MultiModalKwargsItem]()
        # list of tuple (mm_hash, position_info)
        mm_hashes_pos = list[tuple[str, PlaceholderRange]]()
        for req_id, encoder_input_ids in scheduled_encoder_inputs.items():
            req_state = self.requests[req_id]

            for mm_input_id in encoder_input_ids:
                mm_feature = req_state.mm_features[mm_input_id]
                mm_hash = mm_feature.identifier
                mm_kwargs.append(mm_feature.data)
                mm_hashes_pos.append((mm_hash, mm_feature.mm_position))

        return mm_kwargs, mm_hashes_pos

    def _execute_mm_encoder(self, scheduler_output: "SchedulerOutput"):
        # Batch the multi-modal inputs using the helper method.
        mm_kwargs, mm_hashes_pos = self._batch_mm_kwargs_from_scheduler(
            scheduler_output)

        if not mm_kwargs:
            return

        # Batch mm inputs as much as we can: if a request in the batch has
        # multiple modalities or a different modality than the previous one,
        # we process it separately to preserve item order.
        # FIXME(ywang96): This is a hacky way to deal with multiple modalities
        # in the same batch while still being able to benefit from batching
        # multimodal inputs. The proper solution should be reordering the
        # encoder outputs.
        model = cast(SupportsMultiModal, self.model)
        encoder_outputs = []
        for modality, num_items, mm_kwargs_group in group_mm_kwargs_by_modality(
                mm_kwargs,
                device=self.device,
                pin_memory=self.pin_memory,
                merge_by_field_config=model.merge_by_field_config,
        ):
            # (ekhvedchenia): Temporary hack to limit peak memory usage when
            # processing multimodal data.This solves the issue with scheduler
            # putting too many video samples into a single batch. Scheduler
            # uses pruned vision tokens count to compare it versus compute
            # budget which is incorrect (Either input media size or non-pruned
            # output vision tokens count should be considered)
            curr_group_outputs = []

            if self.is_multimodal_pruning_enabled and modality == "video":
                micro_batch_size = 1
                for i in range(0, num_items, micro_batch_size):
                    micro_batch_mm_inputs = dict(
                        (k, v[i:i + micro_batch_size])
                        for k, v in mm_kwargs_group.items())

                    micro_batch_outputs = model.get_multimodal_embeddings(
                        **micro_batch_mm_inputs)

                    curr_group_outputs.extend(micro_batch_outputs)
            else:
                # Run the encoder.
                # `curr_group_outputs` is either of the following:
                # 1. A tensor of shape (num_items, feature_size, hidden_size)
                # in case feature_size is fixed across all multimodal items.
                # 2. A list or tuple (length: num_items) of tensors,
                # each of shape (feature_size, hidden_size) in case the feature
                # size is dynamic depending on the input multimodal items.
                curr_group_outputs = model.get_multimodal_embeddings(
                    **mm_kwargs_group)

            sanity_check_mm_encoder_outputs(
                curr_group_outputs,
                expected_num_items=num_items,
            )
            encoder_outputs.extend(curr_group_outputs)

        # Cache the encoder outputs by mm_hash
        for (mm_hash, pos_info), output in zip(mm_hashes_pos, encoder_outputs):
            self.encoder_cache[mm_hash] = scatter_mm_placeholders(
                output,
                is_embed=pos_info.is_embed,
            )

    def _gather_mm_embeddings(
        self,
        scheduler_output: "SchedulerOutput",
        shift_computed_tokens: int = 0,
    ) -> tuple[list[torch.Tensor], torch.Tensor]:
        total_num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens

        mm_embeds = list[torch.Tensor]()
        is_mm_embed = self.is_mm_embed.cpu
        is_mm_embed[:total_num_scheduled_tokens] = False

        req_start_idx = 0
        should_sync_mrope_positions = False

        for req_id in self.input_batch.req_ids:
            mm_embeds_req: list[torch.Tensor] = []

            num_scheduled_tokens = scheduler_output.num_scheduled_tokens[
                req_id]
            req_state = self.requests[req_id]
            num_computed_tokens = \
                req_state.num_computed_tokens + shift_computed_tokens

            for mm_feature in req_state.mm_features:
                pos_info = mm_feature.mm_position
                start_pos = pos_info.offset
                num_encoder_tokens = pos_info.length

                # The encoder output is needed if the two ranges overlap:
                # [num_computed_tokens,
                #  num_computed_tokens + num_scheduled_tokens) and
                # [start_pos, start_pos + num_encoder_tokens)
                if start_pos >= num_computed_tokens + num_scheduled_tokens:
                    # The encoder output is not needed in this step.
                    break
                if start_pos + num_encoder_tokens <= num_computed_tokens:
                    # The encoder output is already processed and stored
                    # in the decoder's KV cache.
                    continue

                start_idx = max(num_computed_tokens - start_pos, 0)
                end_idx = min(
                    num_computed_tokens - start_pos + num_scheduled_tokens,
                    num_encoder_tokens,
                )
                assert start_idx < end_idx

                mm_hash = mm_feature.identifier
                encoder_output = self.encoder_cache.get(mm_hash, None)
                assert encoder_output is not None,\
                    f"Encoder cache miss for {mm_hash}."

                if (is_embed := pos_info.is_embed) is not None:
                    is_embed = is_embed[start_idx:end_idx]

                req_start_pos = req_start_idx + start_pos - num_computed_tokens
                is_mm_embed[req_start_pos+start_idx:req_start_pos + end_idx] \
                    = True if is_embed is None else is_embed

                mm_embeds_item = gather_mm_placeholders(
                    encoder_output[start_idx:end_idx],
                    is_embed=is_embed,
                )
                mm_embeds_req.append(mm_embeds_item)

            if self.is_multimodal_pruning_enabled and self.uses_mrope:
                assert req_state.mrope_positions is not None
                should_sync_mrope_positions = True
                mm_embeds_req, new_mrope_positions, new_delta = (
                    self.model.recompute_mrope_positions(
                        input_ids=req_state.prompt_token_ids,
                        multimodal_embeddings=mm_embeds_req,
                        mrope_positions=req_state.mrope_positions,
                        num_computed_tokens=req_state.num_computed_tokens,
                    ))
                req_state.mrope_positions.copy_(new_mrope_positions)
                req_state.mrope_position_delta = new_delta

            mm_embeds.extend(mm_embeds_req)
            req_start_idx += num_scheduled_tokens

        is_mm_embed = self.is_mm_embed.copy_to_gpu(total_num_scheduled_tokens)

        if should_sync_mrope_positions:
            self._calc_mrope_positions(scheduler_output)
            self.mrope_positions.copy_to_gpu(total_num_scheduled_tokens)

        return mm_embeds, is_mm_embed

    def _extract_encoder_inputs(
        self,
        scheduler_output: "SchedulerOutput",
    ) -> dict[str, torch.Tensor]:
        """Extract encoder inputs for encoder-decoder models.

        This method extracts multimodal input features from scheduled encoder
        inputs and formats them for the encoder-decoder model forward pass.
        """
        # Batch the multi-modal inputs using the helper method.
        mm_kwargs, _ = self._batch_mm_kwargs_from_scheduler(scheduler_output)

        if not mm_kwargs:
            return {}

        # Group MM kwargs by modality and extract features
        model = cast(SupportsMultiModal, self.model)
        encoder_features = {}
        for _, _, mm_kwargs_group in group_mm_kwargs_by_modality(
                mm_kwargs,
                device=self.device,
                pin_memory=self.pin_memory,
                merge_by_field_config=model.merge_by_field_config,
        ):
            # Add the grouped features to encoder_features dict
            # This allows the model to receive them as kwargs (e.g.,
            # input_features=...)
            encoder_features.update(mm_kwargs_group)

        return encoder_features

    def get_model(self) -> nn.Module:
        # get raw model out of the cudagraph wrapper.
        if isinstance(self.model, (CUDAGraphWrapper, UBatchWrapper)):
            return self.model.unwrap()
        return self.model

    def get_supported_generation_tasks(self) -> list[GenerationTask]:
        model = self.get_model()
        supported_tasks = list[GenerationTask]()

        if is_text_generation_model(model):
            supported_tasks.append("generate")

        if supports_transcription(model):
            if model.supports_transcription_only:
                return ["transcription"]

            supported_tasks.append("transcription")

        return supported_tasks

    def get_supported_pooling_tasks(self) -> list[PoolingTask]:
        model = self.get_model()
        if not is_pooling_model(model):
            return []

        supported_tasks = list(model.pooler.get_supported_tasks())

        if (self.scheduler_config.chunked_prefill_enabled
                and "encode" in supported_tasks):
            supported_tasks.remove("encode")

            logger.debug_once("Chunked prefill is not supported with "
                              "encode task which using ALL pooling. "
                              "Please turn off chunked prefill by "
                              "`--no-enable-chunked-prefill` before using it.")

        if "score" in supported_tasks:
            num_labels = getattr(self.model_config.hf_config, "num_labels", 0)
            if num_labels != 1:
                supported_tasks.remove("score")
                logger.debug_once(
                    "Score API is only enabled for num_labels == 1.")

        return supported_tasks

    def get_supported_tasks(self) -> tuple[SupportedTask, ...]:
        tasks = list[SupportedTask]()

        if self.model_config.runner_type == "generate":
            tasks.extend(self.get_supported_generation_tasks())
        if self.model_config.runner_type == "pooling":
            tasks.extend(self.get_supported_pooling_tasks())

        return tuple(tasks)

    def sync_and_slice_intermediate_tensors(
            self, num_tokens: int, intermediate_tensors: IntermediateTensors,
            sync_self: bool) -> IntermediateTensors:

        assert self.intermediate_tensors is not None

        tp = self.vllm_config.parallel_config.tensor_parallel_size
        is_rs = is_residual_scattered_for_sp(self.vllm_config, num_tokens)

        # When sequence parallelism is enabled, the "residual" tensor is sharded
        # across tensor parallel ranks, so each rank only needs its own slice.
        if sync_self:
            assert intermediate_tensors is not None
            for k, v in intermediate_tensors.items():
                is_scattered = k == "residual" and is_rs
                copy_len = num_tokens // tp if is_scattered else \
                    num_tokens
                self.intermediate_tensors[k][:copy_len].copy_(
                    v[:copy_len], non_blocking=True)

        return IntermediateTensors({
            k:
            v[:num_tokens //
              tp] if k == "residual" and is_rs else v[:num_tokens]
            for k, v in self.intermediate_tensors.items()
        })

    def eplb_step(self,
                  is_dummy: bool = False,
                  is_profile: bool = False) -> None:
        """
        Step for the EPLB (Expert Parallelism Load Balancing) state.
        """
        if not self.parallel_config.enable_eplb:
            return

        assert self.eplb_state is not None
        model = self.get_model()
        assert is_mixture_of_experts(model)
        self.eplb_state.step(
            model,
            is_dummy,
            is_profile,
            log_stats=self.parallel_config.eplb_config.log_balancedness,
        )

    def get_dp_padding(self,
                       num_tokens: int) -> tuple[int, Optional[torch.Tensor]]:
        """
        Determines the total number of tokens that each rank will run.
        All ranks will be padded out so that they run with the same number
        of tokens

        Returns: tuple[
            num_pad_tokens: The number of tokens that will be added to the batch
            num_tokens_after_padding: A tensor containing the total number of
            tokens for each DP rank including padding.
        ]
        """
        dp_size = self.vllm_config.parallel_config.data_parallel_size
        dp_rank = self.vllm_config.parallel_config.data_parallel_rank

        # For DP: Don't pad when setting enforce_eager.
        # This lets us set enforce_eager on the prefiller in a P/D setup and
        # still use CUDA graphs (enabled by this padding) on the decoder.
        #
        # TODO(tms) : There are many cases where padding is enabled for
        # prefills, causing unnecessary and excessive padding of activations.

        if dp_size == 1 or self.vllm_config.model_config.enforce_eager:
            # Early exit.
            return 0, None

        num_tokens_across_dp = DPMetadata.num_tokens_across_dp(
            num_tokens, dp_size, dp_rank)
        max_tokens_across_dp_cpu = torch.max(num_tokens_across_dp).item()
        num_tokens_after_padding = torch.tensor([max_tokens_across_dp_cpu] *
                                                dp_size,
                                                device="cpu",
                                                dtype=torch.int32)
        return max_tokens_across_dp_cpu - num_tokens, num_tokens_after_padding

    def get_local_padding(self, num_tokens_unpadded: int) -> int:

        num_tokens_padded = num_tokens_unpadded

        if (self.compilation_config.cudagraph_mode != CUDAGraphMode.NONE
                and num_tokens_unpadded <= self.cudagraph_batch_sizes[-1]):
            # Use piecewise CUDA graphs.
            # Add padding to the batch size.
            num_tokens_padded = self.vllm_config.pad_for_cudagraph(
                num_tokens_unpadded)
        else:
            # Eager mode.
            # Pad tokens to multiple of tensor_parallel_size when
            # enabled collective fusion for SP
            tp_size = self.vllm_config.parallel_config.tensor_parallel_size
            if self.vllm_config.compilation_config.pass_config. \
                enable_sequence_parallelism and tp_size > 1:
                num_tokens_padded = round_up(num_tokens_unpadded, tp_size)

        num_pad_tokens = num_tokens_padded - num_tokens_unpadded
        return num_pad_tokens

    # This is where the second ubatch is adjusted to account for the padding.
    # Should be called after attention metadata creation. This just pads
    # the second ubatch slice out to the total number of tokens
    # (num_tokens + padding)
    def pad_out_ubatch_slice(self, ubatch_slices: UBatchSlices,
                             num_total_tokens: int):
        padded_second_ubatch_slice = slice(ubatch_slices[1].token_slice.start,
                                           num_total_tokens)
        ubatch_slices[1] = UBatchSlice(padded_second_ubatch_slice,
                                       padded_second_ubatch_slice)

    def _pool(
        self,
        hidden_states: torch.Tensor,
        num_scheduled_tokens: int,
        num_scheduled_tokens_np: np.ndarray,
    ) -> ModelRunnerOutput:
        assert self.input_batch.num_reqs ==\
            len(self.input_batch.pooling_params), \
        "Either all or none of the requests in" \
        " a batch must be pooling request"

        hidden_states = hidden_states[:num_scheduled_tokens]
        pooling_metadata = self.input_batch.get_pooling_metadata()
        pooling_metadata.build_pooling_cursor(num_scheduled_tokens_np.tolist(),
                                              device=hidden_states.device)
        seq_lens_cpu = self.seq_lens.cpu[:self.input_batch.num_reqs]

        model = cast(VllmModelForPooling, self.model)
        raw_pooler_output: PoolerOutput = model.pooler(
            hidden_states=hidden_states,
            pooling_metadata=pooling_metadata,
        )
        raw_pooler_output = json_map_leaves(
            lambda x: x.to("cpu", non_blocking=True),
            raw_pooler_output,
        )
        self._sync_device()

        pooler_output: list[Optional[torch.Tensor]] = []
        for raw_output, seq_len, prompt_len in zip(
                raw_pooler_output, seq_lens_cpu, pooling_metadata.prompt_lens):

            output = raw_output if seq_len == prompt_len else None
            pooler_output.append(output)

        return ModelRunnerOutput(
            req_ids=self.input_batch.req_ids,
            req_id_to_index=self.input_batch.req_id_to_index,
            sampled_token_ids=[],
            logprobs=None,
            prompt_logprobs_dict={},
            pooler_output=pooler_output,
        )

    def _get_num_input_tokens(self, num_scheduled_tokens: int) -> int:
        if (self.compilation_config.cudagraph_mode != CUDAGraphMode.NONE
                and not envs.VLLM_DISABLE_PAD_FOR_CUDAGRAPH
                and hasattr(self, "cudagraph_batch_sizes")
                and self.cudagraph_batch_sizes
                and num_scheduled_tokens <= self.cudagraph_batch_sizes[-1]):
            # Use CUDA graphs.
            # Add padding to the batch size.
            return self.vllm_config.pad_for_cudagraph(num_scheduled_tokens)

        # Eager mode.
        # Pad tokens to multiple of tensor_parallel_size when
        # enabled collective fusion for SP
        tp_size = self.vllm_config.parallel_config.tensor_parallel_size
        if (self.compilation_config.pass_config.enable_sequence_parallelism
                and tp_size > 1):
            return round_up(num_scheduled_tokens, tp_size)
        return num_scheduled_tokens

    def _preprocess(
        self,
        scheduler_output: "SchedulerOutput",
        intermediate_tensors: Optional[IntermediateTensors] = None,
        ubatch_slices: Optional[UBatchSlices] = None,
        num_tokens_after_padding: Optional[torch.Tensor] = None,
    ) -> tuple[int, int, Optional[torch.Tensor], Optional[torch.Tensor],
               Optional[torch.Tensor], torch.Tensor,
               Optional[IntermediateTensors], dict[str, Any]]:

        num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
        if ubatch_slices:
            assert num_tokens_after_padding is not None
            num_input_tokens = int(num_tokens_after_padding[0].item() * 2)
            self.pad_out_ubatch_slice(ubatch_slices, num_input_tokens)
        elif ubatch_slices is None:
            num_input_tokens = self._get_num_input_tokens(num_scheduled_tokens)
            num_pad, num_tokens_after_padding = self.get_dp_padding(
                num_input_tokens)
            num_input_tokens += num_pad

        # _prepare_inputs may reorder the batch, so we must gather multi
        # modal outputs after that to ensure the correct order
        if (self.supports_mm_inputs and get_pp_group().is_first_rank
                and not self.model_config.is_encoder_decoder):
            # Run the multimodal encoder if any.
            self._execute_mm_encoder(scheduler_output)
            mm_embeds, is_mm_embed = self._gather_mm_embeddings(
                scheduler_output)

            # NOTE(woosuk): To unify token ids and soft tokens (vision
            # embeddings), we always use embeddings (rather than token ids)
            # as input to the multimodal model, even when the input is text.
            inputs_embeds_scheduled = self.model.get_input_embeddings(
                self.input_ids.gpu[:num_scheduled_tokens],
                multimodal_embeddings=mm_embeds,
                is_multimodal=is_mm_embed,
            )

            # TODO(woosuk): Avoid the copy. Optimize.
            self.inputs_embeds.gpu[:num_scheduled_tokens].copy_(
                inputs_embeds_scheduled)

            input_ids = None
            inputs_embeds = self.inputs_embeds.gpu[:num_input_tokens]
            model_kwargs = {
                **self._init_model_kwargs(num_scheduled_tokens),
                **self._extract_mm_kwargs(scheduler_output),
            }
        elif self.enable_prompt_embeds and get_pp_group().is_first_rank:
            # Get the input embeddings for the tokens that are not input embeds,
            # then put them into the appropriate positions.
            # TODO(qthequartermasterman): Since even when prompt embeds are
            # enabled, (a) not all requests will use prompt embeds, and (b)
            # after the initial prompt is processed, the rest of the generated
            # tokens will be token ids, it is not desirable to have the
            # embedding layer outside of the CUDA graph all the time. The v0
            # engine avoids this by "double compiling" the CUDA graph, once
            # with input_ids and again with inputs_embeds, for all num_tokens.
            # If a batch only has token ids, then including the embedding layer
            # in the CUDA graph will be more performant (like in the else case
            # below).
            token_ids_idx = self.is_token_ids.gpu[:num_scheduled_tokens] \
                .nonzero(as_tuple=False) \
                .squeeze(1)
            # Some tokens ids may need to become embeds
            if token_ids_idx.numel() > 0:
                token_ids = self.input_ids.gpu[token_ids_idx]
                tokens_to_embeds = self.model.get_input_embeddings(
                    input_ids=token_ids)
                self.inputs_embeds.gpu[token_ids_idx] = tokens_to_embeds

            inputs_embeds = self.inputs_embeds.gpu[:num_input_tokens]
            model_kwargs = self._init_model_kwargs(num_input_tokens)
            input_ids = None
        else:
            # For text-only models, we use token ids as input.
            # While it is possible to use embeddings as input just like the
            # multimodal models, it is not desirable for performance since
            # then the embedding layer is not included in the CUDA graph.
            input_ids = self.input_ids.gpu[:num_input_tokens]
            inputs_embeds = None
            model_kwargs = self._init_model_kwargs(num_input_tokens)
        if self.uses_mrope:
            positions = self.mrope_positions.gpu[:, :num_input_tokens]
        else:
            positions = self.positions.gpu[:num_input_tokens]

        if get_pp_group().is_first_rank:
            intermediate_tensors = None
        else:
            intermediate_tensors = self.sync_and_slice_intermediate_tensors(
                num_input_tokens, intermediate_tensors, True)

        if (self.model_config.is_encoder_decoder
                and scheduler_output.scheduled_encoder_inputs):
            encoder_inputs = self._extract_encoder_inputs(scheduler_output)
            model_kwargs.update(encoder_inputs)

        return (
            num_scheduled_tokens,
            num_input_tokens,
            num_tokens_after_padding,
            input_ids,
            inputs_embeds,
            positions,
            intermediate_tensors,
            model_kwargs,
        )

    def _sample(
            self, logits: Optional[torch.Tensor],
            spec_decode_metadata: Optional[SpecDecodeMetadata]
    ) -> SamplerOutput:
        # Sample the next token and get logprobs if needed.
        sampling_metadata = self.input_batch.sampling_metadata
        if spec_decode_metadata is None:
            sampler_output = self.sampler(
                logits=logits,
                sampling_metadata=sampling_metadata,
            )
        else:
            # When indexing with a tensor (bonus_logits_indices), PyTorch
            # creates a new tensor with separate storage from the original
            # logits tensor. This means any in-place operations on bonus_logits
            # won't affect the original logits tensor.
            assert logits is not None
            bonus_logits = logits[spec_decode_metadata.bonus_logits_indices]
            sampler_output = self.sampler(
                logits=bonus_logits,
                sampling_metadata=sampling_metadata,
            )
            bonus_token_ids = sampler_output.sampled_token_ids

            # Just like `bonus_logits`, `target_logits` is a new tensor with
            # separate storage from the original `logits` tensor. Therefore,
            # it is safe to update `target_logits` in place.
            target_logits = logits[spec_decode_metadata.target_logits_indices]
            output_token_ids = self.rejection_sampler(
                spec_decode_metadata,
                None,  # draft_probs
                target_logits,
                bonus_token_ids,
                sampling_metadata,
            )
            sampler_output.sampled_token_ids = output_token_ids
            self._update_states_after_model_execute(output_token_ids)

        return sampler_output

    def _bookkeeping_sync(
        self, scheduler_output: "SchedulerOutput",
        sampler_output: SamplerOutput, logits: Optional[torch.Tensor],
        hidden_states: torch.Tensor, num_scheduled_tokens: int
    ) -> tuple[
            dict[str, int],
            Optional[LogprobsLists],
            list[list[int]],
            dict[str, Optional[LogprobsTensors]],
            list[str],
            dict[str, int],
            list[int],
    ]:
        num_nans_in_logits = {}
        if envs.VLLM_COMPUTE_NANS_IN_LOGITS:
            num_nans_in_logits = self._get_nans_in_logits(logits)

        discard_sampled_tokens_req_indices = \
            self.discard_request_indices.np[:self.num_discarded_requests]
        for i in discard_sampled_tokens_req_indices:
            gen = self.input_batch.generators.get(int(i))
            if gen is not None:
                gen.set_offset(gen.get_offset() - 4)

        # Copy some objects so they don't get modified after returning.
        # This is important when using async scheduling.
        req_ids_output_copy = self.input_batch.req_ids.copy()
        req_id_to_index_output_copy = \
            self.input_batch.req_id_to_index.copy()

        # NOTE: GPU -> CPU Sync happens here.
        # Move as many CPU operations as possible before this sync point.
        logprobs_tensors = sampler_output.logprobs_tensors
        logprobs_lists = logprobs_tensors.tolists() \
            if logprobs_tensors is not None else None

        # Compute prompt logprobs if needed.
        prompt_logprobs_dict = self._get_prompt_logprobs_dict(
            hidden_states[:num_scheduled_tokens],
            scheduler_output.num_scheduled_tokens,
        )

        num_sampled_tokens = sampler_output.sampled_token_ids.shape[0]
        sampled_token_ids = sampler_output.sampled_token_ids
        invalid_req_indices = []
        if not self.use_async_scheduling:
            # Get the valid generated tokens.
            max_gen_len = sampled_token_ids.shape[-1]
            if max_gen_len == 1:
                # No spec decode tokens.
                valid_sampled_token_ids = self._to_list(sampled_token_ids)
            else:
                # Includes spec decode tokens.
                valid_sampled_token_ids = self.rejection_sampler.parse_output(
                    sampled_token_ids,
                    self.input_batch.vocab_size,
                )
            # Mask out the sampled tokens that should not be sampled.
            for i in discard_sampled_tokens_req_indices:
                valid_sampled_token_ids[int(i)].clear()
        else:
            valid_sampled_token_ids = []
            invalid_req_indices = discard_sampled_tokens_req_indices.tolist()
            invalid_req_indices_set = set(invalid_req_indices)
            assert sampled_token_ids.shape[-1] == 1

            # Cache the sampled tokens on the GPU and avoid CPU sync.
            # These will be copied into input_ids in the next step
            # when preparing inputs.
            self.input_batch.prev_sampled_token_ids = \
                sampled_token_ids
            self.input_batch.prev_sampled_token_ids_invalid_indices = \
                invalid_req_indices_set
            self.input_batch.prev_req_id_to_index = {
                req_id: i
                for i, req_id in enumerate(self.input_batch.req_ids)
                if i not in invalid_req_indices_set
            }

        # Cache the sampled tokens in the model runner, so that the scheduler
        # doesn't need to send them back.
        # NOTE(woosuk): As an exception, when using PP, the scheduler sends
        # the sampled tokens back, because there's no direct communication
        # between the first-stage worker and the last-stage worker.
        req_ids = self.input_batch.req_ids
        for req_idx in range(num_sampled_tokens):
            if self.use_async_scheduling:
                sampled_ids = [-1] if \
                    req_idx not in invalid_req_indices_set else None
            else:
                sampled_ids = valid_sampled_token_ids[req_idx]
            if not sampled_ids:
                continue

            start_idx = self.input_batch.num_tokens_no_spec[req_idx]
            end_idx = start_idx + len(sampled_ids)
            assert end_idx <= self.max_model_len, (
                "Sampled token IDs exceed the max model length. "
                f"Total number of tokens: {end_idx} > max_model_len: "
                f"{self.max_model_len}")

            self.input_batch.token_ids_cpu[req_idx,
                                           start_idx:end_idx] = sampled_ids
            self.input_batch.is_token_ids[req_idx, start_idx:end_idx] = True
            self.input_batch.num_tokens_no_spec[req_idx] = end_idx
            self.input_batch.num_tokens[req_idx] = end_idx

            req_id = req_ids[req_idx]
            req_state = self.requests[req_id]
            req_state.output_token_ids.extend(sampled_ids)

        return (
            num_nans_in_logits,
            logprobs_lists,
            valid_sampled_token_ids,
            prompt_logprobs_dict,
            req_ids_output_copy,
            req_id_to_index_output_copy,
            invalid_req_indices,
        )

    @contextmanager
    def synchronize_input_prep(self):
        if self.prepare_inputs_event is None:
            yield
            return

        # Ensure prior step has finished with reused CPU tensors.
        # This is required in the async scheduling case because
        # the CPU->GPU transfer happens async.
        self.prepare_inputs_event.synchronize()
        try:
            yield
        finally:
            self.prepare_inputs_event.record()

    def _model_forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        positions: Optional[torch.Tensor] = None,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        **model_kwargs: dict[str, Any],
    ) -> Any:
        """Helper method to call the model forward pass.

        This method can be overridden by subclasses for model execution.
        Motivation: We can inspect only this method versus 
        the whole execute_model, which has additional logic.

        Args:
            input_ids: Input token IDs
            positions: Token positions
            intermediate_tensors: Tensors from previous pipeline stages
            inputs_embeds: Input embeddings (alternative to input_ids)
            **model_kwargs: Additional model arguments

        Returns:
            Model output tensor
        """
        return self.model(
            input_ids=input_ids,
            positions=positions,
            intermediate_tensors=intermediate_tensors,
            inputs_embeds=inputs_embeds,
            **model_kwargs,
        )

    @torch.inference_mode()
    def execute_model(
        self,
        scheduler_output: "SchedulerOutput",
        intermediate_tensors: Optional[IntermediateTensors] = None,
    ) -> Union[ModelRunnerOutput, AsyncModelRunnerOutput, IntermediateTensors]:
        with record_function_or_nullcontext("Preprocess"):
            with self.synchronize_input_prep():
                # Update persistent batch states.
                self._update_states(scheduler_output)

                if not scheduler_output.total_num_scheduled_tokens:
                    if not has_kv_transfer_group():
                        # Return empty ModelRunnerOutput if no work to do.
                        return EMPTY_MODEL_RUNNER_OUTPUT
                    return self.kv_connector_no_forward(
                        scheduler_output, self.vllm_config)
                if self.cache_config.kv_sharing_fast_prefill:
                    assert not self.input_batch.num_prompt_logprobs, (
                        "--kv-sharing-fast-prefill produces incorrect "
                        "logprobs for prompt tokens, tokens, please disable "
                        "it when the requests need prompt logprobs")

                # Prepare the decoder inputs.
                (attn_metadata, logits_indices, spec_decode_metadata,
                 num_scheduled_tokens_np, spec_decode_common_attn_metadata,
                 max_query_len, ubatch_slices, num_tokens_after_padding,
                 use_cascade_attn) = self._prepare_inputs(scheduler_output)

            (
                num_scheduled_tokens,
                num_input_tokens,
                num_tokens_across_dp,
                input_ids,
                inputs_embeds,
                positions,
                intermediate_tensors,
                model_kwargs,
            ) = self._preprocess(scheduler_output, intermediate_tensors,
                                 ubatch_slices, num_tokens_after_padding)

            uniform_decode = (max_query_len
                              == self.uniform_decode_query_len) and (
                                  num_scheduled_tokens
                                  == self.input_batch.num_reqs * max_query_len)
            batch_descriptor = BatchDescriptor(num_tokens=num_input_tokens,
                                               uniform_decode=uniform_decode)
            cudagraph_runtime_mode, batch_descriptor = \
                self.cudagraph_dispatcher.dispatch(batch_descriptor,
                                                   use_cascade_attn)

        # Set cudagraph mode to none if calc_kv_scales is true.
        if attn_metadata is not None:
            metadata_list = (attn_metadata.values() if isinstance(
                attn_metadata, dict) else [attn_metadata])
            if any(
                    getattr(m, 'enable_kv_scales_calculation', False)
                    for m in metadata_list):
                cudagraph_runtime_mode = CUDAGraphMode.NONE

        # This is currently to get around the assert in the DPMetadata
        # where it wants `num_tokens_across_dp` to align with `num_tokens`
        if ubatch_slices is not None:
            num_input_tokens = ubatch_slices[0].num_tokens

        # Run the model.
        # Use persistent buffers for CUDA graphs.
        with (set_forward_context(
                attn_metadata,
                self.vllm_config,
                num_tokens=num_input_tokens,
                num_tokens_across_dp=num_tokens_across_dp,
                cudagraph_runtime_mode=cudagraph_runtime_mode,
                batch_descriptor=batch_descriptor,
                ubatch_slices=ubatch_slices,
        ), record_function_or_nullcontext("Forward"),
              self.maybe_get_kv_connector_output(scheduler_output) as
              kv_connector_output):
            model_output = self._model_forward(
                input_ids=input_ids,
                positions=positions,
                intermediate_tensors=intermediate_tensors,
                inputs_embeds=inputs_embeds,
                **model_kwargs,
            )

        with record_function_or_nullcontext("Postprocess"):
            if self.use_aux_hidden_state_outputs:
                # True when EAGLE 3 is used.
                hidden_states, aux_hidden_states = model_output
            else:
                # Common case.
                hidden_states = model_output
                aux_hidden_states = None

            if not self.broadcast_pp_output:
                # Common case.
                if not get_pp_group().is_last_rank:
                    # Return the intermediate tensors.
                    assert isinstance(hidden_states, IntermediateTensors)
                    hidden_states.kv_connector_output = kv_connector_output
                    return hidden_states

                if self.is_pooling_model:
                    # Return the pooling output.
                    output = self._pool(hidden_states, num_scheduled_tokens,
                                        num_scheduled_tokens_np)
                    output.kv_connector_output = kv_connector_output
                    return output

                sample_hidden_states = hidden_states[logits_indices]
                logits = self.model.compute_logits(sample_hidden_states)
            else:
                # Rare case.
                assert not self.is_pooling_model

                if not get_pp_group().is_last_rank:
                    all_gather_tensors = {
                        "residual":
                        not is_residual_scattered_for_sp(
                            self.vllm_config, num_input_tokens)
                    }
                    get_pp_group().send_tensor_dict(
                        hidden_states.tensors,
                        all_gather_group=get_tp_group(),
                        all_gather_tensors=all_gather_tensors)
                    logits = None
                else:
                    sample_hidden_states = hidden_states[logits_indices]
                    logits = self.model.compute_logits(sample_hidden_states)

                model_output_broadcast_data = {}
                if logits is not None:
                    model_output_broadcast_data["logits"] = logits.contiguous()

                model_output_broadcast_data = get_pp_group(
                ).broadcast_tensor_dict(model_output_broadcast_data,
                                        src=len(get_pp_group().ranks) - 1)
                assert model_output_broadcast_data is not None
                logits = model_output_broadcast_data["logits"]

            # Apply structured output bitmasks if present
            if scheduler_output.grammar_bitmask is not None:
                apply_grammar_bitmask(scheduler_output, self.input_batch,
                                      logits, self.device)

        with record_function_or_nullcontext("Sample"):
            sampler_output = self._sample(logits, spec_decode_metadata)

        def propose_draft_token_ids(sampled_token_ids):
            assert spec_decode_common_attn_metadata is not None
            with record_function_or_nullcontext("Draft"):
                self._draft_token_ids = self.propose_draft_token_ids(
                    scheduler_output,
                    sampled_token_ids,
                    self.input_batch.sampling_metadata,
                    hidden_states,
                    sample_hidden_states,
                    aux_hidden_states,
                    spec_decode_metadata,
                    spec_decode_common_attn_metadata,
                )

        use_padded_batch_for_eagle = self.speculative_config and \
            self.speculative_config.use_eagle() and \
            not self.speculative_config.disable_padded_drafter_batch
        effective_drafter_max_model_len = self.max_model_len
        if effective_drafter_max_model_len is None:
            effective_drafter_max_model_len = self.model_config.max_model_len
        if (self.speculative_config
                and self.speculative_config.draft_model_config is not None
                and self.speculative_config.draft_model_config.max_model_len
                is not None):
            effective_drafter_max_model_len = (
                self.speculative_config.draft_model_config.max_model_len)
        input_fits_in_drafter = spec_decode_common_attn_metadata and (
            spec_decode_common_attn_metadata.max_seq_len +
            self.speculative_config.num_speculative_tokens
            <= effective_drafter_max_model_len)
        if use_padded_batch_for_eagle and input_fits_in_drafter:
            # EAGLE speculative decoding can use the GPU sampled tokens
            # as inputs, and does not need to wait for bookkeeping to finish.
            propose_draft_token_ids(sampler_output.sampled_token_ids)

        with record_function_or_nullcontext("Bookkeep"):
            (
                num_nans_in_logits,
                logprobs_lists,
                valid_sampled_token_ids,
                prompt_logprobs_dict,
                req_ids_output_copy,
                req_id_to_index_output_copy,
                invalid_req_indices,
            ) = self._bookkeeping_sync(scheduler_output, sampler_output,
                                       logits, hidden_states,
                                       num_scheduled_tokens)

        if (self.speculative_config and not use_padded_batch_for_eagle
                and input_fits_in_drafter):
            # ngram and other speculative decoding methods use the sampled
            # tokens on the CPU, so they are run after bookkeeping.
            propose_draft_token_ids(valid_sampled_token_ids)

        with record_function_or_nullcontext("EPLB"):
            self.eplb_step()

        output = ModelRunnerOutput(
            req_ids=req_ids_output_copy,
            req_id_to_index=req_id_to_index_output_copy,
            sampled_token_ids=valid_sampled_token_ids,
            logprobs=logprobs_lists,
            prompt_logprobs_dict=prompt_logprobs_dict,
            pooler_output=[],
            kv_connector_output=kv_connector_output,
            num_nans_in_logits=num_nans_in_logits,
        )

        if not self.use_async_scheduling:
            return output

        return AsyncGPUModelRunnerOutput(
            model_runner_output=output,
            sampled_token_ids=sampler_output.sampled_token_ids,
            invalid_req_indices=invalid_req_indices,
            async_output_copy_stream=self.async_output_copy_stream,
        )

    def take_draft_token_ids(self) -> Optional[DraftTokenIds]:
        if self._draft_token_ids is None:
            return None
        req_ids = self.input_batch.req_ids
        if isinstance(self._draft_token_ids, torch.Tensor):
            draft_token_ids = self._draft_token_ids.tolist()
        else:
            draft_token_ids = self._draft_token_ids
        self._draft_token_ids = None
        return DraftTokenIds(req_ids, draft_token_ids)

    def propose_draft_token_ids(
        self,
        scheduler_output: "SchedulerOutput",
        sampled_token_ids: Union[torch.Tensor, list[list[int]]],
        sampling_metadata: SamplingMetadata,
        hidden_states: torch.Tensor,
        sample_hidden_states: torch.Tensor,
        aux_hidden_states: Optional[list[torch.Tensor]],
        spec_decode_metadata: Optional[SpecDecodeMetadata],
        common_attn_metadata: CommonAttentionMetadata,
    ) -> Union[list[list[int]], torch.Tensor]:
        num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
        if self.speculative_config.method == "ngram":
            assert isinstance(sampled_token_ids, list)
            assert isinstance(self.drafter, NgramProposer)
            draft_token_ids = self.drafter.propose(
                sampled_token_ids, self.input_batch.req_ids,
                self.input_batch.num_tokens_no_spec,
                self.input_batch.token_ids_cpu,
                self.input_batch.spec_decode_unsupported_reqs)
        elif self.speculative_config.method == "medusa":
            assert isinstance(sampled_token_ids, list)
            assert isinstance(self.drafter, MedusaProposer)

            if sample_hidden_states.shape[0] == len(sampled_token_ids):
                # The input to the target model does not include draft tokens.
                hidden_states = sample_hidden_states
            else:
                indices = []
                offset = 0
                assert spec_decode_metadata is not None
                for num_draft, tokens in zip(
                        spec_decode_metadata.num_draft_tokens,
                        sampled_token_ids):
                    indices.append(offset + len(tokens) - 1)
                    offset += num_draft + 1
                indices = torch.tensor(indices, device=self.device)
                hidden_states = sample_hidden_states[indices]

            draft_token_ids = self.drafter.propose(
                target_hidden_states=hidden_states,
                sampling_metadata=sampling_metadata,
            )
        elif self.speculative_config.use_eagle():
            assert isinstance(self.drafter, EagleProposer)

            if self.speculative_config.disable_padded_drafter_batch:
                # When padded-batch is disabled, the sampled_token_ids should be
                # the cpu-side list[list[int]] of valid sampled tokens for each
                # request, with invalid requests having empty lists.
                assert isinstance(sampled_token_ids, list), \
                    "sampled_token_ids should be a python list when" \
                    "padded-batch is disabled."
                next_token_ids = self.drafter.prepare_next_token_ids_cpu(
                    sampled_token_ids, self.requests, self.input_batch,
                    scheduler_output.num_scheduled_tokens)
            else:
                # When using padded-batch, the sampled_token_ids should be
                # the gpu tensor of sampled tokens for each request, of shape
                # (num_reqs, num_spec_tokens + 1) with rejected tokens having
                # value -1.
                assert isinstance(sampled_token_ids, torch.Tensor), \
                    "sampled_token_ids should be a torch.Tensor when" \
                    "padded-batch is enabled."
                next_token_ids, valid_sampled_tokens_count = \
                    self.drafter.prepare_next_token_ids_padded(
                        common_attn_metadata,
                        sampled_token_ids,
                        self.requests,
                        self.input_batch,
                        self.discard_request_indices.gpu,
                        self.num_discarded_requests
                    )

            if spec_decode_metadata is None:
                token_indices_to_sample = None
                # input_ids can be None for multimodal models.
                target_token_ids = self.input_ids.gpu[:num_scheduled_tokens]
                target_positions = self._get_positions(num_scheduled_tokens)
                if self.use_aux_hidden_state_outputs:
                    assert aux_hidden_states is not None
                    target_hidden_states = torch.cat(
                        [h[:num_scheduled_tokens] for h in aux_hidden_states],
                        dim=-1)
                else:
                    target_hidden_states = hidden_states[:num_scheduled_tokens]
            else:
                if self.speculative_config.disable_padded_drafter_batch:
                    token_indices_to_sample = None
                    common_attn_metadata, token_indices =\
                        self.drafter.prepare_inputs(
                            common_attn_metadata,
                            sampled_token_ids,
                            spec_decode_metadata.num_draft_tokens)
                else:
                    common_attn_metadata, token_indices, \
                        token_indices_to_sample =\
                        self.drafter.prepare_inputs_padded(
                            common_attn_metadata,
                            spec_decode_metadata,
                            valid_sampled_tokens_count)

                target_token_ids = self.input_ids.gpu[token_indices]
                target_positions = self._get_positions(token_indices)
                if self.use_aux_hidden_state_outputs:
                    assert aux_hidden_states is not None
                    target_hidden_states = torch.cat(
                        [h[token_indices] for h in aux_hidden_states], dim=-1)
                else:
                    target_hidden_states = hidden_states[token_indices]

            if self.supports_mm_inputs:
                mm_embed_inputs = self._gather_mm_embeddings(
                    scheduler_output,
                    shift_computed_tokens=1,
                )
            else:
                mm_embed_inputs = None

            draft_token_ids = self.drafter.propose(
                target_token_ids=target_token_ids,
                target_positions=target_positions,
                target_hidden_states=target_hidden_states,
                next_token_ids=next_token_ids,
                last_token_indices=token_indices_to_sample,
                sampling_metadata=sampling_metadata,
                common_attn_metadata=common_attn_metadata,
                mm_embed_inputs=mm_embed_inputs,
            )

        return draft_token_ids

    def update_config(self, overrides: dict[str, Any]) -> None:
        allowed_config_names = {"load_config", "model_config"}
        for config_name, config_overrides in overrides.items():
            assert config_name in allowed_config_names, \
                f"Config `{config_name}` not supported. " \
                f"Allowed configs: {allowed_config_names}"
            config = getattr(self, config_name)
            new_config = update_config(config, config_overrides)
            setattr(self, config_name, new_config)

    def load_model(self, eep_scale_up: bool = False) -> None:
        """
        Args:
            eep_scale_up: the model loading is for elastic EP scale up.
        """
        logger.info("Starting to load model %s...", self.model_config.model)
        if eep_scale_up:
            from vllm.distributed.parallel_state import get_ep_group
            num_local_physical_experts = torch.empty(1,
                                                     dtype=torch.int32,
                                                     device="cpu")
            torch.distributed.broadcast(num_local_physical_experts,
                                        group=get_ep_group().cpu_group,
                                        group_src=0)
            num_local_physical_experts = int(num_local_physical_experts.item())
            new_ep_size = get_ep_group().world_size
            global_expert_load, old_global_expert_indices = (
                EplbState.recv_state())
            num_logical_experts = global_expert_load.shape[1]
            self.parallel_config.eplb_config.num_redundant_experts = (
                num_local_physical_experts * new_ep_size - num_logical_experts)
            assert old_global_expert_indices.shape[
                1] % num_local_physical_experts == 0
            old_ep_size = old_global_expert_indices.shape[
                1] // num_local_physical_experts
            rank_mapping = {
                old_ep_rank: old_ep_rank
                for old_ep_rank in range(old_ep_size)
            }
        else:
            global_expert_load = None
            old_global_expert_indices = None
            rank_mapping = None

        with DeviceMemoryProfiler() as m:
            time_before_load = time.perf_counter()
            model_loader = get_model_loader(self.load_config)
            logger.info("Loading model from scratch...")
            self.model = model_loader.load_model(
                vllm_config=self.vllm_config, model_config=self.model_config)
            if self.lora_config:
                self.model = self.load_lora_model(self.model, self.vllm_config,
                                                  self.device)
            if hasattr(self, "drafter"):
                logger.info("Loading drafter model...")
                self.drafter.load_model(self.model)
            if self.use_aux_hidden_state_outputs:
                if supports_eagle3(self.model):
                    self.model.set_aux_hidden_state_layers(
                        self.model.get_eagle3_aux_hidden_state_layers())
                else:
                    raise RuntimeError(
                        "Model does not support EAGLE3 interface but "
                        "aux_hidden_state_outputs was requested")
            time_after_load = time.perf_counter()
        self.model_memory_usage = m.consumed_memory
        logger.info("Model loading took %.4f GiB and %.6f seconds",
                    self.model_memory_usage / GiB_bytes,
                    time_after_load - time_before_load)
        prepare_communication_buffer_for_model(self.model)

        self.is_multimodal_pruning_enabled = (supports_multimodal_pruning(
            self.model) and self.model_config.multimodal_config.
                                              is_multimodal_pruning_enabled())

        if is_mixture_of_experts(
                self.model) and self.parallel_config.enable_eplb:
            logger.info("EPLB is enabled for model %s.",
                        self.model_config.model)
            self.eplb_state = EplbState.build(
                self.model,
                self.device,
                self.parallel_config,
                global_expert_load,
                old_global_expert_indices,
                rank_mapping,
            )

        if (
            self.vllm_config.compilation_config.level == \
                CompilationLevel.DYNAMO_AS_IS and supports_dynamo()
        ):
            backend = self.vllm_config.compilation_config.init_backend(
                self.vllm_config)
            compilation_counter.dynamo_as_is_count += 1
            self.model.compile(fullgraph=True, backend=backend)
            return
        # for other compilation levels, cudagraph behavior is controlled by
        # CudagraphWraper and CudagraphDispatcher of vllm.

        # wrap the model with full cudagraph wrapper if needed.
        if self.compilation_config.cudagraph_mode.has_full_cudagraphs() \
            and not self.parallel_config.enable_dbo:
            self.model = CUDAGraphWrapper(self.model,
                                          self.vllm_config,
                                          runtime_mode=CUDAGraphMode.FULL)
        elif self.parallel_config.enable_dbo:
            if self.compilation_config.cudagraph_mode.has_full_cudagraphs():
                self.model = UBatchWrapper(self.model, self.vllm_config,
                                           CUDAGraphMode.FULL, self.device)
            else:
                self.model = UBatchWrapper(self.model, self.vllm_config,
                                           CUDAGraphMode.NONE, self.device)

    def reload_weights(self) -> None:
        assert getattr(self, "model", None) is not None, \
            "Cannot reload weights before model is loaded."
        model_loader = get_model_loader(self.load_config)
        logger.info("Reloading weights inplace...")
        model_loader.load_weights(self.get_model(),
                                  model_config=self.model_config)

    def save_tensorized_model(
        self,
        tensorizer_config: "TensorizerConfig",
    ) -> None:
        TensorizerLoader.save_model(
            self.get_model(),
            tensorizer_config=tensorizer_config,
            model_config=self.model_config,
        )

    def _get_prompt_logprobs_dict(
        self,
        hidden_states: torch.Tensor,
        num_scheduled_tokens: dict[str, int],
    ) -> dict[str, Optional[LogprobsTensors]]:
        num_prompt_logprobs_dict = self.input_batch.num_prompt_logprobs
        if not num_prompt_logprobs_dict:
            return {}

        in_progress_dict = self.input_batch.in_progress_prompt_logprobs_cpu
        prompt_logprobs_dict: dict[str, Optional[LogprobsTensors]] = {}

        # Since prompt logprobs are a rare feature, prioritize simple,
        # maintainable loop over optimal performance.
        completed_prefill_reqs = []
        for req_id, num_prompt_logprobs in num_prompt_logprobs_dict.items():
            num_tokens = num_scheduled_tokens[req_id]

            # Get metadata for this request.
            request = self.requests[req_id]
            if request.prompt_token_ids is None:
                # Prompt logprobs is incompatible with prompt embeddings
                continue

            num_prompt_tokens = len(request.prompt_token_ids)
            prompt_token_ids = torch.tensor(request.prompt_token_ids).to(
                self.device, non_blocking=True)

            # Set up target LogprobsTensors object.
            logprobs_tensors = in_progress_dict.get(req_id)
            if not logprobs_tensors:
                # Create empty logprobs CPU tensors for the entire prompt.
                # If chunked, we'll copy in slice by slice.
                logprobs_tensors = LogprobsTensors.empty_cpu(
                    num_prompt_tokens - 1, num_prompt_logprobs + 1)
                in_progress_dict[req_id] = logprobs_tensors

            # Determine number of logits to retrieve.
            start_idx = request.num_computed_tokens
            start_tok = start_idx + 1
            num_remaining_tokens = num_prompt_tokens - start_tok
            if num_tokens <= num_remaining_tokens:
                # This is a chunk, more tokens remain.
                # In the == case, there are no more prompt logprobs to produce
                # but we want to defer returning them to the next step where we
                # have new generated tokens to return.
                num_logits = num_tokens
            else:
                # This is the last chunk of prompt tokens to return.
                num_logits = num_remaining_tokens
                completed_prefill_reqs.append(req_id)
                prompt_logprobs_dict[req_id] = logprobs_tensors

            if num_logits <= 0:
                # This can happen for the final chunk if we prefilled exactly
                # (num_prompt_tokens - 1) tokens for this request in the prior
                # step. There are no more prompt logprobs to produce.
                continue

            # Get the logits corresponding to this req's prompt tokens.
            # If this is a partial request (i.e. chunked prefill),
            # then there is prompt logprob generated for each index.
            req_idx = self.input_batch.req_id_to_index[req_id]
            offset = self.query_start_loc.np[req_idx].item()
            prompt_hidden_states = hidden_states[offset:offset + num_logits]
            logits = self.model.compute_logits(prompt_hidden_states)

            # Get the "target" tokens for each index. For prompt at index i,
            # the token at prompt index i+1 is the "sampled" token we want
            # to gather the logprob for.
            tgt_token_ids = prompt_token_ids[start_tok:start_tok + num_logits]

            # Compute prompt logprobs.
            logprobs = self.sampler.compute_logprobs(logits)
            token_ids, logprobs, ranks = self.sampler.gather_logprobs(
                logprobs, num_prompt_logprobs, tgt_token_ids)

            # Transfer GPU->CPU async.
            chunk_slice = slice(start_idx, start_idx + num_logits)
            logprobs_tensors.logprob_token_ids[chunk_slice].copy_(
                token_ids, non_blocking=True)
            logprobs_tensors.logprobs[chunk_slice].copy_(logprobs,
                                                         non_blocking=True)
            logprobs_tensors.selected_token_ranks[chunk_slice].copy_(
                ranks, non_blocking=True)

        # Remove requests that have completed prefill from the batch
        # num_prompt_logprobs_dict.
        for req_id in completed_prefill_reqs:
            del num_prompt_logprobs_dict[req_id]
            del in_progress_dict[req_id]

        # Must synchronize the non-blocking GPU->CPU transfers.
        if prompt_logprobs_dict:
            self._sync_device()

        return prompt_logprobs_dict

    def _get_nans_in_logits(
        self,
        logits: Optional[torch.Tensor],
    ) -> dict[str, int]:
        try:
            if logits is None:
                return {req_id: 0 for req_id in self.input_batch.req_ids}

            num_nans_in_logits = {}
            num_nans_for_index = logits.isnan().sum(dim=-1).cpu().numpy()
            for req_id in self.input_batch.req_ids:
                req_index = self.input_batch.req_id_to_index[req_id]
                num_nans_in_logits[req_id] = (
                    int(num_nans_for_index[req_index])
                    if num_nans_for_index is not None
                    and req_index < logits.shape[0] else 0)
            return num_nans_in_logits
        except IndexError:
            return {}

    @contextmanager
    def maybe_randomize_inputs(self, input_ids: torch.Tensor):
        """
        Randomize input_ids if VLLM_RANDOMIZE_DP_DUMMY_INPUTS is set.
        This is to help balance expert-selection
         - during profile_run
         - during DP rank dummy run
        """
        dp_size = self.vllm_config.parallel_config.data_parallel_size
        randomize_inputs = envs.VLLM_RANDOMIZE_DP_DUMMY_INPUTS and dp_size > 1
        if not randomize_inputs:
            yield
        else:
            import functools

            @functools.cache
            def rand_input_ids() -> torch.Tensor:
                return torch.randint_like(
                    self.input_ids.gpu,
                    low=0,
                    high=self.model_config.get_vocab_size(),
                    dtype=input_ids.dtype)

            logger.debug_once("Randomizing dummy data for DP Rank")
            input_ids.copy_(rand_input_ids()[:input_ids.size(0)],
                            non_blocking=True)
            yield
            input_ids.fill_(0)

    def _get_mm_dummy_batch(
        self,
        modality: str,
        max_items_per_batch: int,
    ) -> BatchedTensorInputs:
        """Dummy data for profiling and precompiling multimodal models."""
        assert self.mm_budget is not None

        dummy_decoder_data = self.mm_registry.get_decoder_dummy_data(
            model_config=self.model_config,
            seq_len=self.max_model_len,
            mm_counts={modality: 1},
            cache=self.mm_budget.cache,
        )
        dummy_mm_data = dummy_decoder_data.multi_modal_data

        # Result in the maximum GPU consumption of the model
        dummy_mm_item = dummy_mm_data[modality][0]
        dummy_mm_items = [dummy_mm_item] * max_items_per_batch

        model = cast(SupportsMultiModal, self.model)
        return next(mm_kwargs_group
                    for _, _, mm_kwargs_group in group_mm_kwargs_by_modality(
                        dummy_mm_items,
                        device=self.device,
                        pin_memory=self.pin_memory,
                        merge_by_field_config=model.merge_by_field_config,
                    ))

    @torch.inference_mode()
    def _dummy_run(
        self,
        num_tokens: int,
        cudagraph_runtime_mode: Optional[CUDAGraphMode] = None,
        force_attention: bool = False,
        uniform_decode: bool = False,
        allow_microbatching: bool = True,
        skip_eplb: bool = False,
        is_profile: bool = False,
        create_mixed_batch: bool = False,
        remove_lora: bool = True,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        """
        Run a dummy forward pass to warm up/profile run or capture the
        CUDA graph for the model.

        Args:
            num_tokens: Number of tokens to run the dummy forward pass.
            cudagraph_runtime_mode: used to control the behavior.
                - if not set will determine the cudagraph mode based on using
                    the self.cudagraph_dispatcher.
                - CUDAGraphMode.NONE: No cudagraph, for warm up and profile run
                - CUDAGraphMode.PIECEWISE: Piecewise cudagraph.
                - CUDAGraphMode.FULL: Full cudagraph, attention metadata is
                    needed.
            force_attention: If True, always create attention metadata. Used to
                warm up attention backend when mode is NONE.
            uniform_decode: If True, the batch is a uniform decode batch.
            skip_eplb: If True, skip EPLB state update.
            is_profile: If True, this is a profile run.
            create_mixed_batch: If True, create a mixed batch with both decode
                (1 token) and prefill (multiple tokens) requests.
            remove_lora: If False, dummy LoRAs are not destroyed after the run
        """
        assert cudagraph_runtime_mode is None or \
            cudagraph_runtime_mode.valid_runtime_modes()

        # If cudagraph_mode.decode_mode() == FULL and
        # cudagraph_mode.separate_routine(). This means that we are using
        # different graphs and/or modes for mixed prefill-decode batches vs.
        # uniform decode batches. A uniform decode batch means that all
        # requests have identical query length, except a potential virtual
        # request (shorter) in the batch account for padding.
        # Uniform decode batch could either be common pure decode, where
        # max_query_len == 1, or speculative decode, where
        # max_query_len == 1 + num_spec_decode_tokens.

        # When setting max_query_len = 1, we switch to and capture the optimized
        # routine of FA2 for pure decode, i.e., Flashdecode + an optimization
        # for GQA/MQA.
        max_query_len = self.uniform_decode_query_len if uniform_decode else \
                                                                num_tokens

        # Set num_scheduled_tokens based on num_tokens and max_num_seqs
        # for dummy run with LoRA so that the num_reqs collectively
        # has num_tokens in total.
        assert num_tokens <= self.scheduler_config.max_num_batched_tokens
        max_num_reqs = self.scheduler_config.max_num_seqs
        if create_mixed_batch:
            assert not uniform_decode
            # Create mixed batch:
            # first half decode tokens, second half one prefill
            num_decode_tokens = num_tokens // 2
            num_prefill_tokens = num_tokens - num_decode_tokens
            num_reqs = num_decode_tokens + 1

            # Create decode requests (1 token each) followed by prefill request
            num_scheduled_tokens_list = [1] * num_decode_tokens + [
                num_prefill_tokens
            ]
            # Note: Overriding max_query_len to be the prefill tokens
            max_query_len = num_prefill_tokens
        elif uniform_decode:
            assert not create_mixed_batch
            num_reqs = cdiv(num_tokens, max_query_len)
            num_scheduled_tokens_list = [max_query_len] * num_reqs
            if num_tokens % max_query_len != 0:
                num_scheduled_tokens_list[-1] = num_tokens % max_query_len
        else:
            num_reqs = min(num_tokens, max_num_reqs)
            min_tokens_per_req = num_tokens // num_reqs
            num_scheduled_tokens_list = [min_tokens_per_req] * num_reqs
            num_scheduled_tokens_list[-1] += num_tokens % num_reqs

        assert sum(num_scheduled_tokens_list) == num_tokens
        assert len(num_scheduled_tokens_list) == num_reqs
        num_scheduled_tokens = np.array(num_scheduled_tokens_list,
                                        dtype=np.int32)
        total_num_scheduled_tokens = int(num_scheduled_tokens.sum())

        ubatch_slices = None
        num_tokens_after_padding = None

        # We currently only microbatch if the number of tokens is
        # over a certain threshold.
        if self.parallel_config.enable_dbo and allow_microbatching:
            ubatch_slices, ubatch_num_tokens_after_padding = ubatch_split(
                num_scheduled_tokens,
                total_num_scheduled_tokens,
                total_num_scheduled_tokens,
                uniform_decode=uniform_decode,
                vllm_config=self.vllm_config,
            )
            # Currently when DBO is enabled `ubatch_split` returns
            # the num_tokens_after_padding for a single ubatch, but we have 2
            # TODO(sage,lucas): this is cruft that should be addressed in the
            # padding refactor.
            if ubatch_num_tokens_after_padding is not None:
                num_tokens_after_padding = ubatch_num_tokens_after_padding * 2

        # If we failed to microbatch, currently need to resynchronize
        # TODO(lucas,sage): we should be able to avoid this second sync by
        #  refactoring `get_dp_padding_ubatch` and `get_dp_padding` into
        #  a single `coordinate_batch_across_dp` function.
        if num_tokens_after_padding is None:
            num_pad, num_tokens_across_dp = self.get_dp_padding(num_tokens)
            num_tokens_after_padding = num_tokens + num_pad
        else:
            num_tokens_across_dp = num_tokens_after_padding
            num_tokens_after_padding = int(num_tokens_after_padding[0].item())

        attn_metadata: Optional[PerLayerAttnMetadata] = None

        # If force_attention is True, we always capture attention. Otherwise,
        # it only happens for cudagraph_runtime_mode=FULL.
        if force_attention or cudagraph_runtime_mode == CUDAGraphMode.FULL:
            attn_metadata = {}
            if ubatch_slices is not None:
                attn_metadata = [dict() for _ in range(len(ubatch_slices))]

            if create_mixed_batch:
                # In the mixed batch mode (used for FI warmup), we use
                # shorter sequence lengths to run faster.
                # TODO(luka) better system for describing dummy batches
                seq_lens = [1] * num_decode_tokens + [num_prefill_tokens + 1]
            else:
                seq_lens = max_query_len
            self.seq_lens.np[:num_reqs] = seq_lens
            self.seq_lens.np[num_reqs:] = 0
            self.seq_lens.copy_to_gpu()

            cum_num_tokens, _ = self._get_cumsum_and_arange(
                num_scheduled_tokens)
            self.query_start_loc.np[1:num_reqs + 1] = cum_num_tokens
            self.query_start_loc.copy_to_gpu()

            for kv_cache_group_id, kv_cache_group_spec in enumerate(
                    self.kv_cache_config.kv_cache_groups):
                common_attn_metadata = CommonAttentionMetadata(
                    query_start_loc=self.query_start_loc.gpu[:num_reqs + 1],
                    query_start_loc_cpu=self.query_start_loc.cpu[:num_reqs +
                                                                 1],
                    seq_lens=self.seq_lens.gpu[:num_reqs],
                    seq_lens_cpu=self.seq_lens.cpu[:num_reqs],
                    num_computed_tokens_cpu=self.input_batch.
                    num_computed_tokens_cpu_tensor[:num_reqs],
                    num_reqs=num_reqs,
                    num_actual_tokens=num_tokens,
                    max_query_len=max_query_len,
                    max_seq_len=self.max_model_len,
                    block_table_tensor=self.input_batch.
                    block_table[kv_cache_group_id].get_device_tensor(num_reqs),
                    slot_mapping=self.input_batch.block_table[
                        kv_cache_group_id].slot_mapping.gpu[:num_tokens],
                    causal=True)
                for attn_group in self.attn_groups[kv_cache_group_id]:
                    if ubatch_slices is not None:
                        common_attn_metadata_list = split_attn_metadata(
                            ubatch_slices, common_attn_metadata)
                        for ubid, common_attn_metadata in enumerate(
                                common_attn_metadata_list):
                            assert common_attn_metadata.max_query_len == 1
                            attn_metadata_i = (attn_group\
                                               .get_metadata_builder(ubatch_id=ubid)\
                                               .build_for_cudagraph_capture(common_attn_metadata))
                            for layer_name in attn_group.layer_names:
                                assert type(attn_metadata) is list
                                attn_metadata[ubid][
                                    layer_name] = attn_metadata_i
                    else:
                        assert type(attn_metadata) is dict
                        attn_metadata_i = attn_group.get_metadata_builder()\
                            .build_for_cudagraph_capture(common_attn_metadata)
                        for layer_name in attn_group.layer_names:
                            attn_metadata[layer_name] = attn_metadata_i

        with self.maybe_dummy_run_with_lora(self.lora_config,
                                            num_scheduled_tokens, remove_lora):
            model_kwargs = self._init_model_kwargs(num_tokens)
            if (self.supports_mm_inputs
                    and not self.model_config.is_encoder_decoder):
                input_ids = None
                inputs_embeds = self.inputs_embeds.gpu[:num_tokens]
                model_kwargs = {
                    **model_kwargs,
                    **self._dummy_mm_kwargs(num_reqs),
                }
            elif self.enable_prompt_embeds:
                input_ids = None
                inputs_embeds = self.inputs_embeds.gpu[:num_tokens]
                model_kwargs = self._init_model_kwargs(num_tokens)
            else:
                input_ids = self.input_ids.gpu[:num_tokens]
                inputs_embeds = None

            if self.uses_mrope:
                positions = self.mrope_positions.gpu[:, :num_tokens]
            else:
                positions = self.positions.gpu[:num_tokens]

            if get_pp_group().is_first_rank:
                intermediate_tensors = None
            else:
                if self.intermediate_tensors is None:
                    self.intermediate_tensors = (
                        self.model.make_empty_intermediate_tensors(
                            batch_size=self.max_num_tokens,
                            dtype=self.model_config.dtype,
                            device=self.device))

                intermediate_tensors = self.sync_and_slice_intermediate_tensors(
                    num_tokens, None, False)

            # filter out the valid batch descriptor
            _cg_mode, batch_descriptor = self.cudagraph_dispatcher.dispatch(
                BatchDescriptor(num_tokens=num_tokens_after_padding,
                                uniform_decode=uniform_decode)) \
                if not is_profile else (CUDAGraphMode.NONE, None)
            if cudagraph_runtime_mode is not None:
                # we allow forcing NONE when the dispatcher disagrees to support
                # warm ups for cudagraph capture
                assert cudagraph_runtime_mode == CUDAGraphMode.NONE or \
                    cudagraph_runtime_mode == _cg_mode, (
                    f"Cudagraph runtime mode mismatch at dummy_run. "
                    f"Expected {_cg_mode}, but got {cudagraph_runtime_mode}.")
            else:
                cudagraph_runtime_mode = _cg_mode

            if ubatch_slices is not None:
                # Adjust values to reflect a single ubatch.
                # TODO(sage,lucas): this is cruft that should be addressed in
                #  the padding refactor.
                num_tokens_after_padding = ubatch_slices[0].num_tokens
                if num_tokens_across_dp is not None:
                    num_tokens_across_dp[:] = num_tokens_after_padding

            with self.maybe_randomize_inputs(input_ids), set_forward_context(
                    attn_metadata,
                    self.vllm_config,
                    num_tokens=num_tokens_after_padding,
                    num_tokens_across_dp=num_tokens_across_dp,
                    cudagraph_runtime_mode=cudagraph_runtime_mode,
                    batch_descriptor=batch_descriptor,
                    ubatch_slices=ubatch_slices):
                outputs = self.model(
                    input_ids=input_ids,
                    positions=positions,
                    intermediate_tensors=intermediate_tensors,
                    inputs_embeds=inputs_embeds,
                    **model_kwargs,
                )

            if self.use_aux_hidden_state_outputs:
                hidden_states, _ = outputs
            else:
                hidden_states = outputs

            if self.speculative_config and self.speculative_config.use_eagle():
                assert isinstance(self.drafter, EagleProposer)
                self.drafter.dummy_run(num_tokens)

        # This is necessary to avoid blocking DP.
        # For dummy runs, we typically skip EPLB since we don't have any real
        # requests to process.
        # However, in DP settings, there may be cases when some DP ranks do
        # not have any requests to process, so they're executing dummy batches.
        # In such cases, we still have to trigger EPLB to make sure
        # ranks execute the rearrangement in synchronization.
        if not skip_eplb:
            self.eplb_step(is_dummy=True, is_profile=is_profile)

        logit_indices = np.cumsum(num_scheduled_tokens) - 1
        return hidden_states, hidden_states[logit_indices]

    @torch.inference_mode()
    def _dummy_sampler_run(
        self,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        # The dummy hidden states may contain special values,
        # like `inf` or `nan`.
        # To avoid breaking the sampler, we use a random tensor here instead.
        hidden_states = torch.rand_like(hidden_states)

        logits = self.model.compute_logits(hidden_states)
        num_reqs = logits.size(0)

        dummy_tensors = lambda v: torch.full(
            (num_reqs, ), v, device=self.device)

        dummy_metadata = SamplingMetadata(
            temperature=dummy_tensors(0.5),
            all_greedy=False,
            all_random=False,
            top_p=dummy_tensors(0.9),
            top_k=dummy_tensors(logits.size(1) - 1),
            generators={},
            max_num_logprobs=None,
            no_penalties=True,
            prompt_token_ids=None,
            frequency_penalties=dummy_tensors(0.1),
            presence_penalties=dummy_tensors(0.1),
            repetition_penalties=dummy_tensors(0.1),
            output_token_ids=[[] for _ in range(num_reqs)],
            allowed_token_ids_mask=None,
            bad_words_token_ids={},
            logitsprocs=LogitsProcessors(),
        )
        try:
            sampler_output = self.sampler(logits=logits,
                                          sampling_metadata=dummy_metadata)
        except RuntimeError as e:
            if 'out of memory' in str(e):
                raise RuntimeError(
                    "CUDA out of memory occurred when warming up sampler with "
                    f"{num_reqs} dummy requests. Please try lowering "
                    "`max_num_seqs` or `gpu_memory_utilization` when "
                    "initializing the engine.") from e
            else:
                raise e
        if self.speculative_config:
            draft_token_ids = [[0] for _ in range(num_reqs)]
            dummy_spec_decode_metadata = SpecDecodeMetadata.make_dummy(
                draft_token_ids, self.device)

            num_tokens = sum(len(ids) for ids in draft_token_ids)
            # draft_probs = torch.randn(
            #     num_tokens, logits.shape[-1], device=self.device,
            #     dtype=logits.dtype)
            draft_probs = None
            target_logits = torch.randn(num_tokens,
                                        logits.shape[-1],
                                        device=self.device,
                                        dtype=logits.dtype)
            # NOTE(woosuk): Here, we should use int32 because the sampler uses
            # int32 for bonus_token_ids. If the dtype mismatches, re-compilation
            # will occur at runtime.
            bonus_token_ids = torch.zeros(num_reqs,
                                          device=self.device,
                                          dtype=torch.int32)
            self.rejection_sampler(
                dummy_spec_decode_metadata,
                draft_probs,
                target_logits,
                bonus_token_ids,
                dummy_metadata,
            )
        return sampler_output

    def _dummy_pooler_run_task(
        self,
        hidden_states: torch.Tensor,
        task: PoolingTask,
    ) -> PoolerOutput:
        num_tokens = hidden_states.shape[0]
        max_num_reqs = self.scheduler_config.max_num_seqs
        num_reqs = min(num_tokens, max_num_reqs)
        min_tokens_per_req = num_tokens // num_reqs
        num_scheduled_tokens_list = [min_tokens_per_req] * num_reqs
        num_scheduled_tokens_list[-1] += num_tokens % num_reqs
        assert sum(num_scheduled_tokens_list) == num_tokens
        assert len(num_scheduled_tokens_list) == num_reqs

        req_num_tokens = num_tokens // num_reqs

        dummy_prompt_lens = torch.tensor(
            num_scheduled_tokens_list,
            device="cpu",
        )
        dummy_token_ids = torch.zeros((num_reqs, req_num_tokens),
                                      dtype=torch.int32,
                                      device=self.device)

        model = cast(VllmModelForPooling, self.get_model())
        dummy_pooling_params = PoolingParams(task=task)
        dummy_pooling_params.verify(task=task, model_config=self.model_config)
        to_update = model.pooler.get_pooling_updates(task)
        to_update.apply(dummy_pooling_params)

        dummy_metadata = PoolingMetadata(
            prompt_lens=dummy_prompt_lens,
            prompt_token_ids=dummy_token_ids,
            pooling_params=[dummy_pooling_params] * num_reqs,
        )

        dummy_metadata.build_pooling_cursor(num_scheduled_tokens_list,
                                            device=hidden_states.device)

        try:
            return model.pooler(hidden_states=hidden_states,
                                pooling_metadata=dummy_metadata)
        except RuntimeError as e:
            if 'out of memory' in str(e):
                raise RuntimeError(
                    "CUDA out of memory occurred when warming up pooler "
                    f"({task=}) with {num_reqs} dummy requests. Please try "
                    "lowering `max_num_seqs` or `gpu_memory_utilization` when "
                    "initializing the engine.") from e
            else:
                raise e

    @torch.inference_mode()
    def _dummy_pooler_run(
        self,
        hidden_states: torch.Tensor,
    ) -> PoolerOutput:
        # Find the task that has the largest output for subsequent steps
        output_size = dict[PoolingTask, float]()
        for task in self.get_supported_pooling_tasks():
            # Run a full batch with each task to ensure none of them OOMs
            output = self._dummy_pooler_run_task(hidden_states, task)
            output_size[task] = sum(o.nbytes for o in output)
            del output  # Allow GC

        max_task = max(output_size.items(), key=lambda x: x[1])[0]
        return self._dummy_pooler_run_task(hidden_states, max_task)

    def profile_run(self) -> None:
        # Profile with multimodal encoder & encoder cache.
        if self.supports_mm_inputs:
            if self.model_config.multimodal_config.skip_mm_profiling:
                logger.info(
                    "Skipping memory profiling for multimodal encoder and "
                    "encoder cache.")
            else:
                mm_budget = self.mm_budget
                assert mm_budget is not None

                if (encoder_budget := mm_budget.get_encoder_budget()) > 0:
                    # NOTE: Currently model is profiled with a single non-text
                    # modality with the max possible input tokens even when
                    # it supports multiple.
                    dummy_modality = mm_budget.get_modality_with_max_tokens()
                    max_mm_items_per_batch = mm_budget \
                        .max_items_per_batch_by_modality[dummy_modality]

                    logger.info(
                        "Encoder cache will be initialized with a budget of "
                        "%s tokens, and profiled with %s %s items of the "
                        "maximum feature size.",
                        encoder_budget,
                        max_mm_items_per_batch,
                        dummy_modality,
                    )

                    # Create dummy batch of multimodal inputs.
                    batched_dummy_mm_inputs = self._get_mm_dummy_batch(
                        dummy_modality,
                        max_mm_items_per_batch,
                    )

                    # Run multimodal encoder.
                    dummy_encoder_outputs = \
                        self.model.get_multimodal_embeddings(
                        **batched_dummy_mm_inputs)

                    sanity_check_mm_encoder_outputs(
                        dummy_encoder_outputs,
                        expected_num_items=max_mm_items_per_batch,
                    )

                    # NOTE: This happens when encoder cache needs to store
                    # the embeddings that encoder outputs are scattered onto.
                    # In this case we create dummy embeddings of size
                    # (encode_budget, hidden_size) and scatter encoder
                    # output into it.
                    encoder_output_shape = dummy_encoder_outputs[0].shape
                    if encoder_output_shape[0] < encoder_budget:
                        expanded_outputs = []
                        for output in dummy_encoder_outputs:
                            expanded = output.new_zeros(
                                (encoder_budget, encoder_output_shape[-1]))
                            num_tokens = output.shape[0]
                            expanded[:num_tokens].copy_(output)
                            expanded_outputs.append(expanded)

                        dummy_encoder_outputs = expanded_outputs

                    # Cache the dummy encoder outputs.
                    self.encoder_cache["tmp"] = dict(
                        enumerate(dummy_encoder_outputs))

        # Add `is_profile` here to pre-allocate communication buffers
        hidden_states, last_hidden_states \
            = self._dummy_run(self.max_num_tokens, is_profile=True)
        if get_pp_group().is_last_rank:
            if self.is_pooling_model:
                output = self._dummy_pooler_run(hidden_states)
            else:
                output = self._dummy_sampler_run(last_hidden_states)
        else:
            output = None
        self._sync_device()
        del hidden_states, output
        self.encoder_cache.clear()
        gc.collect()

    def capture_model(self) -> int:
        if self.compilation_config.cudagraph_mode == CUDAGraphMode.NONE:
            logger.warning(
                "Skipping CUDA graph capture. To turn on CUDA graph capture, "
                "ensure `cudagraph_mode` was not manually set to `NONE`")
            return 0
        else:
            self.initialize_cudagraph_capture()

        compilation_counter.num_gpu_runner_capture_triggers += 1

        start_time = time.perf_counter()
        start_free_gpu_memory = torch.cuda.mem_get_info()[0]

        @contextmanager
        def freeze_gc():
            # Optimize garbage collection during CUDA graph capture.
            # Clean up, then freeze all remaining objects from being included
            # in future collections.
            gc.collect()
            should_freeze = not envs.VLLM_ENABLE_CUDAGRAPH_GC
            if should_freeze:
                gc.freeze()
            try:
                yield
            finally:
                if should_freeze:
                    gc.unfreeze()
                    gc.collect()

        # Trigger CUDA graph capture for specific shapes.
        # Capture the large shapes first so that the smaller shapes
        # can reuse the memory pool allocated for the large shapes.
        set_cudagraph_capturing_enabled(True)
        with freeze_gc(), graph_capture(device=self.device):
            cudagraph_mode = self.compilation_config.cudagraph_mode
            assert cudagraph_mode is not None
            if cudagraph_mode.mixed_mode() != CUDAGraphMode.NONE:
                cudagraph_runtime_mode = cudagraph_mode.mixed_mode()

                compilation_cases = list(reversed(self.cudagraph_batch_sizes))
                self._capture_cudagraphs(
                    compilation_cases,
                    cudagraph_runtime_mode=cudagraph_runtime_mode,
                    uniform_decode=False)

            # Capture full cudagraph for uniform decode batches if we
            # don't already have full mixed prefill-decode cudagraphs.
            if cudagraph_mode.decode_mode() == CUDAGraphMode.FULL and \
                cudagraph_mode.separate_routine():
                max_num_tokens = self.scheduler_config.max_num_seqs * \
                        self.uniform_decode_query_len
                decode_cudagraph_batch_sizes = [
                    x for x in self.cudagraph_batch_sizes if
                    x <= max_num_tokens and x >= self.uniform_decode_query_len
                ]
                compilation_cases_decode = list(
                    reversed(decode_cudagraph_batch_sizes))
                self._capture_cudagraphs(
                    compilation_cases=compilation_cases_decode,
                    cudagraph_runtime_mode=CUDAGraphMode.FULL,
                    uniform_decode=True)

        # Disable cudagraph capturing globally, so any unexpected cudagraph
        # capturing will be detected and raise an error after here.
        # Note: We don't put it into graph_capture context manager because
        # we may do lazy capturing in future that still allows capturing
        # after here.
        set_cudagraph_capturing_enabled(False)

        end_time = time.perf_counter()
        end_free_gpu_memory = torch.cuda.mem_get_info()[0]
        elapsed_time = end_time - start_time
        cuda_graph_size = start_free_gpu_memory - end_free_gpu_memory
        # This usually takes 5~20 seconds.
        logger.info("Graph capturing finished in %.0f secs, took %.2f GiB",
                    elapsed_time, cuda_graph_size / (1 << 30))
        return cuda_graph_size

    def _capture_cudagraphs(self, compilation_cases: list[int],
                            cudagraph_runtime_mode: CUDAGraphMode,
                            uniform_decode: bool):
        assert cudagraph_runtime_mode != CUDAGraphMode.NONE and \
            cudagraph_runtime_mode.valid_runtime_modes(), \
            f"Invalid cudagraph runtime mode: {cudagraph_runtime_mode}"

        # Only rank 0 should print progress bar during capture
        if is_global_first_rank():
            compilation_cases = tqdm(
                compilation_cases,
                disable=not self.load_config.use_tqdm_on_load,
                desc="Capturing CUDA graphs ({}, {})".format(
                    "decode" if uniform_decode else "mixed prefill-decode",
                    cudagraph_runtime_mode.name))

        # We skip EPLB here since we don't want to record dummy metrics
        for num_tokens in compilation_cases:
            # We currently only capture ubatched graphs when its a FULL
            # cudagraph, a uniform decode batch, and the number of tokens
            # is above the threshold. Otherwise we just capture a non-ubatched
            # version of the graph
            allow_microbatching = self.parallel_config.enable_dbo \
                and cudagraph_runtime_mode == CUDAGraphMode.FULL \
                and uniform_decode \
                and check_ubatch_thresholds(
                    config=self.vllm_config.parallel_config,
                    num_tokens=num_tokens,
                    uniform_decode=uniform_decode,
                )

            for _ in range(self.compilation_config.cudagraph_num_of_warmups):
                # Use CUDAGraphRuntimeStyle.NONE (default) for warmup.
                # But be careful, warm up with `NONE`is orthogonal to
                # if we want to warm up attention or not. This is
                # different from the case where `FULL` implies capture
                # attention while `PIECEWISE` implies no attention.
                force_attention = (
                    cudagraph_runtime_mode == CUDAGraphMode.FULL)
                self._dummy_run(num_tokens,
                                cudagraph_runtime_mode=CUDAGraphMode.NONE,
                                force_attention=force_attention,
                                uniform_decode=uniform_decode,
                                allow_microbatching=allow_microbatching,
                                skip_eplb=True,
                                remove_lora=False)
            self._dummy_run(num_tokens,
                            cudagraph_runtime_mode=cudagraph_runtime_mode,
                            uniform_decode=uniform_decode,
                            allow_microbatching=allow_microbatching,
                            skip_eplb=True,
                            remove_lora=False)
        self.maybe_remove_all_loras(self.lora_config)

    def initialize_attn_backend(self, kv_cache_config: KVCacheConfig) -> None:
        """
        Initialize the attention backends and attention metadata builders.
        """
        assert len(self.attn_groups) == 0, \
            "Attention backends are already initialized"

        class AttentionGroupKey(NamedTuple):
            attn_backend: type[AttentionBackend]
            kv_cache_spec: KVCacheSpec

        def get_attn_backends_for_group(
            kv_cache_group_spec: KVCacheGroupSpec,
        ) -> dict[AttentionGroupKey, list[str]]:
            layers = get_layers_from_vllm_config(
                self.vllm_config, AttentionLayerBase,
                kv_cache_group_spec.layer_names)
            attn_backends = {}
            attn_backend_layers = defaultdict(list)
            # Dedupe based on full class name; this is a bit safer than
            # using the class itself as the key because when we create dynamic
            # attention backend subclasses (e.g. ChunkedLocalAttention) unless
            # they are cached correctly, there will be different objects per
            # layer.
            for layer_name in kv_cache_group_spec.layer_names:
                attn_backend = layers[layer_name].get_attn_backend()

                if layer_name in self.kv_sharing_fast_prefill_eligible_layers:
                    attn_backend = create_fast_prefill_custom_backend(
                        "FastPrefill",
                        attn_backend,
                    )

                full_cls_name = attn_backend.full_cls_name()
                layer_kv_cache_spec = kv_cache_group_spec.kv_cache_spec
                if isinstance(layer_kv_cache_spec, UniformTypeKVCacheSpecs):
                    layer_kv_cache_spec = layer_kv_cache_spec.kv_cache_specs[
                        layer_name]
                key = (full_cls_name, layer_kv_cache_spec)
                attn_backends[key] = AttentionGroupKey(attn_backend,
                                                       layer_kv_cache_spec)
                attn_backend_layers[key].append(layer_name)
            return {
                attn_backends[k]: v
                for k, v in attn_backend_layers.items()
            }

        def create_attn_groups(
            attn_backends_map: dict[AttentionGroupKey, list[str]],
        ) -> list[AttentionGroup]:
            attn_groups: list[AttentionGroup] = []
            for (attn_backend,
                 kv_cache_spec), layer_names in attn_backends_map.items():
                attn_group = AttentionGroup.create_with_metadata_builders(
                    attn_backend,
                    layer_names,
                    kv_cache_spec,
                    self.vllm_config,
                    self.device,
                    num_metadata_builders=1
                    if not self.parallel_config.enable_dbo else 2,
                )

                attn_groups.append(attn_group)
            return attn_groups

        for kv_cache_group_spec in kv_cache_config.kv_cache_groups:
            attn_backends = get_attn_backends_for_group(kv_cache_group_spec)
            self.attn_groups.append(create_attn_groups(attn_backends))

        # Calculate reorder batch threshold (if needed)
        self.calculate_reorder_batch_threshold()

    def initialize_cudagraph_capture(self) -> None:
        """
        Resolve the cudagraph_mode when there are multiple attention 
        backends with potential conflicting CUDA graph support.
        Then initialize the cudagraph_dispatcher based on the resolved
        cudagraph_mode.
        """
        min_cg_support = AttentionCGSupport.ALWAYS
        min_cg_builder_name = None

        for attn_group in self._attn_group_iterator():
            builder = attn_group.get_metadata_builder()
            if builder.cudagraph_support.value < min_cg_support.value:
                min_cg_support = builder.cudagraph_support
                min_cg_builder_name = builder.__class__.__name__
        # Flexible resolve the cudagraph mode
        cudagraph_mode = self.compilation_config.cudagraph_mode
        # check cudagraph for mixed batch is supported
        if cudagraph_mode.mixed_mode() == CUDAGraphMode.FULL \
            and min_cg_support != AttentionCGSupport.ALWAYS:
            msg = (f"CUDAGraphMode.{cudagraph_mode.name} is not supported "
                   f"with {min_cg_builder_name} backend (support: "
                   f"{min_cg_support})")
            if min_cg_support == AttentionCGSupport.NEVER:
                # if not supported any full cudagraphs, just raise it.
                msg += "; please try cudagraph_mode=PIECEWISE, and "\
                    "make sure compilation level is piecewise"
                raise ValueError(msg)

            # attempt to resolve the full cudagraph related mode
            if self.compilation_config.splitting_ops_contain_attention():
                msg += "; setting cudagraph_mode=FULL_AND_PIECEWISE"
                cudagraph_mode = self.compilation_config.cudagraph_mode = \
                    CUDAGraphMode.FULL_AND_PIECEWISE
            else:
                msg += "; setting cudagraph_mode=FULL_DECODE_ONLY"
                cudagraph_mode = self.compilation_config.cudagraph_mode = \
                    CUDAGraphMode.FULL_DECODE_ONLY
            logger.warning(msg)

        # check that if we are doing decode full-cudagraphs it is supported
        if (cudagraph_mode.decode_mode() == CUDAGraphMode.FULL
                and min_cg_support == AttentionCGSupport.NEVER):
            msg = (f"CUDAGraphMode.{cudagraph_mode.name} is not supported "
                   f"with {min_cg_builder_name} backend (support: "
                   f"{min_cg_support})")
            if (self.compilation_config.level == CompilationLevel.PIECEWISE and
                (self.compilation_config.splitting_ops_contain_attention()
                 or self.compilation_config.use_inductor_graph_partition)):
                msg += "; setting cudagraph_mode=PIECEWISE because "\
                    "attention is compiled piecewise"
                cudagraph_mode = self.compilation_config.cudagraph_mode = \
                    CUDAGraphMode.PIECEWISE
            else:
                msg += "; setting cudagraph_mode=NONE because "\
                    "attention is not compiled piecewise"
                cudagraph_mode = self.compilation_config.cudagraph_mode = \
                    CUDAGraphMode.NONE
            logger.warning(msg)

        # check that if we are doing spec-decode + decode full-cudagraphs it is
        # supported
        if (cudagraph_mode.decode_mode() == CUDAGraphMode.FULL
                and self.uniform_decode_query_len > 1 and min_cg_support.value
                < AttentionCGSupport.UNIFORM_BATCH.value):
            msg = (f"CUDAGraphMode.{cudagraph_mode.name} is not supported"
                   f" with spec-decode for attention backend "
                   f"{min_cg_builder_name} (support: {min_cg_support})")
            if self.compilation_config.splitting_ops_contain_attention():
                msg += "; setting cudagraph_mode=PIECEWISE"
                cudagraph_mode = self.compilation_config.cudagraph_mode = \
                    CUDAGraphMode.PIECEWISE
            else:
                msg += "; setting cudagraph_mode=NONE"
                cudagraph_mode = self.compilation_config.cudagraph_mode = \
                    CUDAGraphMode.NONE
            logger.warning(msg)

        # double check that we can support full cudagraph if they are requested
        # even after automatic downgrades
        if cudagraph_mode.has_full_cudagraphs() \
            and min_cg_support == AttentionCGSupport.NEVER:
            raise ValueError(f"CUDAGraphMode.{cudagraph_mode.name} is not "
                             f"supported with {min_cg_builder_name} backend ("
                             f"support:{min_cg_support}) "
                             "; please try cudagraph_mode=PIECEWISE, "
                             "and make sure compilation level is piecewise")

        # Trigger cudagraph dispatching keys initialization here (after
        # initializing attn backends).
        self.cudagraph_dispatcher.initialize_cudagraph_keys(
            self.compilation_config.cudagraph_mode,
            self.uniform_decode_query_len)

    def calculate_reorder_batch_threshold(self) -> None:
        """
        Check that if any backends reorder batches; that the reordering
        is compatible (e.g., decode threshold is the same)
        """
        for group in self._attn_group_iterator():
            attn_metadata_builder_i = group.get_metadata_builder()

            # check that if any backends reorder batches; that the reordering
            # is compatible (e.g., decode threshold is the same)
            reorder_batch_threshold_i = (
                attn_metadata_builder_i.reorder_batch_threshold)
            if reorder_batch_threshold_i is not None:
                if self.reorder_batch_threshold is not None:
                    if reorder_batch_threshold_i != \
                        self.reorder_batch_threshold:
                        raise ValueError(
                            f"Attention backend reorders decodes with "
                            f"threshold {reorder_batch_threshold_i} but other "
                            f"backend uses threshold "
                            f"{self.reorder_batch_threshold}")
                else:
                    self.reorder_batch_threshold = reorder_batch_threshold_i

    def may_reinitialize_input_batch(self,
                                     kv_cache_config: KVCacheConfig) -> None:
        """
        Re-initialize the input batch if the block sizes are different from
        `[self.cache_config.block_size]`. This usually happens when there
        are multiple KV cache groups.

        Args:
            kv_cache_config: The KV cache configuration.
        """
        block_sizes = [
            kv_cache_group.kv_cache_spec.block_size
            for kv_cache_group in kv_cache_config.kv_cache_groups
        ]
        if block_sizes != [self.cache_config.block_size]:
            assert self.cache_config.cpu_offload_gb == 0, (
                "Cannot re-initialize the input batch when CPU weight "
                "offloading is enabled. See https://github.com/vllm-project/vllm/pull/18298 "  # noqa: E501
                "for more details.")
            self.input_batch = InputBatch(
                max_num_reqs=self.max_num_reqs,
                max_model_len=max(self.max_model_len, self.max_encoder_len),
                max_num_batched_tokens=self.max_num_tokens,
                device=self.device,
                pin_memory=self.pin_memory,
                vocab_size=self.model_config.get_vocab_size(),
                block_sizes=block_sizes,
                is_spec_decode=bool(self.vllm_config.speculative_config),
                logitsprocs=self.input_batch.logitsprocs,
                is_pooling_model=self.is_pooling_model,
                num_speculative_tokens=(
                    self.vllm_config.speculative_config.num_speculative_tokens
                    if self.vllm_config.speculative_config else 0),
            )

    def _allocate_kv_cache_tensors(
            self, kv_cache_config: KVCacheConfig) -> dict[str, torch.Tensor]:
        """
        Initializes the KV cache buffer with the correct size. The buffer needs
        to be reshaped to the desired shape before being used by the models.

        Args:
            kv_cache_config: The KV cache config
        Returns:
            dict[str, torch.Tensor]: A map between layer names to their
            corresponding memory buffer for KV cache.
         """
        kv_cache_raw_tensors: dict[str, torch.Tensor] = {}
        for kv_cache_tensor in kv_cache_config.kv_cache_tensors:
            tensor = torch.zeros(kv_cache_tensor.size,
                                 dtype=torch.int8,
                                 device=self.device)
            for layer_name in kv_cache_tensor.shared_by:
                kv_cache_raw_tensors[layer_name] = tensor

        layer_names = set()
        for group in kv_cache_config.kv_cache_groups:
            for layer_name in group.layer_names:
                if layer_name in self.runner_only_attn_layers:
                    continue
                layer_names.add(layer_name)
        assert layer_names == set(kv_cache_raw_tensors.keys(
        )), "Some layers are not correctly initialized"
        return kv_cache_raw_tensors

    def _attn_group_iterator(self) -> Iterator[AttentionGroup]:
        return itertools.chain.from_iterable(self.attn_groups)

    def _kv_cache_spec_attn_group_iterator(self) -> Iterator[AttentionGroup]:
        if not self.kv_cache_config.kv_cache_groups:
            return
        for attn_groups in self.attn_groups:
            yield from attn_groups

    def _reshape_kv_cache_tensors(
        self,
        kv_cache_config: KVCacheConfig,
        kv_cache_raw_tensors: dict[str, torch.Tensor],
    ) -> dict[str, torch.Tensor]:
        """
        Reshape the KV cache tensors to the desired shape and dtype.

        Args:
            kv_cache_config: The KV cache config
            kv_cache_raw_tensors: The KV cache buffer of each layer, with
                correct size but uninitialized shape.
        Returns:
            Dict[str, torch.Tensor]: A map between layer names to their
            corresponding memory buffer for KV cache.
        """
        kv_caches: dict[str, torch.Tensor] = {}
        has_attn, has_mamba = False, False
        for group in self._kv_cache_spec_attn_group_iterator():
            kv_cache_spec = group.kv_cache_spec
            attn_backend = group.backend
            for layer_name in group.layer_names:
                if layer_name in self.runner_only_attn_layers:
                    continue
                raw_tensor = kv_cache_raw_tensors[layer_name]
                assert raw_tensor.numel() % kv_cache_spec.page_size_bytes == 0
                num_blocks = (raw_tensor.numel() //
                              kv_cache_spec.page_size_bytes)
                if isinstance(kv_cache_spec, AttentionSpec):
                    has_attn = True
                    kv_cache_shape = attn_backend.get_kv_cache_shape(
                        num_blocks,
                        kv_cache_spec.block_size,
                        kv_cache_spec.num_kv_heads,
                        kv_cache_spec.head_size,
                        cache_dtype_str=self.cache_config.cache_dtype)
                    dtype = kv_cache_spec.dtype
                    try:
                        kv_cache_stride_order = \
                            attn_backend.get_kv_cache_stride_order()
                        assert len(kv_cache_stride_order) == len(
                            kv_cache_shape)
                    except (AttributeError, NotImplementedError):
                        kv_cache_stride_order = tuple(
                            range(len(kv_cache_shape)))
                    # The allocation respects the backend-defined stride order
                    # to ensure the semantic remains consistent for each
                    # backend. We first obtain the generic kv cache shape and
                    # then permute it according to the stride order which could
                    # result in a non-contiguous tensor.
                    kv_cache_shape = tuple(kv_cache_shape[i]
                                           for i in kv_cache_stride_order)
                    # Maintain original KV shape view.
                    inv_order = [
                        kv_cache_stride_order.index(i)
                        for i in range(len(kv_cache_stride_order))
                    ]
                    kv_caches[layer_name] = kv_cache_raw_tensors[
                        layer_name].view(dtype).view(kv_cache_shape).permute(
                            *inv_order)
                elif isinstance(kv_cache_spec, MambaSpec):
                    has_mamba = True
                    raw_tensor = kv_cache_raw_tensors[layer_name]
                    state_tensors = []
                    storage_offset_bytes = 0
                    for (shape, dtype) in zip(kv_cache_spec.shapes,
                                              kv_cache_spec.dtypes):
                        dtype_size = get_dtype_size(dtype)
                        num_element_per_page = (
                            kv_cache_spec.page_size_bytes // dtype_size)
                        target_shape = (num_blocks, *shape)
                        stride = torch.empty(target_shape).stride()
                        target_stride = (num_element_per_page, *stride[1:])
                        assert storage_offset_bytes % dtype_size == 0
                        tensor = torch.as_strided(
                            raw_tensor.view(dtype),
                            size=target_shape,
                            stride=target_stride,
                            storage_offset=storage_offset_bytes // dtype_size,
                        )
                        state_tensors.append(tensor)
                        storage_offset_bytes += stride[0] * dtype_size

                    kv_caches[layer_name] = state_tensors
                else:
                    raise NotImplementedError

        if has_attn and has_mamba:
            self._update_hybrid_attention_mamba_layout(kv_caches)

        return kv_caches

    def _update_hybrid_attention_mamba_layout(
            self, kv_caches: dict[str, torch.Tensor]) -> None:
        """
        Update the layout of attention layers from (2, num_blocks, ...) to
        (num_blocks, 2, ...).

        Args:
            kv_caches: The KV cache buffer of each layer.
        """

        for group in self._kv_cache_spec_attn_group_iterator():
            kv_cache_spec = group.kv_cache_spec
            for layer_name in group.layer_names:
                kv_cache = kv_caches[layer_name]
                if (isinstance(kv_cache_spec, AttentionSpec)
                        and kv_cache.shape[0] == 2):
                    assert kv_cache.shape[1] != 2, \
                        "Fail to determine whether the layout is " \
                        "(2, num_blocks, ...) or (num_blocks, 2, ...) for " \
                        f"a tensor of shape {kv_cache.shape}"
                    hidden_size = kv_cache.shape[2:].numel()
                    kv_cache.as_strided_(size=kv_cache.shape,
                                         stride=(hidden_size, 2 * hidden_size,
                                                 *kv_cache.stride()[2:]))

    def initialize_kv_cache_tensors(
            self, kv_cache_config: KVCacheConfig) -> dict[str, torch.Tensor]:
        """
        Initialize the memory buffer for KV cache.

        Args:
            kv_cache_config: The KV cache config
        Returns:
            Dict[str, torch.Tensor]: A map between layer names to their
            corresponding memory buffer for KV cache.
        """
        # Initialize the memory buffer for KV cache
        kv_cache_raw_tensors = self._allocate_kv_cache_tensors(kv_cache_config)
        # Change the memory buffer to the desired shape
        kv_caches = self._reshape_kv_cache_tensors(kv_cache_config,
                                                   kv_cache_raw_tensors)

        # Set up cross-layer KV cache sharing
        for layer_name, target_layer_name in self.shared_kv_cache_layers.items(
        ):
            logger.debug("%s reuses KV cache of %s", layer_name,
                         target_layer_name)
            kv_caches[layer_name] = kv_caches[target_layer_name]

        num_attn_module = 2 \
            if self.model_config.hf_config.model_type == "longcat_flash" else 1
        bind_kv_cache(kv_caches,
                      self.compilation_config.static_forward_context,
                      self.kv_caches, num_attn_module)
        return kv_caches

    def maybe_add_kv_sharing_layers_to_kv_cache_groups(
            self, kv_cache_config: KVCacheConfig) -> None:
        """
        Add layers that re-use KV cache to KV cache group of its target layer.
        Mapping of KV cache tensors happens in `initialize_kv_cache_tensors()`
        """
        if not self.shared_kv_cache_layers:
            # No cross-layer KV sharing, return
            return

        add_kv_sharing_layers_to_kv_cache_groups(
            self.shared_kv_cache_layers,
            kv_cache_config.kv_cache_groups,
            self.runner_only_attn_layers,
        )

        if self.cache_config.kv_sharing_fast_prefill:
            # In You Only Cache Once (https://arxiv.org/abs/2405.05254) or other
            # similar KV sharing setups, only the layers that generate KV caches
            # are involved in the prefill phase, enabling prefill to early exit.
            attn_layers = get_layers_from_vllm_config(self.vllm_config,
                                                      Attention)
            for layer_name in reversed(attn_layers):
                if layer_name in self.shared_kv_cache_layers:
                    self.kv_sharing_fast_prefill_eligible_layers.add(
                        layer_name)
                else:
                    break

    def initialize_kv_cache(self, kv_cache_config: KVCacheConfig) -> None:
        """
        Initialize KV cache based on `kv_cache_config`.
        Args:
            kv_cache_config: Configuration for the KV cache, including the KV
            cache size of each layer
        """
        kv_cache_config = deepcopy(kv_cache_config)
        self.kv_cache_config = kv_cache_config
        self.may_reinitialize_input_batch(kv_cache_config)
        self.may_add_encoder_only_layers_to_kv_cache_config()
        self.maybe_add_kv_sharing_layers_to_kv_cache_groups(kv_cache_config)
        self.initialize_attn_backend(kv_cache_config)
        kv_caches = self.initialize_kv_cache_tensors(kv_cache_config)

        if self.speculative_config and self.speculative_config.use_eagle():
            assert isinstance(self.drafter, EagleProposer)
            # validate all draft model layers belong to the same kv cache
            # group
            self.drafter.validate_same_kv_cache_group(kv_cache_config)

        if has_kv_transfer_group():
            kv_transfer_group = get_kv_transfer_group()
            kv_transfer_group.register_kv_caches(kv_caches)
            kv_transfer_group.set_host_xfer_buffer_ops(copy_kv_blocks)

        if self.dcp_world_size > 1:
            layer_names = self.attn_groups[0][0].layer_names
            layers = get_layers_from_vllm_config(self.vllm_config,
                                                 AttentionLayerBase,
                                                 layer_names)
            for layer in layers.values():
                assert layer.impl.need_to_return_lse_for_decode, (
                    "DCP requires attention impls to return"
                    " the softmax lse for decode, but the impl "
                    f"{layer.impl.__class__.__name__} "
                    "does not return the softmax lse for decode.")

    def may_add_encoder_only_layers_to_kv_cache_config(self) -> None:
        """
        Add encoder-only layers to the KV cache config.
        """
        block_size = self.vllm_config.cache_config.block_size
        encoder_only_attn_specs: dict[AttentionSpec,
                                      list[str]] = defaultdict(list)
        attn_layers = get_layers_from_vllm_config(self.vllm_config, Attention)
        for layer_name, attn_module in attn_layers.items():
            if attn_module.attn_type == AttentionType.ENCODER_ONLY:
                attn_spec: AttentionSpec = EncoderOnlyAttentionSpec(
                    block_size=block_size,
                    num_kv_heads=attn_module.num_kv_heads,
                    head_size=attn_module.head_size,
                    dtype=self.kv_cache_dtype)
                encoder_only_attn_specs[attn_spec].append(layer_name)
                self.runner_only_attn_layers.add(layer_name)
        if len(encoder_only_attn_specs) > 0:
            assert len(
                encoder_only_attn_specs
            ) == 1, "Only support one encoder-only attention spec now"
            spec, layer_names = encoder_only_attn_specs.popitem()
            self.kv_cache_config.kv_cache_groups.append(
                KVCacheGroupSpec(layer_names=layer_names, kv_cache_spec=spec))

    def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
        """
        Generates the KVCacheSpec by parsing the kv cache format from each
        Attention module in the static forward context.
        Returns:
            KVCacheSpec: A dictionary mapping layer names to their KV cache
            format. Layers that do not need KV cache are not included.
        """

        block_size = self.vllm_config.cache_config.block_size
        use_mla = self.vllm_config.model_config.use_mla
        cache_dtype_str = self.vllm_config.cache_config.cache_dtype
        kv_cache_spec: dict[str, KVCacheSpec] = {}
        attn_layers = get_layers_from_vllm_config(self.vllm_config, Attention)
        for layer_name, attn_module in attn_layers.items():
            if (kv_tgt_layer :=
                    attn_module.kv_sharing_target_layer_name) is not None:
                # The layer doesn't need its own KV cache and will use that of
                # the target layer. We skip creating a KVCacheSpec for it, so
                # that KV cache management logic will act as this layer does
                # not exist, and doesn't allocate KV cache for the layer. This
                # enables the memory saving of cross-layer kv sharing, allowing
                # a given amount of memory to accommodate longer context lengths
                # or enable more requests to be processed simultaneously.
                self.shared_kv_cache_layers[layer_name] = kv_tgt_layer
                continue

            # TODO(lucas): move the attention specs into the model layers like
            # the attention backends
            if attn_module.attn_type == AttentionType.DECODER:
                if attn_module.sliding_window is not None:
                    assert not use_mla, "MLA is not supported for sliding" \
                        "window"
                    kv_cache_spec[layer_name] = SlidingWindowSpec(
                        block_size=block_size,
                        num_kv_heads=attn_module.num_kv_heads,
                        head_size=attn_module.head_size,
                        dtype=self.kv_cache_dtype,
                        sliding_window=attn_module.sliding_window)
                elif use_mla:
                    kv_cache_spec[layer_name] = MLAAttentionSpec(
                        block_size=block_size,
                        num_kv_heads=attn_module.num_kv_heads,
                        head_size=attn_module.head_size,
                        dtype=self.kv_cache_dtype,
                        cache_dtype_str=cache_dtype_str)
                elif self.attention_chunk_size is not None \
                        and isinstance(attn_module, ChunkedLocalAttention):
                    kv_cache_spec[layer_name] = ChunkedLocalAttentionSpec(
                        block_size=block_size,
                        num_kv_heads=attn_module.num_kv_heads,
                        head_size=attn_module.head_size,
                        dtype=self.kv_cache_dtype,
                        attention_chunk_size=self.attention_chunk_size)
                else:
                    kv_cache_spec[layer_name] = FullAttentionSpec(
                        block_size=block_size,
                        num_kv_heads=attn_module.num_kv_heads,
                        head_size=attn_module.head_size,
                        dtype=self.kv_cache_dtype)
            elif attn_module.attn_type == AttentionType.ENCODER_DECODER:
                kv_cache_spec[layer_name] = CrossAttentionSpec(
                    block_size=block_size,
                    num_kv_heads=attn_module.num_kv_heads,
                    head_size=attn_module.head_size,
                    dtype=self.kv_cache_dtype)
            elif attn_module.attn_type in (AttentionType.ENCODER,
                                           AttentionType.ENCODER_ONLY):
                # encoder-only attention does not need KV cache.
                continue
            else:
                raise ValueError(
                    f"Unknown attention type: {attn_module.attn_type}")

        mamba_layers = get_layers_from_vllm_config(self.vllm_config, MambaBase)
        if len(mamba_layers) > 0:
            if (self.vllm_config.speculative_config is not None
                    and self.vllm_config.model_config.hf_config.model_type
                    not in ["qwen3_next"]):
                raise NotImplementedError(
                    "Mamba with speculative decoding is not supported yet.")
            if self.vllm_config.cache_config.enable_prefix_caching:
                raise NotImplementedError(
                    "Prefix caching is not supported for Mamba yet.")
            max_model_len = self.vllm_config.model_config.max_model_len

            page_size_padded = (
                self.vllm_config.cache_config.mamba_page_size_padded)

            # Set block_size to max_model_len, so that mamba model will always
            # have only one block in the KV cache.
            for layer_name, mamba_module in mamba_layers.items():
                kv_cache_spec[layer_name] = MambaSpec(
                    shapes=mamba_module.get_state_shape(),
                    dtypes=mamba_module.get_state_dtype(),
                    block_size=max_model_len,
                    page_size_padded=page_size_padded,
                    mamba_type=mamba_module.mamba_type,
                    num_speculative_blocks=(
                        self.speculative_config.num_speculative_tokens
                        if self.speculative_config else 0),
                )
        ds_indexer_layers = get_layers_from_vllm_config(
            self.vllm_config, DeepseekV32IndexerCache)
        for layer_name, ds_indexer_module in ds_indexer_layers.items():
            kv_cache_spec[layer_name] = ds_indexer_module.get_kv_cache_spec()

        return kv_cache_spec

    def _to_list(self, sampled_token_ids: torch.Tensor) -> list[list[int]]:
        # This is a short term mitigation for issue mentioned in
        # https://github.com/vllm-project/vllm/issues/22754.
        # `tolist` would trigger a cuda wise stream sync, which
        # would block other copy ops from other cuda streams.
        # A cuda event sync would avoid such a situation. Since
        # this is in the critical path of every single model
        # forward loop, this has caused perf issue for a disagg
        # setup.
        pinned = self.sampled_token_ids_pinned_cpu[:sampled_token_ids.shape[0]]
        pinned.copy_(sampled_token_ids, non_blocking=True)
        self.transfer_event.record()
        self.transfer_event.synchronize()
        return pinned.tolist()

_draft_token_ids instance-attribute

_draft_token_ids: Optional[
    Union[list[list[int]], Tensor]
] = None

arange_np instance-attribute

arange_np = arange(
    max(max_num_reqs + 1, max_model_len, max_num_tokens),
    dtype=int64,
)

async_output_copy_stream instance-attribute

async_output_copy_stream = (
    Stream() if use_async_scheduling else None
)

attention_chunk_size instance-attribute

attention_chunk_size = attention_chunk_size

attn_groups instance-attribute

attn_groups: list[list[AttentionGroup]] = []

broadcast_pp_output instance-attribute

broadcast_pp_output = (
    distributed_executor_backend == "external_launcher"
    and len(ranks) > 0
)

cache_config instance-attribute

cache_config = cache_config

cascade_attn_enabled instance-attribute

cascade_attn_enabled = not disable_cascade_attn

comm_stream instance-attribute

comm_stream = Stream()

compilation_config instance-attribute

compilation_config = compilation_config

cudagraph_batch_sizes instance-attribute

cudagraph_batch_sizes = list(
    reversed(cudagraph_capture_sizes)
)

cudagraph_dispatcher instance-attribute

cudagraph_dispatcher = CudagraphDispatcher(vllm_config)

dcp_world_size instance-attribute

dcp_world_size = decode_context_parallel_size

device instance-attribute

device = device

discard_request_indices instance-attribute

discard_request_indices = _make_buffer(
    max_num_reqs, dtype=int64
)

drafter instance-attribute

drafter = NgramProposer(vllm_config)

dtype instance-attribute

dtype = dtype

enable_prompt_embeds instance-attribute

enable_prompt_embeds = enable_prompt_embeds

encoder_cache instance-attribute

encoder_cache: dict[str, Tensor] = {}

eplb_state instance-attribute

eplb_state: Optional[EplbState] = None

State of the expert parallelism load balancer.

Will be lazily initialized when the model is loaded.

hidden_size instance-attribute

hidden_size = get_hidden_size()

input_batch instance-attribute

input_batch = InputBatch(
    max_num_reqs=max_num_reqs,
    max_model_len=max(max_model_len, max_encoder_len),
    max_num_batched_tokens=max_num_tokens,
    device=device,
    pin_memory=pin_memory,
    vocab_size=get_vocab_size(),
    block_sizes=[block_size],
    is_spec_decode=bool(speculative_config),
    logitsprocs=build_logitsprocs(
        vllm_config,
        device,
        pin_memory,
        is_pooling_model,
        logits_processors,
    ),
    is_pooling_model=is_pooling_model,
)

input_ids instance-attribute

input_ids = _make_buffer(max_num_tokens, dtype=int32)

inputs_embeds instance-attribute

inputs_embeds = _make_buffer(
    max_num_tokens, hidden_size, dtype=dtype, numpy=False
)

intermediate_tensors instance-attribute

intermediate_tensors: Optional[IntermediateTensors] = None

is_mm_embed instance-attribute

is_mm_embed = _make_buffer(max_num_tokens, dtype=bool)

is_multimodal_pruning_enabled instance-attribute

is_multimodal_pruning_enabled = False

is_multimodal_raw_input_only_model instance-attribute

is_multimodal_raw_input_only_model = (
    is_multimodal_raw_input_only_model
)

is_pooling_model instance-attribute

is_pooling_model = runner_type == 'pooling'

is_token_ids instance-attribute

is_token_ids = _make_buffer(max_num_tokens, dtype=bool)

kv_cache_dtype instance-attribute

kv_cache_dtype = dtype

kv_caches instance-attribute

kv_caches: list[Tensor] = []

kv_sharing_fast_prefill_eligible_layers instance-attribute

kv_sharing_fast_prefill_eligible_layers: set[str] = set()

kv_sharing_fast_prefill_logits_indices instance-attribute

kv_sharing_fast_prefill_logits_indices = None

load_config instance-attribute

load_config = load_config

lora_config instance-attribute

lora_config = lora_config

max_encoder_len instance-attribute

max_encoder_len = max_num_encoder_input_tokens

max_model_len instance-attribute

max_model_len = max_model_len

max_num_reqs instance-attribute

max_num_reqs = max_num_seqs

max_num_tokens instance-attribute

max_num_tokens = max_num_batched_tokens

mm_budget instance-attribute

mm_budget = (
    MultiModalBudget(
        model_config, scheduler_config, mm_registry
    )
    if supports_mm_inputs
    else None
)

mm_registry instance-attribute

mm_registry = MULTIMODAL_REGISTRY

model_config instance-attribute

model_config = model_config

mrope_positions instance-attribute

mrope_positions = _make_buffer(
    (3, max_num_tokens + 1), dtype=int64
)

num_accepted_tokens instance-attribute

num_accepted_tokens = _make_buffer(
    max_num_reqs, dtype=int64
)

num_decode_draft_tokens instance-attribute

num_decode_draft_tokens = _make_buffer(
    max_num_reqs, dtype=int32
)

num_discarded_requests instance-attribute

num_discarded_requests = 0

num_query_heads instance-attribute

num_query_heads = get_num_attention_heads(parallel_config)

observability_config instance-attribute

observability_config = observability_config

parallel_config instance-attribute

parallel_config = parallel_config

pin_memory instance-attribute

pin_memory = is_pin_memory_available()

positions instance-attribute

positions = _make_buffer(max_num_tokens, dtype=int64)

prepare_inputs_event instance-attribute

prepare_inputs_event: Optional[Event] = None

query_start_loc instance-attribute

query_start_loc = _make_buffer(
    max_num_reqs + 1, dtype=int32
)

rejection_sampler instance-attribute

rejection_sampler = RejectionSampler()

reorder_batch_threshold instance-attribute

reorder_batch_threshold: Optional[int] = None

requests instance-attribute

requests: dict[str, CachedRequestState] = {}

runner_only_attn_layers instance-attribute

runner_only_attn_layers: set[str] = set()

sampled_token_ids_pinned_cpu instance-attribute

sampled_token_ids_pinned_cpu = empty(
    (max_model_len, 1),
    dtype=int64,
    device="cpu",
    pin_memory=pin_memory,
)

sampler instance-attribute

sampler = Sampler(logprobs_mode=logprobs_mode)

scheduler_config instance-attribute

scheduler_config = scheduler_config

seq_lens instance-attribute

seq_lens = _make_buffer(max_num_reqs, dtype=int32)

shared_kv_cache_layers instance-attribute

shared_kv_cache_layers: dict[str, str] = {}

speculative_config instance-attribute

speculative_config = speculative_config

supports_mm_inputs instance-attribute

supports_mm_inputs = supports_multimodal_inputs(
    model_config
)

transfer_event instance-attribute

transfer_event = Event()

uniform_decode_query_len instance-attribute

uniform_decode_query_len = (
    1
    if not speculative_config
    else 1 + num_speculative_tokens
)

use_alibi instance-attribute

use_alibi = check_use_alibi(model_config)

use_async_scheduling instance-attribute

use_async_scheduling = async_scheduling

use_aux_hidden_state_outputs instance-attribute

use_aux_hidden_state_outputs = False

uses_mrope instance-attribute

uses_mrope = uses_mrope

vllm_config instance-attribute

vllm_config = vllm_config

__init__

__init__(vllm_config: VllmConfig, device: device)
Source code in vllm/v1/worker/gpu_model_runner.py
def __init__(
    self,
    vllm_config: VllmConfig,
    device: torch.device,
):
    self.vllm_config = vllm_config
    self.model_config = vllm_config.model_config
    self.cache_config = vllm_config.cache_config
    self.compilation_config = vllm_config.compilation_config
    self.lora_config = vllm_config.lora_config
    self.load_config = vllm_config.load_config
    self.parallel_config = vllm_config.parallel_config
    self.scheduler_config = vllm_config.scheduler_config
    self.speculative_config = vllm_config.speculative_config
    self.observability_config = vllm_config.observability_config

    from vllm.model_executor.models.utils import set_cpu_offload_max_bytes
    set_cpu_offload_max_bytes(
        int(self.cache_config.cpu_offload_gb * 1024**3))
    from vllm.model_executor.layers.batch_invariant import (
        init_batch_invariance)
    init_batch_invariance()

    model_config = self.model_config
    cache_config = self.cache_config
    scheduler_config = self.scheduler_config
    parallel_config = self.parallel_config
    self.device = device
    self.pin_memory = is_pin_memory_available()
    self.dtype = self.model_config.dtype
    if cache_config.cache_dtype == "auto":
        self.kv_cache_dtype = self.dtype
    else:
        self.kv_cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[
            cache_config.cache_dtype]

    self.is_pooling_model = (model_config.runner_type == 'pooling')
    self.enable_prompt_embeds = model_config.enable_prompt_embeds
    self.is_multimodal_raw_input_only_model = (
        model_config.is_multimodal_raw_input_only_model)
    # This will be overridden in load_model()
    self.is_multimodal_pruning_enabled = False
    self.max_model_len = model_config.max_model_len
    self.dcp_world_size = self.parallel_config.decode_context_parallel_size
    self.max_num_tokens = scheduler_config.max_num_batched_tokens
    self.max_num_reqs = scheduler_config.max_num_seqs

    # Broadcast PP output for external_launcher (torchrun)
    # to make sure we are synced across pp ranks
    # TODO: Support overlapping mirco-batches
    # https://github.com/vllm-project/vllm/issues/18019
    self.broadcast_pp_output = (
        self.parallel_config.distributed_executor_backend
        == "external_launcher" and len(get_pp_group().ranks) > 0)

    # Model-related.
    self.num_query_heads = model_config.get_num_attention_heads(
        parallel_config)
    self.hidden_size = model_config.get_hidden_size()
    self.attention_chunk_size = model_config.attention_chunk_size
    # Only relevant for models using ALiBi (e.g, MPT)
    self.use_alibi = check_use_alibi(model_config)

    self.cascade_attn_enabled = not self.model_config.disable_cascade_attn

    # Multi-modal data support
    self.mm_registry = MULTIMODAL_REGISTRY
    self.uses_mrope = model_config.uses_mrope
    self.supports_mm_inputs = self.mm_registry.supports_multimodal_inputs(
        model_config)

    if self.model_config.is_encoder_decoder:
        # Maximum length of the encoder input, only for encoder-decoder
        # models.
        self.max_encoder_len = scheduler_config.\
                        max_num_encoder_input_tokens
    else:
        self.max_encoder_len = 0

    # Sampler
    self.sampler = Sampler(logprobs_mode=self.model_config.logprobs_mode)

    self.eplb_state: Optional[EplbState] = None
    """
    State of the expert parallelism load balancer.

    Will be lazily initialized when the model is loaded.
    """

    # Lazy initializations
    # self.model: nn.Module  # Set after load_model
    # Initialize in initialize_kv_cache
    self.kv_caches: list[torch.Tensor] = []
    # indexes: [kv_cache_group_id][attn_group]
    self.attn_groups: list[list[AttentionGroup]] = []
    # self.kv_cache_config: KVCacheConfig

    # mm_hash ->  encoder_output
    self.encoder_cache: dict[str, torch.Tensor] = {}

    self.use_aux_hidden_state_outputs = False
    # Set up speculative decoding.
    # NOTE(Jiayi): currently we put the entire draft model on
    # the last PP rank. This is not ideal if there are many
    # layers in the draft model.
    if self.speculative_config and get_pp_group().is_last_rank:
        if self.speculative_config.method == "ngram":
            self.drafter = NgramProposer(self.vllm_config)
        elif self.speculative_config.use_eagle():
            self.drafter = EagleProposer(self.vllm_config, self.device,
                                         self)  # type: ignore
            if self.speculative_config.method == "eagle3":
                self.use_aux_hidden_state_outputs = True
        elif self.speculative_config.method == "medusa":
            self.drafter = MedusaProposer(
                vllm_config=self.vllm_config,
                device=self.device)  # type: ignore
        else:
            raise ValueError("Unknown speculative decoding method: "
                             f"{self.speculative_config.method}")
        self.rejection_sampler = RejectionSampler()

    # Request states.
    self.requests: dict[str, CachedRequestState] = {}
    self.comm_stream = torch.cuda.Stream()

    # Input Batch
    # NOTE(Chen): Ideally, we should initialize the input batch inside
    # `initialize_kv_cache` based on the kv cache config. However, as in
    # https://github.com/vllm-project/vllm/pull/18298, due to some unknown
    # reasons, we have to initialize the input batch before `load_model`,
    # quantization + weight offloading will fail otherwise. As a temporary
    # solution, we initialize the input batch here, and re-initialize it
    # in `initialize_kv_cache` if the block_sizes here is different from
    # the block_sizes in the kv cache config.
    self.input_batch = InputBatch(
        max_num_reqs=self.max_num_reqs,
        # We need to use the encoder length for encoder-decoer
        # because of KV cache for cross-attention.
        max_model_len=max(self.max_model_len, self.max_encoder_len),
        max_num_batched_tokens=self.max_num_tokens,
        device=self.device,
        pin_memory=self.pin_memory,
        vocab_size=self.model_config.get_vocab_size(),
        block_sizes=[self.cache_config.block_size],
        is_spec_decode=bool(self.vllm_config.speculative_config),
        logitsprocs=build_logitsprocs(
            self.vllm_config, self.device, self.pin_memory,
            self.is_pooling_model,
            self.vllm_config.model_config.logits_processors),
        is_pooling_model=self.is_pooling_model,
    )

    self.use_async_scheduling = self.scheduler_config.async_scheduling
    self.async_output_copy_stream = torch.cuda.Stream() if \
        self.use_async_scheduling else None

    # TODO(woosuk): Provide an option to tune the max cudagraph batch size.
    # The convention is different.
    # self.cudagraph_batch_sizes sorts in ascending order.
    # The batch sizes in the config are in descending order.
    if self.compilation_config.cudagraph_capture_sizes and \
            self.compilation_config.cudagraph_mode != CUDAGraphMode.NONE:
        self.cudagraph_batch_sizes = list(
            reversed(self.compilation_config.cudagraph_capture_sizes))

    # Cache the device properties.
    self._init_device_properties()

    # Persistent buffers for CUDA graphs.
    self.input_ids = self._make_buffer(self.max_num_tokens,
                                       dtype=torch.int32)
    self.positions = self._make_buffer(self.max_num_tokens,
                                       dtype=torch.int64)
    self.query_start_loc = self._make_buffer(self.max_num_reqs + 1,
                                             dtype=torch.int32)
    self.seq_lens = self._make_buffer(self.max_num_reqs, dtype=torch.int32)
    # Because inputs_embeds may be bfloat16 and we don't need a numpy
    # version of this tensor, avoid a RuntimeError by not creating a
    # numpy buffer.
    self.inputs_embeds = self._make_buffer(self.max_num_tokens,
                                           self.hidden_size,
                                           dtype=self.dtype,
                                           numpy=False)
    self.is_token_ids = self._make_buffer(self.max_num_tokens,
                                          dtype=torch.bool)
    self.discard_request_indices = self._make_buffer(self.max_num_reqs,
                                                     dtype=torch.int64)
    self.num_discarded_requests = 0

    self.num_decode_draft_tokens = self._make_buffer(self.max_num_reqs,
                                                     dtype=torch.int32)
    self.num_accepted_tokens = self._make_buffer(self.max_num_reqs,
                                                 dtype=torch.int64)

    # Only relevant for multimodal models
    if self.supports_mm_inputs:
        self.is_mm_embed = self._make_buffer(self.max_num_tokens,
                                             dtype=torch.bool)

    # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
    if self.uses_mrope:
        # NOTE: `mrope_positions` is implemented with one additional dummy
        # position on purpose to make it non-contiguous so that it can work
        # with torch compile.
        # See detailed explanation in https://github.com/vllm-project/vllm/pull/12128#discussion_r1926431923

        # NOTE: When M-RoPE is enabled, position ids are 3D regardless of
        # the modality of inputs. For text-only inputs, each dimension has
        # identical position IDs, making M-RoPE functionally equivalent to
        # 1D-RoPE.
        # See page 5 of https://arxiv.org/abs/2409.12191
        self.mrope_positions = self._make_buffer(
            (3, self.max_num_tokens + 1), dtype=torch.int64)

    # CUDA event to synchronize use of reused CPU tensors between steps
    # when async scheduling is enabled.
    self.prepare_inputs_event: Optional[torch.cuda.Event] = None
    if self.use_async_scheduling:
        self.prepare_inputs_event = torch.cuda.Event()
        # Start in a completed state.
        self.prepare_inputs_event.record(torch.cuda.default_stream())

    # None in the first PP rank. The rest are set after load_model.
    self.intermediate_tensors: Optional[IntermediateTensors] = None

    # OPTIMIZATION: Cache the tensors rather than creating them every step.
    # Keep in int64 to avoid overflow with long context
    self.arange_np = np.arange(max(self.max_num_reqs + 1,
                                   self.max_model_len,
                                   self.max_num_tokens),
                               dtype=np.int64)

    # Layer pairings for cross-layer KV sharing.
    # If an Attention layer `layer_name` is in the keys of this dict, it
    # means this layer will perform attention using the keys and values
    # from the KV cache of `shared_kv_cache_layers[layer_name]`.
    self.shared_kv_cache_layers: dict[str, str] = {}
    self.kv_sharing_fast_prefill_eligible_layers: set[str] = set()

    self.kv_sharing_fast_prefill_logits_indices = None
    if self.cache_config.kv_sharing_fast_prefill:
        self.kv_sharing_fast_prefill_logits_indices = torch.zeros(
            self.max_num_tokens, dtype=torch.int32, device=self.device)

    self.uniform_decode_query_len = 1 if not self.speculative_config else \
        1 + self.speculative_config.num_speculative_tokens

    # Cudagraph dispatcher for runtime cudagraph dispatching.
    self.cudagraph_dispatcher = CudagraphDispatcher(self.vllm_config)

    self.mm_budget = MultiModalBudget(
        self.model_config,
        self.scheduler_config,
        self.mm_registry,
    ) if self.supports_mm_inputs else None

    self.reorder_batch_threshold: Optional[int] = None

    # Attention layers that are only in the KVCacheConfig of the runner
    # (e.g., KV sharing, encoder-only attention), but not in the
    # KVCacheConfig of the scheduler.
    self.runner_only_attn_layers: set[str] = set()

    # Cached outputs.
    self._draft_token_ids: Optional[Union[list[list[int]],
                                          torch.Tensor]] = None
    self.transfer_event = torch.cuda.Event()
    self.sampled_token_ids_pinned_cpu = torch.empty(
        (self.max_model_len, 1),
        dtype=torch.int64,
        device="cpu",
        pin_memory=self.pin_memory)

_allocate_kv_cache_tensors

_allocate_kv_cache_tensors(
    kv_cache_config: KVCacheConfig,
) -> dict[str, Tensor]

Initializes the KV cache buffer with the correct size. The buffer needs to be reshaped to the desired shape before being used by the models.

Parameters:

Name Type Description Default
kv_cache_config KVCacheConfig

The KV cache config

required

Returns: dict[str, torch.Tensor]: A map between layer names to their corresponding memory buffer for KV cache.

Source code in vllm/v1/worker/gpu_model_runner.py
def _allocate_kv_cache_tensors(
        self, kv_cache_config: KVCacheConfig) -> dict[str, torch.Tensor]:
    """
    Initializes the KV cache buffer with the correct size. The buffer needs
    to be reshaped to the desired shape before being used by the models.

    Args:
        kv_cache_config: The KV cache config
    Returns:
        dict[str, torch.Tensor]: A map between layer names to their
        corresponding memory buffer for KV cache.
     """
    kv_cache_raw_tensors: dict[str, torch.Tensor] = {}
    for kv_cache_tensor in kv_cache_config.kv_cache_tensors:
        tensor = torch.zeros(kv_cache_tensor.size,
                             dtype=torch.int8,
                             device=self.device)
        for layer_name in kv_cache_tensor.shared_by:
            kv_cache_raw_tensors[layer_name] = tensor

    layer_names = set()
    for group in kv_cache_config.kv_cache_groups:
        for layer_name in group.layer_names:
            if layer_name in self.runner_only_attn_layers:
                continue
            layer_names.add(layer_name)
    assert layer_names == set(kv_cache_raw_tensors.keys(
    )), "Some layers are not correctly initialized"
    return kv_cache_raw_tensors

_attn_group_iterator

_attn_group_iterator() -> Iterator[AttentionGroup]
Source code in vllm/v1/worker/gpu_model_runner.py
def _attn_group_iterator(self) -> Iterator[AttentionGroup]:
    return itertools.chain.from_iterable(self.attn_groups)

_batch_mm_kwargs_from_scheduler

_batch_mm_kwargs_from_scheduler(
    scheduler_output: SchedulerOutput,
) -> tuple[
    list[MultiModalKwargsItem],
    list[tuple[str, PlaceholderRange]],
]

Batch multimodal kwargs from scheduled encoder inputs.

Parameters:

Name Type Description Default
scheduler_output SchedulerOutput

The scheduler output containing scheduled encoder inputs.

required

Returns:

Type Description
list[MultiModalKwargsItem]

A tuple of (mm_kwargs, req_ids_pos) where:

list[tuple[str, PlaceholderRange]]
  • mm_kwargs: List of multimodal kwargs items to be batched
tuple[list[MultiModalKwargsItem], list[tuple[str, PlaceholderRange]]]
  • mm_hashes_pos: List of (mm_hash, position_info) tuples
Source code in vllm/v1/worker/gpu_model_runner.py
def _batch_mm_kwargs_from_scheduler(
    self,
    scheduler_output: "SchedulerOutput",
) -> tuple[list[MultiModalKwargsItem], list[tuple[str, PlaceholderRange]]]:
    """Batch multimodal kwargs from scheduled encoder inputs.

    Args:
        scheduler_output: The scheduler output containing scheduled encoder
            inputs.

    Returns:
        A tuple of (mm_kwargs, req_ids_pos) where:
        - mm_kwargs: List of multimodal kwargs items to be batched
        - mm_hashes_pos: List of (mm_hash, position_info) tuples
    """
    scheduled_encoder_inputs = scheduler_output.scheduled_encoder_inputs
    if not scheduled_encoder_inputs:
        return [], []
    # Batch the multi-modal inputs.
    mm_kwargs = list[MultiModalKwargsItem]()
    # list of tuple (mm_hash, position_info)
    mm_hashes_pos = list[tuple[str, PlaceholderRange]]()
    for req_id, encoder_input_ids in scheduled_encoder_inputs.items():
        req_state = self.requests[req_id]

        for mm_input_id in encoder_input_ids:
            mm_feature = req_state.mm_features[mm_input_id]
            mm_hash = mm_feature.identifier
            mm_kwargs.append(mm_feature.data)
            mm_hashes_pos.append((mm_hash, mm_feature.mm_position))

    return mm_kwargs, mm_hashes_pos

_bookkeeping_sync

_bookkeeping_sync(
    scheduler_output: SchedulerOutput,
    sampler_output: SamplerOutput,
    logits: Optional[Tensor],
    hidden_states: Tensor,
    num_scheduled_tokens: int,
) -> tuple[
    dict[str, int],
    Optional[LogprobsLists],
    list[list[int]],
    dict[str, Optional[LogprobsTensors]],
    list[str],
    dict[str, int],
    list[int],
]
Source code in vllm/v1/worker/gpu_model_runner.py
def _bookkeeping_sync(
    self, scheduler_output: "SchedulerOutput",
    sampler_output: SamplerOutput, logits: Optional[torch.Tensor],
    hidden_states: torch.Tensor, num_scheduled_tokens: int
) -> tuple[
        dict[str, int],
        Optional[LogprobsLists],
        list[list[int]],
        dict[str, Optional[LogprobsTensors]],
        list[str],
        dict[str, int],
        list[int],
]:
    num_nans_in_logits = {}
    if envs.VLLM_COMPUTE_NANS_IN_LOGITS:
        num_nans_in_logits = self._get_nans_in_logits(logits)

    discard_sampled_tokens_req_indices = \
        self.discard_request_indices.np[:self.num_discarded_requests]
    for i in discard_sampled_tokens_req_indices:
        gen = self.input_batch.generators.get(int(i))
        if gen is not None:
            gen.set_offset(gen.get_offset() - 4)

    # Copy some objects so they don't get modified after returning.
    # This is important when using async scheduling.
    req_ids_output_copy = self.input_batch.req_ids.copy()
    req_id_to_index_output_copy = \
        self.input_batch.req_id_to_index.copy()

    # NOTE: GPU -> CPU Sync happens here.
    # Move as many CPU operations as possible before this sync point.
    logprobs_tensors = sampler_output.logprobs_tensors
    logprobs_lists = logprobs_tensors.tolists() \
        if logprobs_tensors is not None else None

    # Compute prompt logprobs if needed.
    prompt_logprobs_dict = self._get_prompt_logprobs_dict(
        hidden_states[:num_scheduled_tokens],
        scheduler_output.num_scheduled_tokens,
    )

    num_sampled_tokens = sampler_output.sampled_token_ids.shape[0]
    sampled_token_ids = sampler_output.sampled_token_ids
    invalid_req_indices = []
    if not self.use_async_scheduling:
        # Get the valid generated tokens.
        max_gen_len = sampled_token_ids.shape[-1]
        if max_gen_len == 1:
            # No spec decode tokens.
            valid_sampled_token_ids = self._to_list(sampled_token_ids)
        else:
            # Includes spec decode tokens.
            valid_sampled_token_ids = self.rejection_sampler.parse_output(
                sampled_token_ids,
                self.input_batch.vocab_size,
            )
        # Mask out the sampled tokens that should not be sampled.
        for i in discard_sampled_tokens_req_indices:
            valid_sampled_token_ids[int(i)].clear()
    else:
        valid_sampled_token_ids = []
        invalid_req_indices = discard_sampled_tokens_req_indices.tolist()
        invalid_req_indices_set = set(invalid_req_indices)
        assert sampled_token_ids.shape[-1] == 1

        # Cache the sampled tokens on the GPU and avoid CPU sync.
        # These will be copied into input_ids in the next step
        # when preparing inputs.
        self.input_batch.prev_sampled_token_ids = \
            sampled_token_ids
        self.input_batch.prev_sampled_token_ids_invalid_indices = \
            invalid_req_indices_set
        self.input_batch.prev_req_id_to_index = {
            req_id: i
            for i, req_id in enumerate(self.input_batch.req_ids)
            if i not in invalid_req_indices_set
        }

    # Cache the sampled tokens in the model runner, so that the scheduler
    # doesn't need to send them back.
    # NOTE(woosuk): As an exception, when using PP, the scheduler sends
    # the sampled tokens back, because there's no direct communication
    # between the first-stage worker and the last-stage worker.
    req_ids = self.input_batch.req_ids
    for req_idx in range(num_sampled_tokens):
        if self.use_async_scheduling:
            sampled_ids = [-1] if \
                req_idx not in invalid_req_indices_set else None
        else:
            sampled_ids = valid_sampled_token_ids[req_idx]
        if not sampled_ids:
            continue

        start_idx = self.input_batch.num_tokens_no_spec[req_idx]
        end_idx = start_idx + len(sampled_ids)
        assert end_idx <= self.max_model_len, (
            "Sampled token IDs exceed the max model length. "
            f"Total number of tokens: {end_idx} > max_model_len: "
            f"{self.max_model_len}")

        self.input_batch.token_ids_cpu[req_idx,
                                       start_idx:end_idx] = sampled_ids
        self.input_batch.is_token_ids[req_idx, start_idx:end_idx] = True
        self.input_batch.num_tokens_no_spec[req_idx] = end_idx
        self.input_batch.num_tokens[req_idx] = end_idx

        req_id = req_ids[req_idx]
        req_state = self.requests[req_id]
        req_state.output_token_ids.extend(sampled_ids)

    return (
        num_nans_in_logits,
        logprobs_lists,
        valid_sampled_token_ids,
        prompt_logprobs_dict,
        req_ids_output_copy,
        req_id_to_index_output_copy,
        invalid_req_indices,
    )

_calc_mrope_positions

_calc_mrope_positions(scheduler_output: SchedulerOutput)
Source code in vllm/v1/worker/gpu_model_runner.py
def _calc_mrope_positions(self, scheduler_output: "SchedulerOutput"):
    mrope_pos_ptr = 0
    for index, req_id in enumerate(self.input_batch.req_ids):
        req = self.requests[req_id]
        assert req.mrope_positions is not None

        num_computed_tokens = \
            self.input_batch.num_computed_tokens_cpu[index]
        num_scheduled_tokens = \
            scheduler_output.num_scheduled_tokens[req_id]
        num_prompt_tokens = length_from_prompt_token_ids_or_embeds(
            req.prompt_token_ids, req.prompt_embeds)

        if num_computed_tokens + num_scheduled_tokens > num_prompt_tokens:
            prompt_part_len = max(0,
                                  num_prompt_tokens - num_computed_tokens)
            completion_part_len = max(
                0, num_scheduled_tokens - prompt_part_len)
        else:
            prompt_part_len = num_scheduled_tokens
            completion_part_len = 0

        assert num_scheduled_tokens == prompt_part_len + completion_part_len

        if prompt_part_len > 0:
            # prompt's mrope_positions are pre-computed
            dst_start = mrope_pos_ptr
            dst_end = mrope_pos_ptr + prompt_part_len
            src_start = num_computed_tokens
            src_end = num_computed_tokens + prompt_part_len

            self.mrope_positions.cpu[:, dst_start:dst_end] = (
                req.mrope_positions[:, src_start:src_end])
            mrope_pos_ptr += prompt_part_len

        if completion_part_len > 0:
            # compute completion's mrope_positions on-the-fly
            dst_start = mrope_pos_ptr
            dst_end = mrope_pos_ptr + completion_part_len

            MRotaryEmbedding.get_next_input_positions_tensor(
                out=self.mrope_positions.np,
                out_offset=dst_start,
                mrope_position_delta=req.mrope_position_delta,
                context_len=num_computed_tokens + prompt_part_len,
                num_new_tokens=completion_part_len,
            )

            mrope_pos_ptr += completion_part_len

_calc_spec_decode_metadata

_calc_spec_decode_metadata(
    num_draft_tokens: ndarray,
    cu_num_scheduled_tokens: ndarray,
) -> SpecDecodeMetadata
Source code in vllm/v1/worker/gpu_model_runner.py
def _calc_spec_decode_metadata(
    self,
    num_draft_tokens: np.ndarray,
    cu_num_scheduled_tokens: np.ndarray,
) -> SpecDecodeMetadata:
    # Inputs:
    # cu_num_scheduled_tokens:  [  4, 104, 107, 207, 209]
    # num_draft_tokens:         [  3,   0,   2,   0,   1]
    # Outputs:
    # cu_num_draft_tokens:      [  3,   3,   5,   5,   6]
    # logits_indices:           [  0,   1,   2,   3, 103, 104, 105, 106,
    #                            206, 207, 208]
    # target_logits_indices:    [  0,   1,   2,   5,   6,   9]
    # bonus_logits_indices:     [  3,   4,   7,   8,  10]

    # Compute the logits indices.
    # [4, 1, 3, 1, 2]
    num_sampled_tokens = num_draft_tokens + 1

    # Step 1. cu_num_sampled_tokens: [4, 5, 8, 9, 11]
    # arange: [0, 1, 2, 3, 0, 0, 1, 2, 0, 0, 1]
    cu_num_sampled_tokens, arange = self._get_cumsum_and_arange(
        num_sampled_tokens, cumsum_dtype=np.int32)
    # Step 2. [0, 0, 0, 0, 103, 104, 104, 104, 206, 207, 207]
    logits_indices = np.repeat(
        cu_num_scheduled_tokens - num_sampled_tokens, num_sampled_tokens)
    # Step 3. [0, 1, 2, 3, 103, 104, 105, 106, 206, 207, 208]
    logits_indices += arange

    # Compute the bonus logits indices.
    bonus_logits_indices = cu_num_sampled_tokens - 1

    # Compute the draft logits indices.
    # cu_num_draft_tokens: [3, 3, 5, 5, 6]
    # arange: [0, 1, 2, 0, 1, 0]
    cu_num_draft_tokens, arange = self._get_cumsum_and_arange(
        num_draft_tokens, cumsum_dtype=np.int32)
    # [0, 0, 0, 5, 5, 9]
    target_logits_indices = np.repeat(
        cu_num_sampled_tokens - num_sampled_tokens, num_draft_tokens)
    # [0, 1, 2, 5, 6, 9]
    target_logits_indices += arange

    # TODO: Optimize the CPU -> GPU copy.
    cu_num_draft_tokens = torch.from_numpy(cu_num_draft_tokens).to(
        self.device, non_blocking=True)
    logits_indices = torch.from_numpy(logits_indices).to(self.device,
                                                         non_blocking=True)
    target_logits_indices = torch.from_numpy(target_logits_indices).to(
        self.device, non_blocking=True)
    bonus_logits_indices = torch.from_numpy(bonus_logits_indices).to(
        self.device, non_blocking=True)

    # Compute the draft token ids.
    # draft_token_indices:      [  1,   2,   3, 105, 106, 208]
    draft_token_ids = self.input_ids.gpu[logits_indices]
    draft_token_ids = draft_token_ids[target_logits_indices + 1]

    metadata = SpecDecodeMetadata(
        draft_token_ids=draft_token_ids,
        num_draft_tokens=num_draft_tokens.tolist(),
        cu_num_draft_tokens=cu_num_draft_tokens,
        target_logits_indices=target_logits_indices,
        bonus_logits_indices=bonus_logits_indices,
        logits_indices=logits_indices,
    )
    return metadata

_capture_cudagraphs

_capture_cudagraphs(
    compilation_cases: list[int],
    cudagraph_runtime_mode: CUDAGraphMode,
    uniform_decode: bool,
)
Source code in vllm/v1/worker/gpu_model_runner.py
def _capture_cudagraphs(self, compilation_cases: list[int],
                        cudagraph_runtime_mode: CUDAGraphMode,
                        uniform_decode: bool):
    assert cudagraph_runtime_mode != CUDAGraphMode.NONE and \
        cudagraph_runtime_mode.valid_runtime_modes(), \
        f"Invalid cudagraph runtime mode: {cudagraph_runtime_mode}"

    # Only rank 0 should print progress bar during capture
    if is_global_first_rank():
        compilation_cases = tqdm(
            compilation_cases,
            disable=not self.load_config.use_tqdm_on_load,
            desc="Capturing CUDA graphs ({}, {})".format(
                "decode" if uniform_decode else "mixed prefill-decode",
                cudagraph_runtime_mode.name))

    # We skip EPLB here since we don't want to record dummy metrics
    for num_tokens in compilation_cases:
        # We currently only capture ubatched graphs when its a FULL
        # cudagraph, a uniform decode batch, and the number of tokens
        # is above the threshold. Otherwise we just capture a non-ubatched
        # version of the graph
        allow_microbatching = self.parallel_config.enable_dbo \
            and cudagraph_runtime_mode == CUDAGraphMode.FULL \
            and uniform_decode \
            and check_ubatch_thresholds(
                config=self.vllm_config.parallel_config,
                num_tokens=num_tokens,
                uniform_decode=uniform_decode,
            )

        for _ in range(self.compilation_config.cudagraph_num_of_warmups):
            # Use CUDAGraphRuntimeStyle.NONE (default) for warmup.
            # But be careful, warm up with `NONE`is orthogonal to
            # if we want to warm up attention or not. This is
            # different from the case where `FULL` implies capture
            # attention while `PIECEWISE` implies no attention.
            force_attention = (
                cudagraph_runtime_mode == CUDAGraphMode.FULL)
            self._dummy_run(num_tokens,
                            cudagraph_runtime_mode=CUDAGraphMode.NONE,
                            force_attention=force_attention,
                            uniform_decode=uniform_decode,
                            allow_microbatching=allow_microbatching,
                            skip_eplb=True,
                            remove_lora=False)
        self._dummy_run(num_tokens,
                        cudagraph_runtime_mode=cudagraph_runtime_mode,
                        uniform_decode=uniform_decode,
                        allow_microbatching=allow_microbatching,
                        skip_eplb=True,
                        remove_lora=False)
    self.maybe_remove_all_loras(self.lora_config)

_compute_cascade_attn_prefix_len

_compute_cascade_attn_prefix_len(
    num_scheduled_tokens: ndarray,
    num_common_prefix_blocks: int,
    kv_cache_spec: KVCacheSpec,
    attn_metadata_builder: AttentionMetadataBuilder,
) -> int

Compute the length of the common prefix for cascade attention.

NOTE(woosuk): The common prefix length returned by this function represents the length used specifically for cascade attention, not the actual number of tokens shared between requests. When cascade attention is disabled (use_cascade=False), this function returns 0 even if requests share common tokens. Additionally, the common prefix length is truncated to a multiple of the block size and may be further truncated due to implementation details explained below.

Parameters:

Name Type Description Default
num_scheduled_tokens ndarray

Number of tokens scheduled per request.

required
num_common_prefix_blocks int

Number of shared KV cache blocks.

required

Returns:

Name Type Description
int int

Length of common prefix in tokens.

Source code in vllm/v1/worker/gpu_model_runner.py
def _compute_cascade_attn_prefix_len(
    self,
    num_scheduled_tokens: np.ndarray,
    num_common_prefix_blocks: int,
    kv_cache_spec: KVCacheSpec,
    attn_metadata_builder: AttentionMetadataBuilder,
) -> int:
    """Compute the length of the common prefix for cascade attention.

    NOTE(woosuk): The common prefix length returned by this function
    represents the length used specifically for cascade attention, not the
    actual number of tokens shared between requests. When cascade attention
    is disabled (use_cascade=False), this function returns 0 even if
    requests share common tokens. Additionally, the common prefix length is
    truncated to a multiple of the block size and may be further truncated
    due to implementation details explained below.

    Args:
        num_scheduled_tokens: Number of tokens scheduled per request.
        num_common_prefix_blocks: Number of shared KV cache blocks.

    Returns:
        int: Length of common prefix in tokens.
    """
    common_prefix_len = num_common_prefix_blocks * kv_cache_spec.block_size
    if common_prefix_len == 0:
        # Common case.
        return 0

    # NOTE(woosuk): Cascade attention uses two attention kernels: one
    # for the common prefix and the other for the rest. For the first
    # kernel, we concatenate all the query tokens (possibly from
    # different requests) and treat them as if they are from the same
    # request. Then, we use bi-directional attention to process the
    # common prefix in the KV cache. Importantly, this means that the
    # first kernel does not do any masking.

    # Consider the following example:
    # Request 1's input query: [D, E, X]
    # Request 1's kv cache: [A, B, C, D, E, X]
    # Request 1's num_computed_tokens: 3 (i.e., [A, B, C])
    # Request 2's input query: [E, Y]
    # Request 2's kv cache: [A, B, C, D, E, Y]
    # Request 2's num_computed_tokens: 4 (i.e., [A, B, C, D])

    # If we use [A, B, C, D, E] as the common prefix, then the
    # first kernel will compute the bi-directional attention between
    # input query [D, E, X, E, Y] and common prefix [A, B, C, D, E].
    # However, this is wrong because D in Request 1 should not attend to
    # E in the common prefix (i.e., we need masking).
    # To avoid this, [A, B, C, D] should be the common prefix.
    # That is, the common prefix should be capped by the minimum
    # num_computed_tokens among the requests, and plus one to include
    # the first token of the query.

    # In practice, we use [A, B, C] as the common prefix, instead of
    # [A, B, C, D] (i.e., the common prefix is capped by the minimum
    # num_computed_tokens, without plus one).
    # This is because of an implementation detail: We want to always
    # use two kernels for cascade attention. Let's imagine:
    # Request 3's input query: [D]
    # Request 3's kv cache: [A, B, C, D]
    # Request 3's num_computed_tokens: 3 (i.e., [A, B, C])
    # If we use [A, B, C, D] as the common prefix for Request 1-3,
    # then Request 3 will be processed only by the first kernel,
    # and the second kernel will get an empty input. While this is not
    # a fundamental problem, our current implementation does not support
    # this case.
    num_reqs = len(num_scheduled_tokens)
    common_prefix_len = min(
        common_prefix_len,
        self.input_batch.num_computed_tokens_cpu[:num_reqs].min())
    # common_prefix_len should be a multiple of the block size.
    common_prefix_len = (common_prefix_len // kv_cache_spec.block_size *
                         kv_cache_spec.block_size)
    use_sliding_window = (isinstance(kv_cache_spec, SlidingWindowSpec) or
                          (isinstance(kv_cache_spec, FullAttentionSpec)
                           and kv_cache_spec.sliding_window is not None))
    use_local_attention = (
        isinstance(kv_cache_spec, ChunkedLocalAttentionSpec)
        or (isinstance(kv_cache_spec, FullAttentionSpec)
            and kv_cache_spec.attention_chunk_size is not None))
    assert isinstance(kv_cache_spec, AttentionSpec)
    use_cascade = attn_metadata_builder.use_cascade_attention(
        common_prefix_len=common_prefix_len,
        query_lens=num_scheduled_tokens,
        num_query_heads=self.num_query_heads,
        num_kv_heads=kv_cache_spec.num_kv_heads,
        use_alibi=self.use_alibi,
        use_sliding_window=use_sliding_window,
        use_local_attention=use_local_attention,
        num_sms=self.num_sms,
    )
    return common_prefix_len if use_cascade else 0

_dummy_mm_kwargs

_dummy_mm_kwargs(num_seqs: int) -> BatchedTensorInputs
Source code in vllm/v1/worker/gpu_model_runner.py
def _dummy_mm_kwargs(self, num_seqs: int) -> BatchedTensorInputs:
    if not self.is_multimodal_raw_input_only_model:
        return {}

    mm_budget = self.mm_budget
    assert mm_budget is not None

    dummy_modality = mm_budget.get_modality_with_max_tokens()
    return self._get_mm_dummy_batch(dummy_modality, num_seqs)

_dummy_pooler_run

_dummy_pooler_run(hidden_states: Tensor) -> PoolerOutput
Source code in vllm/v1/worker/gpu_model_runner.py
@torch.inference_mode()
def _dummy_pooler_run(
    self,
    hidden_states: torch.Tensor,
) -> PoolerOutput:
    # Find the task that has the largest output for subsequent steps
    output_size = dict[PoolingTask, float]()
    for task in self.get_supported_pooling_tasks():
        # Run a full batch with each task to ensure none of them OOMs
        output = self._dummy_pooler_run_task(hidden_states, task)
        output_size[task] = sum(o.nbytes for o in output)
        del output  # Allow GC

    max_task = max(output_size.items(), key=lambda x: x[1])[0]
    return self._dummy_pooler_run_task(hidden_states, max_task)

_dummy_pooler_run_task

_dummy_pooler_run_task(
    hidden_states: Tensor, task: PoolingTask
) -> PoolerOutput
Source code in vllm/v1/worker/gpu_model_runner.py
def _dummy_pooler_run_task(
    self,
    hidden_states: torch.Tensor,
    task: PoolingTask,
) -> PoolerOutput:
    num_tokens = hidden_states.shape[0]
    max_num_reqs = self.scheduler_config.max_num_seqs
    num_reqs = min(num_tokens, max_num_reqs)
    min_tokens_per_req = num_tokens // num_reqs
    num_scheduled_tokens_list = [min_tokens_per_req] * num_reqs
    num_scheduled_tokens_list[-1] += num_tokens % num_reqs
    assert sum(num_scheduled_tokens_list) == num_tokens
    assert len(num_scheduled_tokens_list) == num_reqs

    req_num_tokens = num_tokens // num_reqs

    dummy_prompt_lens = torch.tensor(
        num_scheduled_tokens_list,
        device="cpu",
    )
    dummy_token_ids = torch.zeros((num_reqs, req_num_tokens),
                                  dtype=torch.int32,
                                  device=self.device)

    model = cast(VllmModelForPooling, self.get_model())
    dummy_pooling_params = PoolingParams(task=task)
    dummy_pooling_params.verify(task=task, model_config=self.model_config)
    to_update = model.pooler.get_pooling_updates(task)
    to_update.apply(dummy_pooling_params)

    dummy_metadata = PoolingMetadata(
        prompt_lens=dummy_prompt_lens,
        prompt_token_ids=dummy_token_ids,
        pooling_params=[dummy_pooling_params] * num_reqs,
    )

    dummy_metadata.build_pooling_cursor(num_scheduled_tokens_list,
                                        device=hidden_states.device)

    try:
        return model.pooler(hidden_states=hidden_states,
                            pooling_metadata=dummy_metadata)
    except RuntimeError as e:
        if 'out of memory' in str(e):
            raise RuntimeError(
                "CUDA out of memory occurred when warming up pooler "
                f"({task=}) with {num_reqs} dummy requests. Please try "
                "lowering `max_num_seqs` or `gpu_memory_utilization` when "
                "initializing the engine.") from e
        else:
            raise e

_dummy_run

_dummy_run(
    num_tokens: int,
    cudagraph_runtime_mode: Optional[CUDAGraphMode] = None,
    force_attention: bool = False,
    uniform_decode: bool = False,
    allow_microbatching: bool = True,
    skip_eplb: bool = False,
    is_profile: bool = False,
    create_mixed_batch: bool = False,
    remove_lora: bool = True,
) -> tuple[Tensor, Tensor]

Run a dummy forward pass to warm up/profile run or capture the CUDA graph for the model.

Parameters:

Name Type Description Default
num_tokens int

Number of tokens to run the dummy forward pass.

required
cudagraph_runtime_mode Optional[CUDAGraphMode]

used to control the behavior. - if not set will determine the cudagraph mode based on using the self.cudagraph_dispatcher. - CUDAGraphMode.NONE: No cudagraph, for warm up and profile run - CUDAGraphMode.PIECEWISE: Piecewise cudagraph. - CUDAGraphMode.FULL: Full cudagraph, attention metadata is needed.

None
force_attention bool

If True, always create attention metadata. Used to warm up attention backend when mode is NONE.

False
uniform_decode bool

If True, the batch is a uniform decode batch.

False
skip_eplb bool

If True, skip EPLB state update.

False
is_profile bool

If True, this is a profile run.

False
create_mixed_batch bool

If True, create a mixed batch with both decode (1 token) and prefill (multiple tokens) requests.

False
remove_lora bool

If False, dummy LoRAs are not destroyed after the run

True
Source code in vllm/v1/worker/gpu_model_runner.py
@torch.inference_mode()
def _dummy_run(
    self,
    num_tokens: int,
    cudagraph_runtime_mode: Optional[CUDAGraphMode] = None,
    force_attention: bool = False,
    uniform_decode: bool = False,
    allow_microbatching: bool = True,
    skip_eplb: bool = False,
    is_profile: bool = False,
    create_mixed_batch: bool = False,
    remove_lora: bool = True,
) -> tuple[torch.Tensor, torch.Tensor]:
    """
    Run a dummy forward pass to warm up/profile run or capture the
    CUDA graph for the model.

    Args:
        num_tokens: Number of tokens to run the dummy forward pass.
        cudagraph_runtime_mode: used to control the behavior.
            - if not set will determine the cudagraph mode based on using
                the self.cudagraph_dispatcher.
            - CUDAGraphMode.NONE: No cudagraph, for warm up and profile run
            - CUDAGraphMode.PIECEWISE: Piecewise cudagraph.
            - CUDAGraphMode.FULL: Full cudagraph, attention metadata is
                needed.
        force_attention: If True, always create attention metadata. Used to
            warm up attention backend when mode is NONE.
        uniform_decode: If True, the batch is a uniform decode batch.
        skip_eplb: If True, skip EPLB state update.
        is_profile: If True, this is a profile run.
        create_mixed_batch: If True, create a mixed batch with both decode
            (1 token) and prefill (multiple tokens) requests.
        remove_lora: If False, dummy LoRAs are not destroyed after the run
    """
    assert cudagraph_runtime_mode is None or \
        cudagraph_runtime_mode.valid_runtime_modes()

    # If cudagraph_mode.decode_mode() == FULL and
    # cudagraph_mode.separate_routine(). This means that we are using
    # different graphs and/or modes for mixed prefill-decode batches vs.
    # uniform decode batches. A uniform decode batch means that all
    # requests have identical query length, except a potential virtual
    # request (shorter) in the batch account for padding.
    # Uniform decode batch could either be common pure decode, where
    # max_query_len == 1, or speculative decode, where
    # max_query_len == 1 + num_spec_decode_tokens.

    # When setting max_query_len = 1, we switch to and capture the optimized
    # routine of FA2 for pure decode, i.e., Flashdecode + an optimization
    # for GQA/MQA.
    max_query_len = self.uniform_decode_query_len if uniform_decode else \
                                                            num_tokens

    # Set num_scheduled_tokens based on num_tokens and max_num_seqs
    # for dummy run with LoRA so that the num_reqs collectively
    # has num_tokens in total.
    assert num_tokens <= self.scheduler_config.max_num_batched_tokens
    max_num_reqs = self.scheduler_config.max_num_seqs
    if create_mixed_batch:
        assert not uniform_decode
        # Create mixed batch:
        # first half decode tokens, second half one prefill
        num_decode_tokens = num_tokens // 2
        num_prefill_tokens = num_tokens - num_decode_tokens
        num_reqs = num_decode_tokens + 1

        # Create decode requests (1 token each) followed by prefill request
        num_scheduled_tokens_list = [1] * num_decode_tokens + [
            num_prefill_tokens
        ]
        # Note: Overriding max_query_len to be the prefill tokens
        max_query_len = num_prefill_tokens
    elif uniform_decode:
        assert not create_mixed_batch
        num_reqs = cdiv(num_tokens, max_query_len)
        num_scheduled_tokens_list = [max_query_len] * num_reqs
        if num_tokens % max_query_len != 0:
            num_scheduled_tokens_list[-1] = num_tokens % max_query_len
    else:
        num_reqs = min(num_tokens, max_num_reqs)
        min_tokens_per_req = num_tokens // num_reqs
        num_scheduled_tokens_list = [min_tokens_per_req] * num_reqs
        num_scheduled_tokens_list[-1] += num_tokens % num_reqs

    assert sum(num_scheduled_tokens_list) == num_tokens
    assert len(num_scheduled_tokens_list) == num_reqs
    num_scheduled_tokens = np.array(num_scheduled_tokens_list,
                                    dtype=np.int32)
    total_num_scheduled_tokens = int(num_scheduled_tokens.sum())

    ubatch_slices = None
    num_tokens_after_padding = None

    # We currently only microbatch if the number of tokens is
    # over a certain threshold.
    if self.parallel_config.enable_dbo and allow_microbatching:
        ubatch_slices, ubatch_num_tokens_after_padding = ubatch_split(
            num_scheduled_tokens,
            total_num_scheduled_tokens,
            total_num_scheduled_tokens,
            uniform_decode=uniform_decode,
            vllm_config=self.vllm_config,
        )
        # Currently when DBO is enabled `ubatch_split` returns
        # the num_tokens_after_padding for a single ubatch, but we have 2
        # TODO(sage,lucas): this is cruft that should be addressed in the
        # padding refactor.
        if ubatch_num_tokens_after_padding is not None:
            num_tokens_after_padding = ubatch_num_tokens_after_padding * 2

    # If we failed to microbatch, currently need to resynchronize
    # TODO(lucas,sage): we should be able to avoid this second sync by
    #  refactoring `get_dp_padding_ubatch` and `get_dp_padding` into
    #  a single `coordinate_batch_across_dp` function.
    if num_tokens_after_padding is None:
        num_pad, num_tokens_across_dp = self.get_dp_padding(num_tokens)
        num_tokens_after_padding = num_tokens + num_pad
    else:
        num_tokens_across_dp = num_tokens_after_padding
        num_tokens_after_padding = int(num_tokens_after_padding[0].item())

    attn_metadata: Optional[PerLayerAttnMetadata] = None

    # If force_attention is True, we always capture attention. Otherwise,
    # it only happens for cudagraph_runtime_mode=FULL.
    if force_attention or cudagraph_runtime_mode == CUDAGraphMode.FULL:
        attn_metadata = {}
        if ubatch_slices is not None:
            attn_metadata = [dict() for _ in range(len(ubatch_slices))]

        if create_mixed_batch:
            # In the mixed batch mode (used for FI warmup), we use
            # shorter sequence lengths to run faster.
            # TODO(luka) better system for describing dummy batches
            seq_lens = [1] * num_decode_tokens + [num_prefill_tokens + 1]
        else:
            seq_lens = max_query_len
        self.seq_lens.np[:num_reqs] = seq_lens
        self.seq_lens.np[num_reqs:] = 0
        self.seq_lens.copy_to_gpu()

        cum_num_tokens, _ = self._get_cumsum_and_arange(
            num_scheduled_tokens)
        self.query_start_loc.np[1:num_reqs + 1] = cum_num_tokens
        self.query_start_loc.copy_to_gpu()

        for kv_cache_group_id, kv_cache_group_spec in enumerate(
                self.kv_cache_config.kv_cache_groups):
            common_attn_metadata = CommonAttentionMetadata(
                query_start_loc=self.query_start_loc.gpu[:num_reqs + 1],
                query_start_loc_cpu=self.query_start_loc.cpu[:num_reqs +
                                                             1],
                seq_lens=self.seq_lens.gpu[:num_reqs],
                seq_lens_cpu=self.seq_lens.cpu[:num_reqs],
                num_computed_tokens_cpu=self.input_batch.
                num_computed_tokens_cpu_tensor[:num_reqs],
                num_reqs=num_reqs,
                num_actual_tokens=num_tokens,
                max_query_len=max_query_len,
                max_seq_len=self.max_model_len,
                block_table_tensor=self.input_batch.
                block_table[kv_cache_group_id].get_device_tensor(num_reqs),
                slot_mapping=self.input_batch.block_table[
                    kv_cache_group_id].slot_mapping.gpu[:num_tokens],
                causal=True)
            for attn_group in self.attn_groups[kv_cache_group_id]:
                if ubatch_slices is not None:
                    common_attn_metadata_list = split_attn_metadata(
                        ubatch_slices, common_attn_metadata)
                    for ubid, common_attn_metadata in enumerate(
                            common_attn_metadata_list):
                        assert common_attn_metadata.max_query_len == 1
                        attn_metadata_i = (attn_group\
                                           .get_metadata_builder(ubatch_id=ubid)\
                                           .build_for_cudagraph_capture(common_attn_metadata))
                        for layer_name in attn_group.layer_names:
                            assert type(attn_metadata) is list
                            attn_metadata[ubid][
                                layer_name] = attn_metadata_i
                else:
                    assert type(attn_metadata) is dict
                    attn_metadata_i = attn_group.get_metadata_builder()\
                        .build_for_cudagraph_capture(common_attn_metadata)
                    for layer_name in attn_group.layer_names:
                        attn_metadata[layer_name] = attn_metadata_i

    with self.maybe_dummy_run_with_lora(self.lora_config,
                                        num_scheduled_tokens, remove_lora):
        model_kwargs = self._init_model_kwargs(num_tokens)
        if (self.supports_mm_inputs
                and not self.model_config.is_encoder_decoder):
            input_ids = None
            inputs_embeds = self.inputs_embeds.gpu[:num_tokens]
            model_kwargs = {
                **model_kwargs,
                **self._dummy_mm_kwargs(num_reqs),
            }
        elif self.enable_prompt_embeds:
            input_ids = None
            inputs_embeds = self.inputs_embeds.gpu[:num_tokens]
            model_kwargs = self._init_model_kwargs(num_tokens)
        else:
            input_ids = self.input_ids.gpu[:num_tokens]
            inputs_embeds = None

        if self.uses_mrope:
            positions = self.mrope_positions.gpu[:, :num_tokens]
        else:
            positions = self.positions.gpu[:num_tokens]

        if get_pp_group().is_first_rank:
            intermediate_tensors = None
        else:
            if self.intermediate_tensors is None:
                self.intermediate_tensors = (
                    self.model.make_empty_intermediate_tensors(
                        batch_size=self.max_num_tokens,
                        dtype=self.model_config.dtype,
                        device=self.device))

            intermediate_tensors = self.sync_and_slice_intermediate_tensors(
                num_tokens, None, False)

        # filter out the valid batch descriptor
        _cg_mode, batch_descriptor = self.cudagraph_dispatcher.dispatch(
            BatchDescriptor(num_tokens=num_tokens_after_padding,
                            uniform_decode=uniform_decode)) \
            if not is_profile else (CUDAGraphMode.NONE, None)
        if cudagraph_runtime_mode is not None:
            # we allow forcing NONE when the dispatcher disagrees to support
            # warm ups for cudagraph capture
            assert cudagraph_runtime_mode == CUDAGraphMode.NONE or \
                cudagraph_runtime_mode == _cg_mode, (
                f"Cudagraph runtime mode mismatch at dummy_run. "
                f"Expected {_cg_mode}, but got {cudagraph_runtime_mode}.")
        else:
            cudagraph_runtime_mode = _cg_mode

        if ubatch_slices is not None:
            # Adjust values to reflect a single ubatch.
            # TODO(sage,lucas): this is cruft that should be addressed in
            #  the padding refactor.
            num_tokens_after_padding = ubatch_slices[0].num_tokens
            if num_tokens_across_dp is not None:
                num_tokens_across_dp[:] = num_tokens_after_padding

        with self.maybe_randomize_inputs(input_ids), set_forward_context(
                attn_metadata,
                self.vllm_config,
                num_tokens=num_tokens_after_padding,
                num_tokens_across_dp=num_tokens_across_dp,
                cudagraph_runtime_mode=cudagraph_runtime_mode,
                batch_descriptor=batch_descriptor,
                ubatch_slices=ubatch_slices):
            outputs = self.model(
                input_ids=input_ids,
                positions=positions,
                intermediate_tensors=intermediate_tensors,
                inputs_embeds=inputs_embeds,
                **model_kwargs,
            )

        if self.use_aux_hidden_state_outputs:
            hidden_states, _ = outputs
        else:
            hidden_states = outputs

        if self.speculative_config and self.speculative_config.use_eagle():
            assert isinstance(self.drafter, EagleProposer)
            self.drafter.dummy_run(num_tokens)

    # This is necessary to avoid blocking DP.
    # For dummy runs, we typically skip EPLB since we don't have any real
    # requests to process.
    # However, in DP settings, there may be cases when some DP ranks do
    # not have any requests to process, so they're executing dummy batches.
    # In such cases, we still have to trigger EPLB to make sure
    # ranks execute the rearrangement in synchronization.
    if not skip_eplb:
        self.eplb_step(is_dummy=True, is_profile=is_profile)

    logit_indices = np.cumsum(num_scheduled_tokens) - 1
    return hidden_states, hidden_states[logit_indices]

_dummy_sampler_run

_dummy_sampler_run(hidden_states: Tensor) -> Tensor
Source code in vllm/v1/worker/gpu_model_runner.py
@torch.inference_mode()
def _dummy_sampler_run(
    self,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    # The dummy hidden states may contain special values,
    # like `inf` or `nan`.
    # To avoid breaking the sampler, we use a random tensor here instead.
    hidden_states = torch.rand_like(hidden_states)

    logits = self.model.compute_logits(hidden_states)
    num_reqs = logits.size(0)

    dummy_tensors = lambda v: torch.full(
        (num_reqs, ), v, device=self.device)

    dummy_metadata = SamplingMetadata(
        temperature=dummy_tensors(0.5),
        all_greedy=False,
        all_random=False,
        top_p=dummy_tensors(0.9),
        top_k=dummy_tensors(logits.size(1) - 1),
        generators={},
        max_num_logprobs=None,
        no_penalties=True,
        prompt_token_ids=None,
        frequency_penalties=dummy_tensors(0.1),
        presence_penalties=dummy_tensors(0.1),
        repetition_penalties=dummy_tensors(0.1),
        output_token_ids=[[] for _ in range(num_reqs)],
        allowed_token_ids_mask=None,
        bad_words_token_ids={},
        logitsprocs=LogitsProcessors(),
    )
    try:
        sampler_output = self.sampler(logits=logits,
                                      sampling_metadata=dummy_metadata)
    except RuntimeError as e:
        if 'out of memory' in str(e):
            raise RuntimeError(
                "CUDA out of memory occurred when warming up sampler with "
                f"{num_reqs} dummy requests. Please try lowering "
                "`max_num_seqs` or `gpu_memory_utilization` when "
                "initializing the engine.") from e
        else:
            raise e
    if self.speculative_config:
        draft_token_ids = [[0] for _ in range(num_reqs)]
        dummy_spec_decode_metadata = SpecDecodeMetadata.make_dummy(
            draft_token_ids, self.device)

        num_tokens = sum(len(ids) for ids in draft_token_ids)
        # draft_probs = torch.randn(
        #     num_tokens, logits.shape[-1], device=self.device,
        #     dtype=logits.dtype)
        draft_probs = None
        target_logits = torch.randn(num_tokens,
                                    logits.shape[-1],
                                    device=self.device,
                                    dtype=logits.dtype)
        # NOTE(woosuk): Here, we should use int32 because the sampler uses
        # int32 for bonus_token_ids. If the dtype mismatches, re-compilation
        # will occur at runtime.
        bonus_token_ids = torch.zeros(num_reqs,
                                      device=self.device,
                                      dtype=torch.int32)
        self.rejection_sampler(
            dummy_spec_decode_metadata,
            draft_probs,
            target_logits,
            bonus_token_ids,
            dummy_metadata,
        )
    return sampler_output

_execute_mm_encoder

_execute_mm_encoder(scheduler_output: SchedulerOutput)
Source code in vllm/v1/worker/gpu_model_runner.py
def _execute_mm_encoder(self, scheduler_output: "SchedulerOutput"):
    # Batch the multi-modal inputs using the helper method.
    mm_kwargs, mm_hashes_pos = self._batch_mm_kwargs_from_scheduler(
        scheduler_output)

    if not mm_kwargs:
        return

    # Batch mm inputs as much as we can: if a request in the batch has
    # multiple modalities or a different modality than the previous one,
    # we process it separately to preserve item order.
    # FIXME(ywang96): This is a hacky way to deal with multiple modalities
    # in the same batch while still being able to benefit from batching
    # multimodal inputs. The proper solution should be reordering the
    # encoder outputs.
    model = cast(SupportsMultiModal, self.model)
    encoder_outputs = []
    for modality, num_items, mm_kwargs_group in group_mm_kwargs_by_modality(
            mm_kwargs,
            device=self.device,
            pin_memory=self.pin_memory,
            merge_by_field_config=model.merge_by_field_config,
    ):
        # (ekhvedchenia): Temporary hack to limit peak memory usage when
        # processing multimodal data.This solves the issue with scheduler
        # putting too many video samples into a single batch. Scheduler
        # uses pruned vision tokens count to compare it versus compute
        # budget which is incorrect (Either input media size or non-pruned
        # output vision tokens count should be considered)
        curr_group_outputs = []

        if self.is_multimodal_pruning_enabled and modality == "video":
            micro_batch_size = 1
            for i in range(0, num_items, micro_batch_size):
                micro_batch_mm_inputs = dict(
                    (k, v[i:i + micro_batch_size])
                    for k, v in mm_kwargs_group.items())

                micro_batch_outputs = model.get_multimodal_embeddings(
                    **micro_batch_mm_inputs)

                curr_group_outputs.extend(micro_batch_outputs)
        else:
            # Run the encoder.
            # `curr_group_outputs` is either of the following:
            # 1. A tensor of shape (num_items, feature_size, hidden_size)
            # in case feature_size is fixed across all multimodal items.
            # 2. A list or tuple (length: num_items) of tensors,
            # each of shape (feature_size, hidden_size) in case the feature
            # size is dynamic depending on the input multimodal items.
            curr_group_outputs = model.get_multimodal_embeddings(
                **mm_kwargs_group)

        sanity_check_mm_encoder_outputs(
            curr_group_outputs,
            expected_num_items=num_items,
        )
        encoder_outputs.extend(curr_group_outputs)

    # Cache the encoder outputs by mm_hash
    for (mm_hash, pos_info), output in zip(mm_hashes_pos, encoder_outputs):
        self.encoder_cache[mm_hash] = scatter_mm_placeholders(
            output,
            is_embed=pos_info.is_embed,
        )

_extract_encoder_inputs

_extract_encoder_inputs(
    scheduler_output: SchedulerOutput,
) -> dict[str, Tensor]

Extract encoder inputs for encoder-decoder models.

This method extracts multimodal input features from scheduled encoder inputs and formats them for the encoder-decoder model forward pass.

Source code in vllm/v1/worker/gpu_model_runner.py
def _extract_encoder_inputs(
    self,
    scheduler_output: "SchedulerOutput",
) -> dict[str, torch.Tensor]:
    """Extract encoder inputs for encoder-decoder models.

    This method extracts multimodal input features from scheduled encoder
    inputs and formats them for the encoder-decoder model forward pass.
    """
    # Batch the multi-modal inputs using the helper method.
    mm_kwargs, _ = self._batch_mm_kwargs_from_scheduler(scheduler_output)

    if not mm_kwargs:
        return {}

    # Group MM kwargs by modality and extract features
    model = cast(SupportsMultiModal, self.model)
    encoder_features = {}
    for _, _, mm_kwargs_group in group_mm_kwargs_by_modality(
            mm_kwargs,
            device=self.device,
            pin_memory=self.pin_memory,
            merge_by_field_config=model.merge_by_field_config,
    ):
        # Add the grouped features to encoder_features dict
        # This allows the model to receive them as kwargs (e.g.,
        # input_features=...)
        encoder_features.update(mm_kwargs_group)

    return encoder_features

_extract_mm_kwargs

_extract_mm_kwargs(
    scheduler_output: SchedulerOutput,
) -> BatchedTensorInputs
Source code in vllm/v1/worker/gpu_model_runner.py
def _extract_mm_kwargs(
    self,
    scheduler_output: "SchedulerOutput",
) -> BatchedTensorInputs:
    if not scheduler_output or not self.is_multimodal_raw_input_only_model:
        return {}

    mm_kwargs = list[MultiModalKwargsItem]()
    for req in scheduler_output.scheduled_new_reqs:
        for feature in req.mm_features:
            if feature.data is not None:
                mm_kwargs.append(feature.data)

    # Input all modalities at once
    model = cast(SupportsMultiModal, self.model)
    mm_kwargs_combined: BatchedTensorInputs = {}
    for _, _, mm_kwargs_group in group_mm_kwargs_by_modality(
            mm_kwargs,
            device=self.device,
            pin_memory=self.pin_memory,
            merge_by_field_config=model.merge_by_field_config,
    ):
        mm_kwargs_combined.update(mm_kwargs_group)

    return mm_kwargs_combined

_gather_mm_embeddings

_gather_mm_embeddings(
    scheduler_output: SchedulerOutput,
    shift_computed_tokens: int = 0,
) -> tuple[list[Tensor], Tensor]
Source code in vllm/v1/worker/gpu_model_runner.py
def _gather_mm_embeddings(
    self,
    scheduler_output: "SchedulerOutput",
    shift_computed_tokens: int = 0,
) -> tuple[list[torch.Tensor], torch.Tensor]:
    total_num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens

    mm_embeds = list[torch.Tensor]()
    is_mm_embed = self.is_mm_embed.cpu
    is_mm_embed[:total_num_scheduled_tokens] = False

    req_start_idx = 0
    should_sync_mrope_positions = False

    for req_id in self.input_batch.req_ids:
        mm_embeds_req: list[torch.Tensor] = []

        num_scheduled_tokens = scheduler_output.num_scheduled_tokens[
            req_id]
        req_state = self.requests[req_id]
        num_computed_tokens = \
            req_state.num_computed_tokens + shift_computed_tokens

        for mm_feature in req_state.mm_features:
            pos_info = mm_feature.mm_position
            start_pos = pos_info.offset
            num_encoder_tokens = pos_info.length

            # The encoder output is needed if the two ranges overlap:
            # [num_computed_tokens,
            #  num_computed_tokens + num_scheduled_tokens) and
            # [start_pos, start_pos + num_encoder_tokens)
            if start_pos >= num_computed_tokens + num_scheduled_tokens:
                # The encoder output is not needed in this step.
                break
            if start_pos + num_encoder_tokens <= num_computed_tokens:
                # The encoder output is already processed and stored
                # in the decoder's KV cache.
                continue

            start_idx = max(num_computed_tokens - start_pos, 0)
            end_idx = min(
                num_computed_tokens - start_pos + num_scheduled_tokens,
                num_encoder_tokens,
            )
            assert start_idx < end_idx

            mm_hash = mm_feature.identifier
            encoder_output = self.encoder_cache.get(mm_hash, None)
            assert encoder_output is not None,\
                f"Encoder cache miss for {mm_hash}."

            if (is_embed := pos_info.is_embed) is not None:
                is_embed = is_embed[start_idx:end_idx]

            req_start_pos = req_start_idx + start_pos - num_computed_tokens
            is_mm_embed[req_start_pos+start_idx:req_start_pos + end_idx] \
                = True if is_embed is None else is_embed

            mm_embeds_item = gather_mm_placeholders(
                encoder_output[start_idx:end_idx],
                is_embed=is_embed,
            )
            mm_embeds_req.append(mm_embeds_item)

        if self.is_multimodal_pruning_enabled and self.uses_mrope:
            assert req_state.mrope_positions is not None
            should_sync_mrope_positions = True
            mm_embeds_req, new_mrope_positions, new_delta = (
                self.model.recompute_mrope_positions(
                    input_ids=req_state.prompt_token_ids,
                    multimodal_embeddings=mm_embeds_req,
                    mrope_positions=req_state.mrope_positions,
                    num_computed_tokens=req_state.num_computed_tokens,
                ))
            req_state.mrope_positions.copy_(new_mrope_positions)
            req_state.mrope_position_delta = new_delta

        mm_embeds.extend(mm_embeds_req)
        req_start_idx += num_scheduled_tokens

    is_mm_embed = self.is_mm_embed.copy_to_gpu(total_num_scheduled_tokens)

    if should_sync_mrope_positions:
        self._calc_mrope_positions(scheduler_output)
        self.mrope_positions.copy_to_gpu(total_num_scheduled_tokens)

    return mm_embeds, is_mm_embed

_get_cumsum_and_arange

_get_cumsum_and_arange(
    num_tokens: ndarray,
    cumsum_dtype: Optional[dtype] = None,
) -> tuple[ndarray, ndarray]

Get the cumulative sum and batched arange of the given array.

E.g., [2, 5, 3] -> ([2, 7, 10], [0, 1, 0, 1, 2, 3, 4, 0, 1, 2])

Equivalent to but faster than:

np.concatenate([np.arange(n) for n in num_tokens])

Source code in vllm/v1/worker/gpu_model_runner.py
def _get_cumsum_and_arange(
    self,
    num_tokens: np.ndarray,
    cumsum_dtype: Optional[np.dtype] = None,
) -> tuple[np.ndarray, np.ndarray]:
    """Get the cumulative sum and batched arange of the given array.
    # E.g., [2, 5, 3] -> ([2, 7, 10], [0, 1, 0, 1, 2, 3, 4, 0, 1, 2])
    # Equivalent to but faster than:
    # np.concatenate([np.arange(n) for n in num_tokens])
    """
    # Step 1. [2, 5, 3] -> [2, 7, 10]
    cu_num_tokens = np.cumsum(num_tokens, dtype=cumsum_dtype)
    total_num_tokens = cu_num_tokens[-1]
    # Step 2. [2, 7, 10] -> [0, 0, 2, 2, 2, 2, 2, 7, 7, 7]
    cumsums_offsets = np.repeat(cu_num_tokens - num_tokens, num_tokens)
    # Step 3. [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
    arange = self.arange_np[:total_num_tokens] - cumsums_offsets

    return cu_num_tokens, arange

_get_encoder_seq_lens

_get_encoder_seq_lens(
    scheduler_output: SchedulerOutput,
    kv_cache_spec: KVCacheSpec,
    num_reqs: int,
) -> Optional[ndarray]
Source code in vllm/v1/worker/gpu_model_runner.py
def _get_encoder_seq_lens(
    self,
    scheduler_output: "SchedulerOutput",
    kv_cache_spec: KVCacheSpec,
    num_reqs: int,
) -> Optional[np.ndarray]:
    if not isinstance(kv_cache_spec, CrossAttentionSpec):
        return None

    # Build encoder_seq_lens array mapping request indices to
    # encoder lengths for inputs scheduled in this batch
    encoder_seq_lens = np.zeros(num_reqs, dtype=np.int32)
    for req_id in scheduler_output.scheduled_encoder_inputs:
        req_index = self.input_batch.req_id_to_index[req_id]
        encoder_seq_lens[req_index] = self.max_encoder_len

    return encoder_seq_lens

_get_mm_dummy_batch

_get_mm_dummy_batch(
    modality: str, max_items_per_batch: int
) -> BatchedTensorInputs

Dummy data for profiling and precompiling multimodal models.

Source code in vllm/v1/worker/gpu_model_runner.py
def _get_mm_dummy_batch(
    self,
    modality: str,
    max_items_per_batch: int,
) -> BatchedTensorInputs:
    """Dummy data for profiling and precompiling multimodal models."""
    assert self.mm_budget is not None

    dummy_decoder_data = self.mm_registry.get_decoder_dummy_data(
        model_config=self.model_config,
        seq_len=self.max_model_len,
        mm_counts={modality: 1},
        cache=self.mm_budget.cache,
    )
    dummy_mm_data = dummy_decoder_data.multi_modal_data

    # Result in the maximum GPU consumption of the model
    dummy_mm_item = dummy_mm_data[modality][0]
    dummy_mm_items = [dummy_mm_item] * max_items_per_batch

    model = cast(SupportsMultiModal, self.model)
    return next(mm_kwargs_group
                for _, _, mm_kwargs_group in group_mm_kwargs_by_modality(
                    dummy_mm_items,
                    device=self.device,
                    pin_memory=self.pin_memory,
                    merge_by_field_config=model.merge_by_field_config,
                ))

_get_nans_in_logits

_get_nans_in_logits(
    logits: Optional[Tensor],
) -> dict[str, int]
Source code in vllm/v1/worker/gpu_model_runner.py
def _get_nans_in_logits(
    self,
    logits: Optional[torch.Tensor],
) -> dict[str, int]:
    try:
        if logits is None:
            return {req_id: 0 for req_id in self.input_batch.req_ids}

        num_nans_in_logits = {}
        num_nans_for_index = logits.isnan().sum(dim=-1).cpu().numpy()
        for req_id in self.input_batch.req_ids:
            req_index = self.input_batch.req_id_to_index[req_id]
            num_nans_in_logits[req_id] = (
                int(num_nans_for_index[req_index])
                if num_nans_for_index is not None
                and req_index < logits.shape[0] else 0)
        return num_nans_in_logits
    except IndexError:
        return {}

_get_num_input_tokens

_get_num_input_tokens(num_scheduled_tokens: int) -> int
Source code in vllm/v1/worker/gpu_model_runner.py
def _get_num_input_tokens(self, num_scheduled_tokens: int) -> int:
    if (self.compilation_config.cudagraph_mode != CUDAGraphMode.NONE
            and not envs.VLLM_DISABLE_PAD_FOR_CUDAGRAPH
            and hasattr(self, "cudagraph_batch_sizes")
            and self.cudagraph_batch_sizes
            and num_scheduled_tokens <= self.cudagraph_batch_sizes[-1]):
        # Use CUDA graphs.
        # Add padding to the batch size.
        return self.vllm_config.pad_for_cudagraph(num_scheduled_tokens)

    # Eager mode.
    # Pad tokens to multiple of tensor_parallel_size when
    # enabled collective fusion for SP
    tp_size = self.vllm_config.parallel_config.tensor_parallel_size
    if (self.compilation_config.pass_config.enable_sequence_parallelism
            and tp_size > 1):
        return round_up(num_scheduled_tokens, tp_size)
    return num_scheduled_tokens

_get_positions

_get_positions(num_tokens: Any)
Source code in vllm/v1/worker/gpu_model_runner.py
def _get_positions(self, num_tokens: Any):
    if isinstance(num_tokens, int):
        if self.uses_mrope:
            return self.mrope_positions.gpu[:, :num_tokens]
        return self.positions.gpu[:num_tokens]
    else:
        if self.uses_mrope:
            return self.mrope_positions.gpu[:, num_tokens]
        return self.positions.gpu[num_tokens]

_get_prompt_logprobs_dict

_get_prompt_logprobs_dict(
    hidden_states: Tensor,
    num_scheduled_tokens: dict[str, int],
) -> dict[str, Optional[LogprobsTensors]]
Source code in vllm/v1/worker/gpu_model_runner.py
def _get_prompt_logprobs_dict(
    self,
    hidden_states: torch.Tensor,
    num_scheduled_tokens: dict[str, int],
) -> dict[str, Optional[LogprobsTensors]]:
    num_prompt_logprobs_dict = self.input_batch.num_prompt_logprobs
    if not num_prompt_logprobs_dict:
        return {}

    in_progress_dict = self.input_batch.in_progress_prompt_logprobs_cpu
    prompt_logprobs_dict: dict[str, Optional[LogprobsTensors]] = {}

    # Since prompt logprobs are a rare feature, prioritize simple,
    # maintainable loop over optimal performance.
    completed_prefill_reqs = []
    for req_id, num_prompt_logprobs in num_prompt_logprobs_dict.items():
        num_tokens = num_scheduled_tokens[req_id]

        # Get metadata for this request.
        request = self.requests[req_id]
        if request.prompt_token_ids is None:
            # Prompt logprobs is incompatible with prompt embeddings
            continue

        num_prompt_tokens = len(request.prompt_token_ids)
        prompt_token_ids = torch.tensor(request.prompt_token_ids).to(
            self.device, non_blocking=True)

        # Set up target LogprobsTensors object.
        logprobs_tensors = in_progress_dict.get(req_id)
        if not logprobs_tensors:
            # Create empty logprobs CPU tensors for the entire prompt.
            # If chunked, we'll copy in slice by slice.
            logprobs_tensors = LogprobsTensors.empty_cpu(
                num_prompt_tokens - 1, num_prompt_logprobs + 1)
            in_progress_dict[req_id] = logprobs_tensors

        # Determine number of logits to retrieve.
        start_idx = request.num_computed_tokens
        start_tok = start_idx + 1
        num_remaining_tokens = num_prompt_tokens - start_tok
        if num_tokens <= num_remaining_tokens:
            # This is a chunk, more tokens remain.
            # In the == case, there are no more prompt logprobs to produce
            # but we want to defer returning them to the next step where we
            # have new generated tokens to return.
            num_logits = num_tokens
        else:
            # This is the last chunk of prompt tokens to return.
            num_logits = num_remaining_tokens
            completed_prefill_reqs.append(req_id)
            prompt_logprobs_dict[req_id] = logprobs_tensors

        if num_logits <= 0:
            # This can happen for the final chunk if we prefilled exactly
            # (num_prompt_tokens - 1) tokens for this request in the prior
            # step. There are no more prompt logprobs to produce.
            continue

        # Get the logits corresponding to this req's prompt tokens.
        # If this is a partial request (i.e. chunked prefill),
        # then there is prompt logprob generated for each index.
        req_idx = self.input_batch.req_id_to_index[req_id]
        offset = self.query_start_loc.np[req_idx].item()
        prompt_hidden_states = hidden_states[offset:offset + num_logits]
        logits = self.model.compute_logits(prompt_hidden_states)

        # Get the "target" tokens for each index. For prompt at index i,
        # the token at prompt index i+1 is the "sampled" token we want
        # to gather the logprob for.
        tgt_token_ids = prompt_token_ids[start_tok:start_tok + num_logits]

        # Compute prompt logprobs.
        logprobs = self.sampler.compute_logprobs(logits)
        token_ids, logprobs, ranks = self.sampler.gather_logprobs(
            logprobs, num_prompt_logprobs, tgt_token_ids)

        # Transfer GPU->CPU async.
        chunk_slice = slice(start_idx, start_idx + num_logits)
        logprobs_tensors.logprob_token_ids[chunk_slice].copy_(
            token_ids, non_blocking=True)
        logprobs_tensors.logprobs[chunk_slice].copy_(logprobs,
                                                     non_blocking=True)
        logprobs_tensors.selected_token_ranks[chunk_slice].copy_(
            ranks, non_blocking=True)

    # Remove requests that have completed prefill from the batch
    # num_prompt_logprobs_dict.
    for req_id in completed_prefill_reqs:
        del num_prompt_logprobs_dict[req_id]
        del in_progress_dict[req_id]

    # Must synchronize the non-blocking GPU->CPU transfers.
    if prompt_logprobs_dict:
        self._sync_device()

    return prompt_logprobs_dict

_init_device_properties

_init_device_properties() -> None

Initialize attributes from torch.cuda.get_device_properties

Source code in vllm/v1/worker/gpu_model_runner.py
def _init_device_properties(self) -> None:
    """Initialize attributes from torch.cuda.get_device_properties
    """
    self.device_properties = torch.cuda.get_device_properties(self.device)
    self.num_sms = self.device_properties.multi_processor_count

_init_model_kwargs

_init_model_kwargs(num_tokens: int)
Source code in vllm/v1/worker/gpu_model_runner.py
def _init_model_kwargs(self, num_tokens: int):
    model_kwargs = dict[str, Any]()

    if not self.is_pooling_model:
        return model_kwargs

    num_reqs = self.input_batch.num_reqs
    pooling_params = self.input_batch.get_pooling_params()

    token_type_id_requests = dict[int, Any]()
    for i, param in enumerate(pooling_params):
        if param.extra_kwargs is not None and \
        (token_types := param.extra_kwargs.get(
            "compressed_token_type_ids")) is not None:
            token_type_id_requests[i] = token_types

    if len(token_type_id_requests) == 0:
        return model_kwargs

    seq_lens = self.seq_lens.gpu[:num_reqs]
    token_type_ids = []

    for i in range(num_reqs):
        pos = token_type_id_requests.get(i, seq_lens[i])
        ids = (torch.arange(seq_lens[i]) >= pos).int()
        token_type_ids.append(ids)

    model_kwargs["token_type_ids"] = torch.concat(token_type_ids).to(
        device=self.device)
    return model_kwargs

_init_mrope_positions

_init_mrope_positions(req_state: CachedRequestState)
Source code in vllm/v1/worker/gpu_model_runner.py
def _init_mrope_positions(self, req_state: CachedRequestState):
    image_grid_thw = []
    video_grid_thw = []
    second_per_grid_ts = []
    audio_feature_lengths = []
    use_audio_in_video = False
    for mm_feature in req_state.mm_features:
        mm_item = mm_feature.data
        if mm_item is None:
            continue
        mm_input = mm_item.get_data()
        if (t := mm_input.get("image_grid_thw")) is not None:
            image_grid_thw.append(t.tolist())
        if (t := mm_input.get("video_grid_thw")) is not None:
            video_grid_thw.append(t.tolist())
        if (t := mm_input.get("second_per_grid_ts")) is not None:
            second_per_grid_ts.append(t)
        if (t := mm_input.get("audio_feature_lengths")) is not None:
            audio_feature_lengths.append(t)
        if mm_input.get("use_audio_in_video") is True:
            use_audio_in_video = True

    if supports_mrope(self.model):
        req_state.mrope_positions, req_state.mrope_position_delta = \
            self.model.get_mrope_input_positions(
                req_state.prompt_token_ids,
                hf_config=self.model_config.hf_config,
                image_grid_thw=image_grid_thw,
                video_grid_thw=video_grid_thw,
                second_per_grid_ts=second_per_grid_ts,
                audio_feature_lengths=audio_feature_lengths,
                use_audio_in_video=use_audio_in_video,
            )
    else:
        req_state.mrope_positions, req_state.mrope_position_delta = \
            MRotaryEmbedding.get_input_positions_tensor(
                req_state.prompt_token_ids,
                hf_config=self.model_config.hf_config,
                image_grid_thw=image_grid_thw,
                video_grid_thw=video_grid_thw,
                second_per_grid_ts=second_per_grid_ts,
                audio_feature_lengths=audio_feature_lengths,
                use_audio_in_video=use_audio_in_video,
            )

_kv_cache_spec_attn_group_iterator

_kv_cache_spec_attn_group_iterator() -> Iterator[
    AttentionGroup
]
Source code in vllm/v1/worker/gpu_model_runner.py
def _kv_cache_spec_attn_group_iterator(self) -> Iterator[AttentionGroup]:
    if not self.kv_cache_config.kv_cache_groups:
        return
    for attn_groups in self.attn_groups:
        yield from attn_groups

_make_buffer

_make_buffer(
    *size: Union[int, SymInt],
    dtype: dtype,
    numpy: bool = True,
) -> CpuGpuBuffer
Source code in vllm/v1/worker/gpu_model_runner.py
def _make_buffer(self,
                 *size: Union[int, torch.SymInt],
                 dtype: torch.dtype,
                 numpy: bool = True) -> CpuGpuBuffer:
    return CpuGpuBuffer(*size,
                        dtype=dtype,
                        device=self.device,
                        pin_memory=self.pin_memory,
                        with_numpy=numpy)

_may_reorder_batch

_may_reorder_batch(
    scheduler_output: SchedulerOutput,
) -> None

Update the order of requests in the batch based on the attention backend's needs. For example, some attention backends (namely MLA) may want to separate requests based on if the attention computation will be compute-bound or memory-bound.

Parameters:

Name Type Description Default
scheduler_output SchedulerOutput

The scheduler output.

required
Source code in vllm/v1/worker/gpu_model_runner.py
def _may_reorder_batch(self, scheduler_output: "SchedulerOutput") -> None:
    """
    Update the order of requests in the batch based on the attention
    backend's needs. For example, some attention backends (namely MLA) may
    want to separate requests based on if the attention computation will be
    compute-bound or memory-bound.

    Args:
        scheduler_output: The scheduler output.
    """
    # Attention free models have zero kv_cache_goups, however models
    # like Mamba are also attention free but use the kv_cache for
    # keeping its internal state. This is why we check the number
    # of kv_cache groups instead of solely checking
    # for self.model_config.is_attention_free.
    if len(self.kv_cache_config.kv_cache_groups) == 0:
        return

    if self.reorder_batch_threshold is not None:
        # NOTE(lucas): currently no backend supports the custom masking
        #  required for DCP with q_len > 1, so we assert here. Remove this
        #  assert once the custom mask is support is added to FA3.
        if self.dcp_world_size > 1:
            assert self.reorder_batch_threshold == 1, \
                "DCP not support reorder_batch_threshold > 1 now."
        reorder_batch_to_split_decodes_and_prefills(
            self.input_batch,
            scheduler_output,
            decode_threshold=self.reorder_batch_threshold)

_model_forward

_model_forward(
    input_ids: Optional[Tensor] = None,
    positions: Optional[Tensor] = None,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
    **model_kwargs: dict[str, Any],
) -> Any

Helper method to call the model forward pass.

This method can be overridden by subclasses for model execution. Motivation: We can inspect only this method versus the whole execute_model, which has additional logic.

Parameters:

Name Type Description Default
input_ids Optional[Tensor]

Input token IDs

None
positions Optional[Tensor]

Token positions

None
intermediate_tensors Optional[IntermediateTensors]

Tensors from previous pipeline stages

None
inputs_embeds Optional[Tensor]

Input embeddings (alternative to input_ids)

None
**model_kwargs dict[str, Any]

Additional model arguments

{}

Returns:

Type Description
Any

Model output tensor

Source code in vllm/v1/worker/gpu_model_runner.py
def _model_forward(
    self,
    input_ids: Optional[torch.Tensor] = None,
    positions: Optional[torch.Tensor] = None,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
    **model_kwargs: dict[str, Any],
) -> Any:
    """Helper method to call the model forward pass.

    This method can be overridden by subclasses for model execution.
    Motivation: We can inspect only this method versus 
    the whole execute_model, which has additional logic.

    Args:
        input_ids: Input token IDs
        positions: Token positions
        intermediate_tensors: Tensors from previous pipeline stages
        inputs_embeds: Input embeddings (alternative to input_ids)
        **model_kwargs: Additional model arguments

    Returns:
        Model output tensor
    """
    return self.model(
        input_ids=input_ids,
        positions=positions,
        intermediate_tensors=intermediate_tensors,
        inputs_embeds=inputs_embeds,
        **model_kwargs,
    )

_pool

_pool(
    hidden_states: Tensor,
    num_scheduled_tokens: int,
    num_scheduled_tokens_np: ndarray,
) -> ModelRunnerOutput
Source code in vllm/v1/worker/gpu_model_runner.py
def _pool(
    self,
    hidden_states: torch.Tensor,
    num_scheduled_tokens: int,
    num_scheduled_tokens_np: np.ndarray,
) -> ModelRunnerOutput:
    assert self.input_batch.num_reqs ==\
        len(self.input_batch.pooling_params), \
    "Either all or none of the requests in" \
    " a batch must be pooling request"

    hidden_states = hidden_states[:num_scheduled_tokens]
    pooling_metadata = self.input_batch.get_pooling_metadata()
    pooling_metadata.build_pooling_cursor(num_scheduled_tokens_np.tolist(),
                                          device=hidden_states.device)
    seq_lens_cpu = self.seq_lens.cpu[:self.input_batch.num_reqs]

    model = cast(VllmModelForPooling, self.model)
    raw_pooler_output: PoolerOutput = model.pooler(
        hidden_states=hidden_states,
        pooling_metadata=pooling_metadata,
    )
    raw_pooler_output = json_map_leaves(
        lambda x: x.to("cpu", non_blocking=True),
        raw_pooler_output,
    )
    self._sync_device()

    pooler_output: list[Optional[torch.Tensor]] = []
    for raw_output, seq_len, prompt_len in zip(
            raw_pooler_output, seq_lens_cpu, pooling_metadata.prompt_lens):

        output = raw_output if seq_len == prompt_len else None
        pooler_output.append(output)

    return ModelRunnerOutput(
        req_ids=self.input_batch.req_ids,
        req_id_to_index=self.input_batch.req_id_to_index,
        sampled_token_ids=[],
        logprobs=None,
        prompt_logprobs_dict={},
        pooler_output=pooler_output,
    )

_prepare_input_ids

_prepare_input_ids(
    total_num_scheduled_tokens: int, cu_num_tokens: ndarray
) -> None

Prepare the input IDs for the current batch.

Carefully handles the prev_sampled_token_ids which can be cached from the previous engine iteration, in which case those tokens on the GPU need to be copied into the corresponding slots into input_ids.

Source code in vllm/v1/worker/gpu_model_runner.py
def _prepare_input_ids(self, total_num_scheduled_tokens: int,
                       cu_num_tokens: np.ndarray) -> None:
    """Prepare the input IDs for the current batch.

    Carefully handles the `prev_sampled_token_ids` which can be cached
    from the previous engine iteration, in which case those tokens on the
    GPU need to be copied into the corresponding slots into input_ids."""

    if self.input_batch.prev_sampled_token_ids is None:
        # Normal scheduling case
        self.input_ids.copy_to_gpu(total_num_scheduled_tokens)
        if self.enable_prompt_embeds:
            self.inputs_embeds.copy_to_gpu(total_num_scheduled_tokens)
            self.is_token_ids.copy_to_gpu(total_num_scheduled_tokens)
        return

    # Async scheduling case, where some decode requests from the previous
    # iteration won't have entries in input_ids_cpu and need to be copied
    # on the GPU from prev_sampled_token_ids.
    prev_req_id_to_index = self.input_batch.prev_req_id_to_index
    assert prev_req_id_to_index is not None
    flattened_indices = []
    prev_common_req_indices = []
    indices_match = True
    max_flattened_index = -1
    for req_id, cur_index in self.input_batch.req_id_to_index.items():
        if (prev_index := prev_req_id_to_index.get(req_id)) is not None:
            prev_common_req_indices.append(prev_index)
            # We need to compute the flattened input_ids index of the
            # last token in each common request.
            flattened_index = cu_num_tokens[cur_index].item() - 1
            flattened_indices.append(flattened_index)
            indices_match &= (prev_index == flattened_index)
            max_flattened_index = max(max_flattened_index, flattened_index)
    num_commmon_tokens = len(flattened_indices)
    if num_commmon_tokens < total_num_scheduled_tokens:
        # If not all requests are decodes from the last iteration,
        # We need to copy the input_ids_cpu to the GPU first.
        self.input_ids.copy_to_gpu(total_num_scheduled_tokens)
        if self.enable_prompt_embeds:
            self.inputs_embeds.copy_to_gpu(total_num_scheduled_tokens)
            self.is_token_ids.copy_to_gpu(total_num_scheduled_tokens)
    if num_commmon_tokens == 0:
        # No requests in common with the previous iteration
        # So input_ids_cpu will have all the input ids.
        return
    if indices_match and max_flattened_index == (num_commmon_tokens - 1):
        # Common-case optimization: the batch is unchanged
        # and no reordering happened.
        # The indices are both the same permutation of 0..N-1 so
        # we can copy directly using a single slice.
        self.input_ids.gpu[:num_commmon_tokens].copy_(
            self.input_batch.prev_sampled_token_ids[:num_commmon_tokens,
                                                    0],
            non_blocking=True)
        if self.enable_prompt_embeds:
            self.is_token_ids.gpu[:num_commmon_tokens] = True
        return
    # Upload the index tensors asynchronously
    # so the scatter can be non-blocking.
    input_ids_index_tensor = torch.tensor(flattened_indices,
                                          dtype=torch.int64,
                                          pin_memory=self.pin_memory).to(
                                              self.device,
                                              non_blocking=True)
    prev_common_req_indices_tensor = torch.tensor(
        prev_common_req_indices,
        dtype=torch.int64,
        pin_memory=self.pin_memory).to(self.device, non_blocking=True)
    self.input_ids.gpu.scatter_(
        dim=0,
        index=input_ids_index_tensor,
        src=self.input_batch.prev_sampled_token_ids[
            prev_common_req_indices_tensor, 0])

_prepare_inputs

:return: tuple[ attn_metadata: layer-to-attention_metadata mapping, logits_indices, spec_decode_metadata, num_scheduled_tokens, spec_decode_common_attn_metadata, max_num_scheduled_tokens, use_cascade_attn ]

Source code in vllm/v1/worker/gpu_model_runner.py
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
def _prepare_inputs(
    self, scheduler_output: "SchedulerOutput"
) -> tuple[PerLayerAttnMetadata, torch.Tensor,
           Optional[SpecDecodeMetadata], np.ndarray,
           Optional[CommonAttentionMetadata], int, Optional[UBatchSlices],
           Optional[torch.Tensor], bool]:
    """
    :return: tuple[
        attn_metadata: layer-to-attention_metadata mapping,
        logits_indices, spec_decode_metadata,
        num_scheduled_tokens, spec_decode_common_attn_metadata,
        max_num_scheduled_tokens, use_cascade_attn
    ]
    """
    total_num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
    assert total_num_scheduled_tokens > 0
    num_reqs = self.input_batch.num_reqs
    assert num_reqs > 0

    # OPTIMIZATION: Start copying the block table first.
    # This way, we can overlap the copy with the following CPU operations.
    self.input_batch.block_table.commit_block_table(num_reqs)

    # Get the number of scheduled tokens for each request.
    req_ids = self.input_batch.req_ids
    tokens = [scheduler_output.num_scheduled_tokens[i] for i in req_ids]
    num_scheduled_tokens = np.array(tokens, dtype=np.int32)
    max_num_scheduled_tokens = max(tokens)

    # Get request indices.
    # E.g., [2, 5, 3] -> [0, 0, 1, 1, 1, 1, 1, 2, 2, 2]
    req_indices = np.repeat(self.arange_np[:num_reqs],
                            num_scheduled_tokens)

    # cu_num_tokens: [2, 5, 3] -> [2, 7, 10]
    # arange: [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
    cu_num_tokens, arange = self._get_cumsum_and_arange(
        num_scheduled_tokens)

    # Get positions.
    positions_np = self.positions.np[:total_num_scheduled_tokens]
    np.add(self.input_batch.num_computed_tokens_cpu[req_indices],
           arange,
           out=positions_np)

    # Calculate M-RoPE positions.
    # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
    if self.uses_mrope:
        self._calc_mrope_positions(scheduler_output)

    # Get token indices.
    # E.g., [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
    # -> [0, 1, M, M + 1, M + 2, M + 3, M + 4, 2 * M, 2 * M + 1, 2 * M + 2]
    # where M is the max_model_len.
    token_indices = (positions_np +
                     req_indices * self.input_batch.token_ids_cpu.shape[1])
    token_indices_tensor = torch.from_numpy(token_indices)

    # NOTE(woosuk): We use torch.index_select instead of np.take here
    # because torch.index_select is much faster than np.take for large
    # tensors.
    torch.index_select(self.input_batch.token_ids_cpu_tensor.flatten(),
                       0,
                       token_indices_tensor,
                       out=self.input_ids.cpu[:total_num_scheduled_tokens])
    if self.enable_prompt_embeds:
        is_token_ids = self.input_batch.is_token_ids.flatten()
        torch.index_select(
            is_token_ids,
            0,
            token_indices_tensor,
            out=self.is_token_ids.cpu[:total_num_scheduled_tokens])

    # Because we did not pre-allocate a massive prompt_embeds CPU tensor on
    # the InputBatch, we need to fill in the prompt embeds into the expected
    # spots in the GpuModelRunner's pre-allocated prompt_embeds tensor.
    if self.input_batch.req_prompt_embeds:
        output_idx = 0
        for req_idx in range(num_reqs):
            num_sched = num_scheduled_tokens[req_idx]

            # Skip if this request doesn't have embeddings
            if req_idx not in self.input_batch.req_prompt_embeds:
                output_idx += num_sched
                continue

            # Skip if no tokens scheduled
            if num_sched <= 0:
                output_idx += num_sched
                continue

            req_embeds = self.input_batch.req_prompt_embeds[req_idx]
            start_pos = self.input_batch.num_computed_tokens_cpu[req_idx]

            # Skip if trying to read beyond available embeddings
            if start_pos >= req_embeds.shape[0]:
                output_idx += num_sched
                continue

            # Copy available embeddings
            end_pos = start_pos + num_sched
            actual_end = min(end_pos, req_embeds.shape[0])
            actual_num_sched = actual_end - start_pos

            if actual_num_sched > 0:
                self.inputs_embeds.cpu[output_idx:output_idx +
                                       actual_num_sched].copy_(
                                           req_embeds[start_pos:actual_end]
                                       )

            output_idx += num_sched

    self.input_batch.block_table.compute_slot_mapping(
        req_indices, positions_np)
    self.input_batch.block_table.commit_slot_mapping(
        total_num_scheduled_tokens)

    # Prepare the attention metadata.
    self.query_start_loc.np[0] = 0
    self.query_start_loc.np[1:num_reqs + 1] = cu_num_tokens
    # Note: pad query_start_loc to be non-decreasing, as kernels
    # like FlashAttention requires that
    self.query_start_loc.np[num_reqs + 1:].fill(cu_num_tokens[-1])
    self.query_start_loc.copy_to_gpu()
    query_start_loc = self.query_start_loc.gpu[:num_reqs + 1]

    num_tokens_unpadded = scheduler_output.total_num_scheduled_tokens
    num_tokens_padded = num_tokens_unpadded + self.get_local_padding(
        num_tokens_unpadded)
    uniform_decode = \
        (max_num_scheduled_tokens == self.uniform_decode_query_len) and \
        (total_num_scheduled_tokens == num_reqs * max_num_scheduled_tokens)
    ubatch_slices, num_tokens_after_padding = \
        ubatch_split(num_scheduled_tokens,
                     num_tokens_unpadded,
                     num_tokens_padded,
                     uniform_decode=uniform_decode,
                     vllm_config=self.vllm_config)

    self.seq_lens.np[:num_reqs] = (
        self.input_batch.num_computed_tokens_cpu[:num_reqs] +
        num_scheduled_tokens)
    # Fill unused with 0 for full cuda graph mode.
    self.seq_lens.np[num_reqs:].fill(0)
    self.seq_lens.copy_to_gpu()
    seq_lens = self.seq_lens.gpu[:num_reqs]
    max_seq_len = self.seq_lens.np[:num_reqs].max().item()

    num_tokens = [
        self.requests[r].num_tokens for r in self.input_batch.req_ids
    ]
    num_tokens_np = np.array(num_tokens, dtype=np.int32)

    # Record the index of requests that should not be sampled,
    # so that we could clear the sampled tokens before returning
    discard_requests_mask = self.seq_lens.np[:num_reqs] < num_tokens_np
    discard_request_indices = np.nonzero(discard_requests_mask)[0]
    self.num_discarded_requests = len(discard_request_indices)
    self.discard_request_indices.np[:self.num_discarded_requests] = (
        discard_request_indices)

    self.discard_request_indices.copy_to_gpu(self.num_discarded_requests)

    # Copy the tensors to the GPU.
    self._prepare_input_ids(total_num_scheduled_tokens, cu_num_tokens)

    if self.uses_mrope:
        # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
        self.mrope_positions.gpu[:, :total_num_scheduled_tokens].copy_(
            self.mrope_positions.cpu[:, :total_num_scheduled_tokens],
            non_blocking=True)
    else:
        # Common case (1D positions)
        self.positions.copy_to_gpu(total_num_scheduled_tokens)

    use_spec_decode = len(
        scheduler_output.scheduled_spec_decode_tokens) > 0
    if not use_spec_decode:
        # NOTE(woosuk): Due to chunked prefills, the batch may contain
        # partial requests. While we should not sample any token
        # from these partial requests, we do so for simplicity.
        # We will ignore the sampled tokens from the partial requests.
        # TODO: Support prompt logprobs.
        logits_indices = query_start_loc[1:] - 1
        num_draft_tokens = None
        spec_decode_metadata = None
    else:
        # Get the number of draft tokens for each request.
        # Iterate over the dictionary rather than all requests since not all
        # requests have draft tokens.
        num_draft_tokens = np.zeros(num_reqs, dtype=np.int32)
        # For chunked prefills, use -1 as mask rather than 0, as guided
        # decoding may rollback speculative tokens.
        num_decode_draft_tokens = np.full(num_reqs, -1, dtype=np.int32)
        for req_id, draft_token_ids in (
                scheduler_output.scheduled_spec_decode_tokens.items()):
            req_idx = self.input_batch.req_id_to_index[req_id]
            num_draft_tokens[req_idx] = len(draft_token_ids)
            num_decode_draft_tokens[req_idx] = (len(draft_token_ids) if (
                self.input_batch.num_computed_tokens_cpu[req_idx]
                >= self.input_batch.num_prompt_tokens[req_idx]) else -1)
        spec_decode_metadata = self._calc_spec_decode_metadata(
            num_draft_tokens, cu_num_tokens)
        logits_indices = spec_decode_metadata.logits_indices

        # For DECODE only cuda graph of some attention backends (e.g., GDN).
        self.num_decode_draft_tokens.np[:
                                        num_reqs] = num_decode_draft_tokens
        self.num_decode_draft_tokens.np[num_reqs:].fill(-1)
        self.num_decode_draft_tokens.copy_to_gpu()

    logits_indices_padded = None
    if self.cache_config.kv_sharing_fast_prefill:
        logits_indices_padded = self._prepare_kv_sharing_fast_prefill(
            logits_indices)

    attn_metadata: PerLayerAttnMetadata = {}
    if ubatch_slices is not None:
        attn_metadata = [dict() for _ in range(len(ubatch_slices))]
    use_cascade_attn = False

    # Used in the below loop.
    query_start_loc_cpu = self.query_start_loc.cpu[:num_reqs + 1]
    seq_lens_cpu = self.seq_lens.cpu[:num_reqs]
    num_computed_tokens_cpu = (
        self.input_batch.num_computed_tokens_cpu_tensor[:num_reqs])
    spec_decode_common_attn_metadata = None
    if use_spec_decode:
        self.num_accepted_tokens.np[:num_reqs] = (
            self.input_batch.num_accepted_tokens_cpu[:num_reqs])
        self.num_accepted_tokens.np[num_reqs:].fill(1)
        self.num_accepted_tokens.copy_to_gpu()

    # Prepare the attention metadata for each KV cache group and make layers
    # in the same group share the same metadata.
    for kv_cache_group_id, kv_cache_group_spec in enumerate(
            self.kv_cache_config.kv_cache_groups):
        encoder_seq_lens = self._get_encoder_seq_lens(
            scheduler_output, kv_cache_group_spec.kv_cache_spec, num_reqs)

        if isinstance(kv_cache_group_spec.kv_cache_spec,
                      EncoderOnlyAttentionSpec):
            # Encoder-only layers do not have KV cache, so we need to
            # create a dummy block table and slot mapping for them.
            blk_table_tensor = torch.zeros(
                (num_reqs, 1),
                dtype=torch.int32,
                device=self.device,
            )
            slot_mapping = torch.zeros(
                (total_num_scheduled_tokens, ),
                dtype=torch.int64,
                device=self.device,
            )
            num_common_prefix_blocks = 0
        else:
            blk_table = self.input_batch.block_table[kv_cache_group_id]
            blk_table_tensor = blk_table.get_device_tensor(num_reqs)
            slot_mapping = blk_table.slot_mapping.gpu[:
                                                      total_num_scheduled_tokens]

            # Fill unused with -1. Needed for reshape_and_cache in full cuda
            # graph mode.
            blk_table.slot_mapping.gpu[total_num_scheduled_tokens:].fill_(
                -1)
            num_common_prefix_blocks = (
                scheduler_output.
                num_common_prefix_blocks[kv_cache_group_id])

        common_attn_metadata = CommonAttentionMetadata(
            query_start_loc=query_start_loc,
            query_start_loc_cpu=query_start_loc_cpu,
            seq_lens=seq_lens,
            seq_lens_cpu=seq_lens_cpu,
            num_computed_tokens_cpu=num_computed_tokens_cpu,
            num_reqs=num_reqs,
            num_actual_tokens=total_num_scheduled_tokens,
            max_query_len=max_num_scheduled_tokens,
            max_seq_len=max_seq_len,
            block_table_tensor=blk_table_tensor,
            slot_mapping=slot_mapping,
            logits_indices_padded=logits_indices_padded,
            num_logits_indices=logits_indices.size(0),
            causal=True,
            encoder_seq_lens=encoder_seq_lens,
        )

        if (self.speculative_config
                and spec_decode_common_attn_metadata is None):
            if isinstance(self.drafter, EagleProposer):
                if (self.drafter.attn_layer_names[0]
                        in kv_cache_group_spec.layer_names):
                    spec_decode_common_attn_metadata = common_attn_metadata
            else:
                spec_decode_common_attn_metadata = common_attn_metadata

        for attn_group in self.attn_groups[kv_cache_group_id]:
            # Prepare for cascade attention if enabled & beneficial.
            common_prefix_len = 0
            builder = attn_group.get_metadata_builder()
            if self.cascade_attn_enabled:
                common_prefix_len = self._compute_cascade_attn_prefix_len(
                    num_scheduled_tokens,
                    num_common_prefix_blocks,
                    attn_group.kv_cache_spec,
                    builder,
                )

            extra_attn_metadata_args = {}
            if use_spec_decode and isinstance(builder,
                                              GDNAttentionMetadataBuilder):
                extra_attn_metadata_args = dict(
                    num_accepted_tokens=self.num_accepted_tokens.
                    gpu[:num_reqs],
                    num_decode_draft_tokens_cpu=self.
                    num_decode_draft_tokens.cpu[:num_reqs],
                )

            if ubatch_slices is not None:
                common_attn_metadata_list = split_attn_metadata(
                    ubatch_slices, common_attn_metadata)
                for ubid, common_attn_metadata in enumerate(
                        common_attn_metadata_list):
                    attn_metadata_i = (attn_group.get_metadata_builder(
                        ubatch_id=ubid).build(
                            common_prefix_len=common_prefix_len,
                            common_attn_metadata=common_attn_metadata))
                    for layer_name in kv_cache_group_spec.layer_names:
                        assert type(attn_metadata) is list
                        attn_metadata[ubid][layer_name] = attn_metadata_i
            else:
                assert isinstance(attn_metadata, dict)
                attn_metadata_i = builder.build(
                    common_prefix_len=common_prefix_len,
                    common_attn_metadata=common_attn_metadata,
                    **extra_attn_metadata_args)
                use_cascade_attn |= getattr(attn_metadata_i, "use_cascade",
                                            False)
                for layer_name in attn_group.layer_names:
                    attn_metadata[layer_name] = attn_metadata_i

    # disable cascade attention when DBO
    if ubatch_slices is not None:
        use_cascade_attn = False

    # Hot-Swap lora model
    if self.lora_config:
        self.set_active_loras(self.input_batch, num_scheduled_tokens)

    return (attn_metadata, logits_indices, spec_decode_metadata,
            num_scheduled_tokens, spec_decode_common_attn_metadata,
            max_num_scheduled_tokens, ubatch_slices,
            num_tokens_after_padding, use_cascade_attn)

_prepare_kv_sharing_fast_prefill

_prepare_kv_sharing_fast_prefill(
    logits_indices: Tensor,
) -> Tensor
Source code in vllm/v1/worker/gpu_model_runner.py
def _prepare_kv_sharing_fast_prefill(
    self,
    logits_indices: torch.Tensor,
) -> torch.Tensor:
    assert self.kv_sharing_fast_prefill_logits_indices is not None
    num_logits = logits_indices.shape[0]
    assert num_logits > 0
    self.kv_sharing_fast_prefill_logits_indices[:num_logits].copy_(
        logits_indices)
    # There might have leftover indices in logits_indices[num_logits:]
    # from previous iterations, whose values may be greater than the
    # batch size in the current iteration. To ensure indices are always
    # valid, we fill the padded indices with the last index.
    self.kv_sharing_fast_prefill_logits_indices[num_logits:].fill_(
        logits_indices[-1].item())
    if (self.compilation_config.cudagraph_mode != CUDAGraphMode.NONE
            and num_logits <= self.cudagraph_batch_sizes[-1]):
        # Use piecewise CUDA graphs.
        # Add padding to the batch size.
        num_logits_padded = self.vllm_config.pad_for_cudagraph(num_logits)
    else:
        num_logits_padded = num_logits
    logits_indices_padded = (
        self.kv_sharing_fast_prefill_logits_indices[:num_logits_padded])
    return logits_indices_padded

_preprocess

_preprocess(
    scheduler_output: SchedulerOutput,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    ubatch_slices: Optional[UBatchSlices] = None,
    num_tokens_after_padding: Optional[Tensor] = None,
) -> tuple[
    int,
    int,
    Optional[Tensor],
    Optional[Tensor],
    Optional[Tensor],
    Tensor,
    Optional[IntermediateTensors],
    dict[str, Any],
]
Source code in vllm/v1/worker/gpu_model_runner.py
def _preprocess(
    self,
    scheduler_output: "SchedulerOutput",
    intermediate_tensors: Optional[IntermediateTensors] = None,
    ubatch_slices: Optional[UBatchSlices] = None,
    num_tokens_after_padding: Optional[torch.Tensor] = None,
) -> tuple[int, int, Optional[torch.Tensor], Optional[torch.Tensor],
           Optional[torch.Tensor], torch.Tensor,
           Optional[IntermediateTensors], dict[str, Any]]:

    num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
    if ubatch_slices:
        assert num_tokens_after_padding is not None
        num_input_tokens = int(num_tokens_after_padding[0].item() * 2)
        self.pad_out_ubatch_slice(ubatch_slices, num_input_tokens)
    elif ubatch_slices is None:
        num_input_tokens = self._get_num_input_tokens(num_scheduled_tokens)
        num_pad, num_tokens_after_padding = self.get_dp_padding(
            num_input_tokens)
        num_input_tokens += num_pad

    # _prepare_inputs may reorder the batch, so we must gather multi
    # modal outputs after that to ensure the correct order
    if (self.supports_mm_inputs and get_pp_group().is_first_rank
            and not self.model_config.is_encoder_decoder):
        # Run the multimodal encoder if any.
        self._execute_mm_encoder(scheduler_output)
        mm_embeds, is_mm_embed = self._gather_mm_embeddings(
            scheduler_output)

        # NOTE(woosuk): To unify token ids and soft tokens (vision
        # embeddings), we always use embeddings (rather than token ids)
        # as input to the multimodal model, even when the input is text.
        inputs_embeds_scheduled = self.model.get_input_embeddings(
            self.input_ids.gpu[:num_scheduled_tokens],
            multimodal_embeddings=mm_embeds,
            is_multimodal=is_mm_embed,
        )

        # TODO(woosuk): Avoid the copy. Optimize.
        self.inputs_embeds.gpu[:num_scheduled_tokens].copy_(
            inputs_embeds_scheduled)

        input_ids = None
        inputs_embeds = self.inputs_embeds.gpu[:num_input_tokens]
        model_kwargs = {
            **self._init_model_kwargs(num_scheduled_tokens),
            **self._extract_mm_kwargs(scheduler_output),
        }
    elif self.enable_prompt_embeds and get_pp_group().is_first_rank:
        # Get the input embeddings for the tokens that are not input embeds,
        # then put them into the appropriate positions.
        # TODO(qthequartermasterman): Since even when prompt embeds are
        # enabled, (a) not all requests will use prompt embeds, and (b)
        # after the initial prompt is processed, the rest of the generated
        # tokens will be token ids, it is not desirable to have the
        # embedding layer outside of the CUDA graph all the time. The v0
        # engine avoids this by "double compiling" the CUDA graph, once
        # with input_ids and again with inputs_embeds, for all num_tokens.
        # If a batch only has token ids, then including the embedding layer
        # in the CUDA graph will be more performant (like in the else case
        # below).
        token_ids_idx = self.is_token_ids.gpu[:num_scheduled_tokens] \
            .nonzero(as_tuple=False) \
            .squeeze(1)
        # Some tokens ids may need to become embeds
        if token_ids_idx.numel() > 0:
            token_ids = self.input_ids.gpu[token_ids_idx]
            tokens_to_embeds = self.model.get_input_embeddings(
                input_ids=token_ids)
            self.inputs_embeds.gpu[token_ids_idx] = tokens_to_embeds

        inputs_embeds = self.inputs_embeds.gpu[:num_input_tokens]
        model_kwargs = self._init_model_kwargs(num_input_tokens)
        input_ids = None
    else:
        # For text-only models, we use token ids as input.
        # While it is possible to use embeddings as input just like the
        # multimodal models, it is not desirable for performance since
        # then the embedding layer is not included in the CUDA graph.
        input_ids = self.input_ids.gpu[:num_input_tokens]
        inputs_embeds = None
        model_kwargs = self._init_model_kwargs(num_input_tokens)
    if self.uses_mrope:
        positions = self.mrope_positions.gpu[:, :num_input_tokens]
    else:
        positions = self.positions.gpu[:num_input_tokens]

    if get_pp_group().is_first_rank:
        intermediate_tensors = None
    else:
        intermediate_tensors = self.sync_and_slice_intermediate_tensors(
            num_input_tokens, intermediate_tensors, True)

    if (self.model_config.is_encoder_decoder
            and scheduler_output.scheduled_encoder_inputs):
        encoder_inputs = self._extract_encoder_inputs(scheduler_output)
        model_kwargs.update(encoder_inputs)

    return (
        num_scheduled_tokens,
        num_input_tokens,
        num_tokens_after_padding,
        input_ids,
        inputs_embeds,
        positions,
        intermediate_tensors,
        model_kwargs,
    )

_reshape_kv_cache_tensors

_reshape_kv_cache_tensors(
    kv_cache_config: KVCacheConfig,
    kv_cache_raw_tensors: dict[str, Tensor],
) -> dict[str, Tensor]

Reshape the KV cache tensors to the desired shape and dtype.

Parameters:

Name Type Description Default
kv_cache_config KVCacheConfig

The KV cache config

required
kv_cache_raw_tensors dict[str, Tensor]

The KV cache buffer of each layer, with correct size but uninitialized shape.

required

Returns: Dict[str, torch.Tensor]: A map between layer names to their corresponding memory buffer for KV cache.

Source code in vllm/v1/worker/gpu_model_runner.py
def _reshape_kv_cache_tensors(
    self,
    kv_cache_config: KVCacheConfig,
    kv_cache_raw_tensors: dict[str, torch.Tensor],
) -> dict[str, torch.Tensor]:
    """
    Reshape the KV cache tensors to the desired shape and dtype.

    Args:
        kv_cache_config: The KV cache config
        kv_cache_raw_tensors: The KV cache buffer of each layer, with
            correct size but uninitialized shape.
    Returns:
        Dict[str, torch.Tensor]: A map between layer names to their
        corresponding memory buffer for KV cache.
    """
    kv_caches: dict[str, torch.Tensor] = {}
    has_attn, has_mamba = False, False
    for group in self._kv_cache_spec_attn_group_iterator():
        kv_cache_spec = group.kv_cache_spec
        attn_backend = group.backend
        for layer_name in group.layer_names:
            if layer_name in self.runner_only_attn_layers:
                continue
            raw_tensor = kv_cache_raw_tensors[layer_name]
            assert raw_tensor.numel() % kv_cache_spec.page_size_bytes == 0
            num_blocks = (raw_tensor.numel() //
                          kv_cache_spec.page_size_bytes)
            if isinstance(kv_cache_spec, AttentionSpec):
                has_attn = True
                kv_cache_shape = attn_backend.get_kv_cache_shape(
                    num_blocks,
                    kv_cache_spec.block_size,
                    kv_cache_spec.num_kv_heads,
                    kv_cache_spec.head_size,
                    cache_dtype_str=self.cache_config.cache_dtype)
                dtype = kv_cache_spec.dtype
                try:
                    kv_cache_stride_order = \
                        attn_backend.get_kv_cache_stride_order()
                    assert len(kv_cache_stride_order) == len(
                        kv_cache_shape)
                except (AttributeError, NotImplementedError):
                    kv_cache_stride_order = tuple(
                        range(len(kv_cache_shape)))
                # The allocation respects the backend-defined stride order
                # to ensure the semantic remains consistent for each
                # backend. We first obtain the generic kv cache shape and
                # then permute it according to the stride order which could
                # result in a non-contiguous tensor.
                kv_cache_shape = tuple(kv_cache_shape[i]
                                       for i in kv_cache_stride_order)
                # Maintain original KV shape view.
                inv_order = [
                    kv_cache_stride_order.index(i)
                    for i in range(len(kv_cache_stride_order))
                ]
                kv_caches[layer_name] = kv_cache_raw_tensors[
                    layer_name].view(dtype).view(kv_cache_shape).permute(
                        *inv_order)
            elif isinstance(kv_cache_spec, MambaSpec):
                has_mamba = True
                raw_tensor = kv_cache_raw_tensors[layer_name]
                state_tensors = []
                storage_offset_bytes = 0
                for (shape, dtype) in zip(kv_cache_spec.shapes,
                                          kv_cache_spec.dtypes):
                    dtype_size = get_dtype_size(dtype)
                    num_element_per_page = (
                        kv_cache_spec.page_size_bytes // dtype_size)
                    target_shape = (num_blocks, *shape)
                    stride = torch.empty(target_shape).stride()
                    target_stride = (num_element_per_page, *stride[1:])
                    assert storage_offset_bytes % dtype_size == 0
                    tensor = torch.as_strided(
                        raw_tensor.view(dtype),
                        size=target_shape,
                        stride=target_stride,
                        storage_offset=storage_offset_bytes // dtype_size,
                    )
                    state_tensors.append(tensor)
                    storage_offset_bytes += stride[0] * dtype_size

                kv_caches[layer_name] = state_tensors
            else:
                raise NotImplementedError

    if has_attn and has_mamba:
        self._update_hybrid_attention_mamba_layout(kv_caches)

    return kv_caches

_sample

_sample(
    logits: Optional[Tensor],
    spec_decode_metadata: Optional[SpecDecodeMetadata],
) -> SamplerOutput
Source code in vllm/v1/worker/gpu_model_runner.py
def _sample(
        self, logits: Optional[torch.Tensor],
        spec_decode_metadata: Optional[SpecDecodeMetadata]
) -> SamplerOutput:
    # Sample the next token and get logprobs if needed.
    sampling_metadata = self.input_batch.sampling_metadata
    if spec_decode_metadata is None:
        sampler_output = self.sampler(
            logits=logits,
            sampling_metadata=sampling_metadata,
        )
    else:
        # When indexing with a tensor (bonus_logits_indices), PyTorch
        # creates a new tensor with separate storage from the original
        # logits tensor. This means any in-place operations on bonus_logits
        # won't affect the original logits tensor.
        assert logits is not None
        bonus_logits = logits[spec_decode_metadata.bonus_logits_indices]
        sampler_output = self.sampler(
            logits=bonus_logits,
            sampling_metadata=sampling_metadata,
        )
        bonus_token_ids = sampler_output.sampled_token_ids

        # Just like `bonus_logits`, `target_logits` is a new tensor with
        # separate storage from the original `logits` tensor. Therefore,
        # it is safe to update `target_logits` in place.
        target_logits = logits[spec_decode_metadata.target_logits_indices]
        output_token_ids = self.rejection_sampler(
            spec_decode_metadata,
            None,  # draft_probs
            target_logits,
            bonus_token_ids,
            sampling_metadata,
        )
        sampler_output.sampled_token_ids = output_token_ids
        self._update_states_after_model_execute(output_token_ids)

    return sampler_output

_sync_device

_sync_device() -> None
Source code in vllm/v1/worker/gpu_model_runner.py
def _sync_device(self) -> None:
    torch.cuda.synchronize()

_to_list

_to_list(sampled_token_ids: Tensor) -> list[list[int]]
Source code in vllm/v1/worker/gpu_model_runner.py
def _to_list(self, sampled_token_ids: torch.Tensor) -> list[list[int]]:
    # This is a short term mitigation for issue mentioned in
    # https://github.com/vllm-project/vllm/issues/22754.
    # `tolist` would trigger a cuda wise stream sync, which
    # would block other copy ops from other cuda streams.
    # A cuda event sync would avoid such a situation. Since
    # this is in the critical path of every single model
    # forward loop, this has caused perf issue for a disagg
    # setup.
    pinned = self.sampled_token_ids_pinned_cpu[:sampled_token_ids.shape[0]]
    pinned.copy_(sampled_token_ids, non_blocking=True)
    self.transfer_event.record()
    self.transfer_event.synchronize()
    return pinned.tolist()

_update_hybrid_attention_mamba_layout

_update_hybrid_attention_mamba_layout(
    kv_caches: dict[str, Tensor],
) -> None

Update the layout of attention layers from (2, num_blocks, ...) to (num_blocks, 2, ...).

Parameters:

Name Type Description Default
kv_caches dict[str, Tensor]

The KV cache buffer of each layer.

required
Source code in vllm/v1/worker/gpu_model_runner.py
def _update_hybrid_attention_mamba_layout(
        self, kv_caches: dict[str, torch.Tensor]) -> None:
    """
    Update the layout of attention layers from (2, num_blocks, ...) to
    (num_blocks, 2, ...).

    Args:
        kv_caches: The KV cache buffer of each layer.
    """

    for group in self._kv_cache_spec_attn_group_iterator():
        kv_cache_spec = group.kv_cache_spec
        for layer_name in group.layer_names:
            kv_cache = kv_caches[layer_name]
            if (isinstance(kv_cache_spec, AttentionSpec)
                    and kv_cache.shape[0] == 2):
                assert kv_cache.shape[1] != 2, \
                    "Fail to determine whether the layout is " \
                    "(2, num_blocks, ...) or (num_blocks, 2, ...) for " \
                    f"a tensor of shape {kv_cache.shape}"
                hidden_size = kv_cache.shape[2:].numel()
                kv_cache.as_strided_(size=kv_cache.shape,
                                     stride=(hidden_size, 2 * hidden_size,
                                             *kv_cache.stride()[2:]))

_update_states

_update_states(scheduler_output: SchedulerOutput) -> None

Update the cached states and the persistent batch with the scheduler output.

The updated states are used by the _prepare_inputs function to create the input GPU tensors for the model.

The SamplingMetadata is updated and copied to the GPU if there is a new/resumed/paused/finished request in the batch.

Source code in vllm/v1/worker/gpu_model_runner.py
def _update_states(self, scheduler_output: "SchedulerOutput") -> None:
    """Update the cached states and the persistent batch with the scheduler
    output.

    The updated states are used by the `_prepare_inputs` function to create
    the input GPU tensors for the model.

    The SamplingMetadata is updated and copied to the GPU if there is a
    new/resumed/paused/finished request in the batch.
    """
    # Remove finished requests from the cached states.
    for req_id in scheduler_output.finished_req_ids:
        self.requests.pop(req_id, None)
    # Remove the finished requests from the persistent batch.
    # NOTE(woosuk): There could be an edge case where finished_req_ids and
    # scheduled_req_ids overlap. This happens when a request is aborted and
    # then resubmitted with the same ID. In this case, we treat them as two
    # distinct requests - clearing the cached states for the first request
    # and handling the second as a new request.
    for req_id in scheduler_output.finished_req_ids:
        self.input_batch.remove_request(req_id)

    # Free the cached encoder outputs.
    for mm_hash in scheduler_output.free_encoder_mm_hashes:
        self.encoder_cache.pop(mm_hash, None)

    # Remove the unscheduled requests from the persistent batch.
    # NOTE(woosuk): The unscheduled requests are either preempted requests
    # or running requests that are not scheduled in this step. We remove
    # them from the persistent batch but keep their cached states since
    # they will be scheduled again sometime in the future.
    scheduled_req_ids = scheduler_output.num_scheduled_tokens.keys()
    cached_req_ids = self.input_batch.req_id_to_index.keys()
    unscheduled_req_ids = cached_req_ids - scheduled_req_ids
    # NOTE(woosuk): The persistent batch optimization assumes that
    # consecutive batches contain mostly the same requests. If batches
    # have low request overlap (e.g., alternating between two distinct
    # sets of requests), this optimization becomes very inefficient.
    for req_id in unscheduled_req_ids:
        self.input_batch.remove_request(req_id)

    reqs_to_add: list[CachedRequestState] = []
    # Add new requests to the cached states.
    for new_req_data in scheduler_output.scheduled_new_reqs:
        req_id = new_req_data.req_id
        sampling_params = new_req_data.sampling_params
        pooling_params = new_req_data.pooling_params

        if sampling_params and \
            sampling_params.sampling_type == SamplingType.RANDOM_SEED:
            generator = torch.Generator(device=self.device)
            generator.manual_seed(sampling_params.seed)
        else:
            generator = None

        if self.is_pooling_model:
            assert pooling_params is not None
            task = pooling_params.task
            assert task is not None, "You did not set `task` in the API"

            model = cast(VllmModelForPooling, self.get_model())
            to_update = model.pooler.get_pooling_updates(task)
            to_update.apply(pooling_params)

        req_state = CachedRequestState(
            req_id=req_id,
            prompt_token_ids=new_req_data.prompt_token_ids,
            prompt_embeds=new_req_data.prompt_embeds,
            mm_features=new_req_data.mm_features,
            sampling_params=sampling_params,
            pooling_params=pooling_params,
            generator=generator,
            block_ids=new_req_data.block_ids,
            num_computed_tokens=new_req_data.num_computed_tokens,
            output_token_ids=[],
            lora_request=new_req_data.lora_request,
        )
        self.requests[req_id] = req_state

        # Only relevant for models using M-RoPE (e.g, Qwen2-VL)
        if self.uses_mrope:
            self._init_mrope_positions(req_state)

        reqs_to_add.append(req_state)

    # Update the states of the running/resumed requests.
    is_last_rank = get_pp_group().is_last_rank
    req_data = scheduler_output.scheduled_cached_reqs
    for i, req_id in enumerate(req_data.req_ids):
        req_state = self.requests[req_id]
        num_computed_tokens = req_data.num_computed_tokens[i]
        new_block_ids = req_data.new_block_ids[i]
        resumed_from_preemption = req_data.resumed_from_preemption[i]

        # Update the cached states.
        req_state.num_computed_tokens = num_computed_tokens

        if not is_last_rank:
            # When using PP, the scheduler sends the sampled tokens back,
            # because there's no direct communication between the first-
            # stage worker and the last-stage worker.
            new_token_ids = req_data.new_token_ids[i]
            # Add the sampled token(s) from the previous step (if any).
            # This doesn't include "unverified" tokens like spec tokens.
            num_new_tokens = (num_computed_tokens + len(new_token_ids) -
                              req_state.num_tokens)
            if num_new_tokens == 1:
                # Avoid slicing list in most common case.
                req_state.output_token_ids.append(new_token_ids[-1])
            elif num_new_tokens > 0:
                req_state.output_token_ids.extend(
                    new_token_ids[-num_new_tokens:])

        # Update the block IDs.
        if not resumed_from_preemption:
            if new_block_ids is not None:
                # Append the new blocks to the existing block IDs.
                for block_ids, new_ids in zip(req_state.block_ids,
                                              new_block_ids):
                    block_ids.extend(new_ids)
        else:
            assert new_block_ids is not None
            # The request is resumed from preemption.
            # Replace the existing block IDs with the new ones.
            req_state.block_ids = new_block_ids

        req_index = self.input_batch.req_id_to_index.get(req_id)
        if req_index is None:
            # The request is not in the persistent batch.
            # The request was either preempted and resumed later, or was not
            # scheduled in the previous step and needs to be added again.
            reqs_to_add.append(req_state)
            continue

        # Update the persistent batch.
        self.input_batch.num_computed_tokens_cpu[req_index] = (
            num_computed_tokens)
        if new_block_ids is not None:
            self.input_batch.block_table.append_row(
                new_block_ids, req_index)

        # For the last rank, we don't need to update the token_ids_cpu
        # because the sampled tokens are already cached.
        if not is_last_rank:
            # Add new_token_ids to token_ids_cpu.
            start_token_index = num_computed_tokens
            end_token_index = num_computed_tokens + len(new_token_ids)
            self.input_batch.token_ids_cpu[
                req_index,
                start_token_index:end_token_index] = new_token_ids
            self.input_batch.num_tokens_no_spec[
                req_index] = end_token_index
            self.input_batch.num_tokens[req_index] = end_token_index

        # Add spec_token_ids to token_ids_cpu.
        spec_token_ids = (
            scheduler_output.scheduled_spec_decode_tokens.get(req_id, ()))
        if spec_token_ids:
            num_spec_tokens = len(spec_token_ids)
            start_index = self.input_batch.num_tokens_no_spec[req_index]
            end_token_index = start_index + num_spec_tokens
            self.input_batch.token_ids_cpu[
                req_index, start_index:end_token_index] = spec_token_ids
            # NOTE(woosuk): `num_tokens` here may include spec tokens.
            self.input_batch.num_tokens[req_index] += num_spec_tokens

    # Add the new or resumed requests to the persistent batch.
    # The smaller empty indices are filled first.
    for request in reqs_to_add:
        self.input_batch.add_request(request)

    # Condense the batched states if there are gaps left by removed requests
    self.input_batch.condense()
    # Allow attention backend to reorder the batch, potentially
    self._may_reorder_batch(scheduler_output)
    # Refresh batch metadata with any pending updates.
    self.input_batch.refresh_metadata()

_update_states_after_model_execute

_update_states_after_model_execute(
    output_token_ids: Tensor,
) -> None

Update the cached states after model execution.

This is used for MTP/EAGLE for hybrid models, as in linear attention, only the last token's state is kept. In MTP/EAGLE, for draft tokens the state are kept util we decide how many tokens are accepted for each sequence, and a shifting is done during the next iteration based on the number of accepted tokens.

Source code in vllm/v1/worker/gpu_model_runner.py
def _update_states_after_model_execute(
        self, output_token_ids: torch.Tensor) -> None:
    """Update the cached states after model execution.

    This is used for MTP/EAGLE for hybrid models, as in linear attention,
    only the last token's state is kept. In MTP/EAGLE, for draft tokens
    the state are kept util we decide how many tokens are accepted for
    each sequence, and a shifting is done during the next iteration
    based on the number of accepted tokens.
    """
    if not self.model_config.is_hybrid or not self.speculative_config:
        return

    # Find the number of accepted tokens for each sequence.
    num_accepted_tokens = (torch.cat(
        [
            output_token_ids,
            torch.full((output_token_ids.size(0), 1),
                       -1,
                       device=output_token_ids.device),
        ],
        dim=1) == -1).int().argmax(-1).cpu().numpy()
    for i, num_tokens in enumerate(num_accepted_tokens):
        self.input_batch.num_accepted_tokens_cpu[i] = num_tokens

calculate_reorder_batch_threshold

calculate_reorder_batch_threshold() -> None

Check that if any backends reorder batches; that the reordering is compatible (e.g., decode threshold is the same)

Source code in vllm/v1/worker/gpu_model_runner.py
def calculate_reorder_batch_threshold(self) -> None:
    """
    Check that if any backends reorder batches; that the reordering
    is compatible (e.g., decode threshold is the same)
    """
    for group in self._attn_group_iterator():
        attn_metadata_builder_i = group.get_metadata_builder()

        # check that if any backends reorder batches; that the reordering
        # is compatible (e.g., decode threshold is the same)
        reorder_batch_threshold_i = (
            attn_metadata_builder_i.reorder_batch_threshold)
        if reorder_batch_threshold_i is not None:
            if self.reorder_batch_threshold is not None:
                if reorder_batch_threshold_i != \
                    self.reorder_batch_threshold:
                    raise ValueError(
                        f"Attention backend reorders decodes with "
                        f"threshold {reorder_batch_threshold_i} but other "
                        f"backend uses threshold "
                        f"{self.reorder_batch_threshold}")
            else:
                self.reorder_batch_threshold = reorder_batch_threshold_i

capture_model

capture_model() -> int
Source code in vllm/v1/worker/gpu_model_runner.py
def capture_model(self) -> int:
    if self.compilation_config.cudagraph_mode == CUDAGraphMode.NONE:
        logger.warning(
            "Skipping CUDA graph capture. To turn on CUDA graph capture, "
            "ensure `cudagraph_mode` was not manually set to `NONE`")
        return 0
    else:
        self.initialize_cudagraph_capture()

    compilation_counter.num_gpu_runner_capture_triggers += 1

    start_time = time.perf_counter()
    start_free_gpu_memory = torch.cuda.mem_get_info()[0]

    @contextmanager
    def freeze_gc():
        # Optimize garbage collection during CUDA graph capture.
        # Clean up, then freeze all remaining objects from being included
        # in future collections.
        gc.collect()
        should_freeze = not envs.VLLM_ENABLE_CUDAGRAPH_GC
        if should_freeze:
            gc.freeze()
        try:
            yield
        finally:
            if should_freeze:
                gc.unfreeze()
                gc.collect()

    # Trigger CUDA graph capture for specific shapes.
    # Capture the large shapes first so that the smaller shapes
    # can reuse the memory pool allocated for the large shapes.
    set_cudagraph_capturing_enabled(True)
    with freeze_gc(), graph_capture(device=self.device):
        cudagraph_mode = self.compilation_config.cudagraph_mode
        assert cudagraph_mode is not None
        if cudagraph_mode.mixed_mode() != CUDAGraphMode.NONE:
            cudagraph_runtime_mode = cudagraph_mode.mixed_mode()

            compilation_cases = list(reversed(self.cudagraph_batch_sizes))
            self._capture_cudagraphs(
                compilation_cases,
                cudagraph_runtime_mode=cudagraph_runtime_mode,
                uniform_decode=False)

        # Capture full cudagraph for uniform decode batches if we
        # don't already have full mixed prefill-decode cudagraphs.
        if cudagraph_mode.decode_mode() == CUDAGraphMode.FULL and \
            cudagraph_mode.separate_routine():
            max_num_tokens = self.scheduler_config.max_num_seqs * \
                    self.uniform_decode_query_len
            decode_cudagraph_batch_sizes = [
                x for x in self.cudagraph_batch_sizes if
                x <= max_num_tokens and x >= self.uniform_decode_query_len
            ]
            compilation_cases_decode = list(
                reversed(decode_cudagraph_batch_sizes))
            self._capture_cudagraphs(
                compilation_cases=compilation_cases_decode,
                cudagraph_runtime_mode=CUDAGraphMode.FULL,
                uniform_decode=True)

    # Disable cudagraph capturing globally, so any unexpected cudagraph
    # capturing will be detected and raise an error after here.
    # Note: We don't put it into graph_capture context manager because
    # we may do lazy capturing in future that still allows capturing
    # after here.
    set_cudagraph_capturing_enabled(False)

    end_time = time.perf_counter()
    end_free_gpu_memory = torch.cuda.mem_get_info()[0]
    elapsed_time = end_time - start_time
    cuda_graph_size = start_free_gpu_memory - end_free_gpu_memory
    # This usually takes 5~20 seconds.
    logger.info("Graph capturing finished in %.0f secs, took %.2f GiB",
                elapsed_time, cuda_graph_size / (1 << 30))
    return cuda_graph_size

eplb_step

eplb_step(
    is_dummy: bool = False, is_profile: bool = False
) -> None

Step for the EPLB (Expert Parallelism Load Balancing) state.

Source code in vllm/v1/worker/gpu_model_runner.py
def eplb_step(self,
              is_dummy: bool = False,
              is_profile: bool = False) -> None:
    """
    Step for the EPLB (Expert Parallelism Load Balancing) state.
    """
    if not self.parallel_config.enable_eplb:
        return

    assert self.eplb_state is not None
    model = self.get_model()
    assert is_mixture_of_experts(model)
    self.eplb_state.step(
        model,
        is_dummy,
        is_profile,
        log_stats=self.parallel_config.eplb_config.log_balancedness,
    )

execute_model

execute_model(
    scheduler_output: SchedulerOutput,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
) -> Union[
    ModelRunnerOutput,
    AsyncModelRunnerOutput,
    IntermediateTensors,
]
Source code in vllm/v1/worker/gpu_model_runner.py
@torch.inference_mode()
def execute_model(
    self,
    scheduler_output: "SchedulerOutput",
    intermediate_tensors: Optional[IntermediateTensors] = None,
) -> Union[ModelRunnerOutput, AsyncModelRunnerOutput, IntermediateTensors]:
    with record_function_or_nullcontext("Preprocess"):
        with self.synchronize_input_prep():
            # Update persistent batch states.
            self._update_states(scheduler_output)

            if not scheduler_output.total_num_scheduled_tokens:
                if not has_kv_transfer_group():
                    # Return empty ModelRunnerOutput if no work to do.
                    return EMPTY_MODEL_RUNNER_OUTPUT
                return self.kv_connector_no_forward(
                    scheduler_output, self.vllm_config)
            if self.cache_config.kv_sharing_fast_prefill:
                assert not self.input_batch.num_prompt_logprobs, (
                    "--kv-sharing-fast-prefill produces incorrect "
                    "logprobs for prompt tokens, tokens, please disable "
                    "it when the requests need prompt logprobs")

            # Prepare the decoder inputs.
            (attn_metadata, logits_indices, spec_decode_metadata,
             num_scheduled_tokens_np, spec_decode_common_attn_metadata,
             max_query_len, ubatch_slices, num_tokens_after_padding,
             use_cascade_attn) = self._prepare_inputs(scheduler_output)

        (
            num_scheduled_tokens,
            num_input_tokens,
            num_tokens_across_dp,
            input_ids,
            inputs_embeds,
            positions,
            intermediate_tensors,
            model_kwargs,
        ) = self._preprocess(scheduler_output, intermediate_tensors,
                             ubatch_slices, num_tokens_after_padding)

        uniform_decode = (max_query_len
                          == self.uniform_decode_query_len) and (
                              num_scheduled_tokens
                              == self.input_batch.num_reqs * max_query_len)
        batch_descriptor = BatchDescriptor(num_tokens=num_input_tokens,
                                           uniform_decode=uniform_decode)
        cudagraph_runtime_mode, batch_descriptor = \
            self.cudagraph_dispatcher.dispatch(batch_descriptor,
                                               use_cascade_attn)

    # Set cudagraph mode to none if calc_kv_scales is true.
    if attn_metadata is not None:
        metadata_list = (attn_metadata.values() if isinstance(
            attn_metadata, dict) else [attn_metadata])
        if any(
                getattr(m, 'enable_kv_scales_calculation', False)
                for m in metadata_list):
            cudagraph_runtime_mode = CUDAGraphMode.NONE

    # This is currently to get around the assert in the DPMetadata
    # where it wants `num_tokens_across_dp` to align with `num_tokens`
    if ubatch_slices is not None:
        num_input_tokens = ubatch_slices[0].num_tokens

    # Run the model.
    # Use persistent buffers for CUDA graphs.
    with (set_forward_context(
            attn_metadata,
            self.vllm_config,
            num_tokens=num_input_tokens,
            num_tokens_across_dp=num_tokens_across_dp,
            cudagraph_runtime_mode=cudagraph_runtime_mode,
            batch_descriptor=batch_descriptor,
            ubatch_slices=ubatch_slices,
    ), record_function_or_nullcontext("Forward"),
          self.maybe_get_kv_connector_output(scheduler_output) as
          kv_connector_output):
        model_output = self._model_forward(
            input_ids=input_ids,
            positions=positions,
            intermediate_tensors=intermediate_tensors,
            inputs_embeds=inputs_embeds,
            **model_kwargs,
        )

    with record_function_or_nullcontext("Postprocess"):
        if self.use_aux_hidden_state_outputs:
            # True when EAGLE 3 is used.
            hidden_states, aux_hidden_states = model_output
        else:
            # Common case.
            hidden_states = model_output
            aux_hidden_states = None

        if not self.broadcast_pp_output:
            # Common case.
            if not get_pp_group().is_last_rank:
                # Return the intermediate tensors.
                assert isinstance(hidden_states, IntermediateTensors)
                hidden_states.kv_connector_output = kv_connector_output
                return hidden_states

            if self.is_pooling_model:
                # Return the pooling output.
                output = self._pool(hidden_states, num_scheduled_tokens,
                                    num_scheduled_tokens_np)
                output.kv_connector_output = kv_connector_output
                return output

            sample_hidden_states = hidden_states[logits_indices]
            logits = self.model.compute_logits(sample_hidden_states)
        else:
            # Rare case.
            assert not self.is_pooling_model

            if not get_pp_group().is_last_rank:
                all_gather_tensors = {
                    "residual":
                    not is_residual_scattered_for_sp(
                        self.vllm_config, num_input_tokens)
                }
                get_pp_group().send_tensor_dict(
                    hidden_states.tensors,
                    all_gather_group=get_tp_group(),
                    all_gather_tensors=all_gather_tensors)
                logits = None
            else:
                sample_hidden_states = hidden_states[logits_indices]
                logits = self.model.compute_logits(sample_hidden_states)

            model_output_broadcast_data = {}
            if logits is not None:
                model_output_broadcast_data["logits"] = logits.contiguous()

            model_output_broadcast_data = get_pp_group(
            ).broadcast_tensor_dict(model_output_broadcast_data,
                                    src=len(get_pp_group().ranks) - 1)
            assert model_output_broadcast_data is not None
            logits = model_output_broadcast_data["logits"]

        # Apply structured output bitmasks if present
        if scheduler_output.grammar_bitmask is not None:
            apply_grammar_bitmask(scheduler_output, self.input_batch,
                                  logits, self.device)

    with record_function_or_nullcontext("Sample"):
        sampler_output = self._sample(logits, spec_decode_metadata)

    def propose_draft_token_ids(sampled_token_ids):
        assert spec_decode_common_attn_metadata is not None
        with record_function_or_nullcontext("Draft"):
            self._draft_token_ids = self.propose_draft_token_ids(
                scheduler_output,
                sampled_token_ids,
                self.input_batch.sampling_metadata,
                hidden_states,
                sample_hidden_states,
                aux_hidden_states,
                spec_decode_metadata,
                spec_decode_common_attn_metadata,
            )

    use_padded_batch_for_eagle = self.speculative_config and \
        self.speculative_config.use_eagle() and \
        not self.speculative_config.disable_padded_drafter_batch
    effective_drafter_max_model_len = self.max_model_len
    if effective_drafter_max_model_len is None:
        effective_drafter_max_model_len = self.model_config.max_model_len
    if (self.speculative_config
            and self.speculative_config.draft_model_config is not None
            and self.speculative_config.draft_model_config.max_model_len
            is not None):
        effective_drafter_max_model_len = (
            self.speculative_config.draft_model_config.max_model_len)
    input_fits_in_drafter = spec_decode_common_attn_metadata and (
        spec_decode_common_attn_metadata.max_seq_len +
        self.speculative_config.num_speculative_tokens
        <= effective_drafter_max_model_len)
    if use_padded_batch_for_eagle and input_fits_in_drafter:
        # EAGLE speculative decoding can use the GPU sampled tokens
        # as inputs, and does not need to wait for bookkeeping to finish.
        propose_draft_token_ids(sampler_output.sampled_token_ids)

    with record_function_or_nullcontext("Bookkeep"):
        (
            num_nans_in_logits,
            logprobs_lists,
            valid_sampled_token_ids,
            prompt_logprobs_dict,
            req_ids_output_copy,
            req_id_to_index_output_copy,
            invalid_req_indices,
        ) = self._bookkeeping_sync(scheduler_output, sampler_output,
                                   logits, hidden_states,
                                   num_scheduled_tokens)

    if (self.speculative_config and not use_padded_batch_for_eagle
            and input_fits_in_drafter):
        # ngram and other speculative decoding methods use the sampled
        # tokens on the CPU, so they are run after bookkeeping.
        propose_draft_token_ids(valid_sampled_token_ids)

    with record_function_or_nullcontext("EPLB"):
        self.eplb_step()

    output = ModelRunnerOutput(
        req_ids=req_ids_output_copy,
        req_id_to_index=req_id_to_index_output_copy,
        sampled_token_ids=valid_sampled_token_ids,
        logprobs=logprobs_lists,
        prompt_logprobs_dict=prompt_logprobs_dict,
        pooler_output=[],
        kv_connector_output=kv_connector_output,
        num_nans_in_logits=num_nans_in_logits,
    )

    if not self.use_async_scheduling:
        return output

    return AsyncGPUModelRunnerOutput(
        model_runner_output=output,
        sampled_token_ids=sampler_output.sampled_token_ids,
        invalid_req_indices=invalid_req_indices,
        async_output_copy_stream=self.async_output_copy_stream,
    )

get_dp_padding

get_dp_padding(
    num_tokens: int,
) -> tuple[int, Optional[Tensor]]

Determines the total number of tokens that each rank will run. All ranks will be padded out so that they run with the same number of tokens

tuple[

Name Type Description
num_pad_tokens int

The number of tokens that will be added to the batch

num_tokens_after_padding Optional[Tensor]

A tensor containing the total number of

tuple[int, Optional[Tensor]]

tokens for each DP rank including padding.

]

Source code in vllm/v1/worker/gpu_model_runner.py
def get_dp_padding(self,
                   num_tokens: int) -> tuple[int, Optional[torch.Tensor]]:
    """
    Determines the total number of tokens that each rank will run.
    All ranks will be padded out so that they run with the same number
    of tokens

    Returns: tuple[
        num_pad_tokens: The number of tokens that will be added to the batch
        num_tokens_after_padding: A tensor containing the total number of
        tokens for each DP rank including padding.
    ]
    """
    dp_size = self.vllm_config.parallel_config.data_parallel_size
    dp_rank = self.vllm_config.parallel_config.data_parallel_rank

    # For DP: Don't pad when setting enforce_eager.
    # This lets us set enforce_eager on the prefiller in a P/D setup and
    # still use CUDA graphs (enabled by this padding) on the decoder.
    #
    # TODO(tms) : There are many cases where padding is enabled for
    # prefills, causing unnecessary and excessive padding of activations.

    if dp_size == 1 or self.vllm_config.model_config.enforce_eager:
        # Early exit.
        return 0, None

    num_tokens_across_dp = DPMetadata.num_tokens_across_dp(
        num_tokens, dp_size, dp_rank)
    max_tokens_across_dp_cpu = torch.max(num_tokens_across_dp).item()
    num_tokens_after_padding = torch.tensor([max_tokens_across_dp_cpu] *
                                            dp_size,
                                            device="cpu",
                                            dtype=torch.int32)
    return max_tokens_across_dp_cpu - num_tokens, num_tokens_after_padding

get_kv_cache_spec

get_kv_cache_spec() -> dict[str, KVCacheSpec]

Generates the KVCacheSpec by parsing the kv cache format from each Attention module in the static forward context. Returns: KVCacheSpec: A dictionary mapping layer names to their KV cache format. Layers that do not need KV cache are not included.

Source code in vllm/v1/worker/gpu_model_runner.py
def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
    """
    Generates the KVCacheSpec by parsing the kv cache format from each
    Attention module in the static forward context.
    Returns:
        KVCacheSpec: A dictionary mapping layer names to their KV cache
        format. Layers that do not need KV cache are not included.
    """

    block_size = self.vllm_config.cache_config.block_size
    use_mla = self.vllm_config.model_config.use_mla
    cache_dtype_str = self.vllm_config.cache_config.cache_dtype
    kv_cache_spec: dict[str, KVCacheSpec] = {}
    attn_layers = get_layers_from_vllm_config(self.vllm_config, Attention)
    for layer_name, attn_module in attn_layers.items():
        if (kv_tgt_layer :=
                attn_module.kv_sharing_target_layer_name) is not None:
            # The layer doesn't need its own KV cache and will use that of
            # the target layer. We skip creating a KVCacheSpec for it, so
            # that KV cache management logic will act as this layer does
            # not exist, and doesn't allocate KV cache for the layer. This
            # enables the memory saving of cross-layer kv sharing, allowing
            # a given amount of memory to accommodate longer context lengths
            # or enable more requests to be processed simultaneously.
            self.shared_kv_cache_layers[layer_name] = kv_tgt_layer
            continue

        # TODO(lucas): move the attention specs into the model layers like
        # the attention backends
        if attn_module.attn_type == AttentionType.DECODER:
            if attn_module.sliding_window is not None:
                assert not use_mla, "MLA is not supported for sliding" \
                    "window"
                kv_cache_spec[layer_name] = SlidingWindowSpec(
                    block_size=block_size,
                    num_kv_heads=attn_module.num_kv_heads,
                    head_size=attn_module.head_size,
                    dtype=self.kv_cache_dtype,
                    sliding_window=attn_module.sliding_window)
            elif use_mla:
                kv_cache_spec[layer_name] = MLAAttentionSpec(
                    block_size=block_size,
                    num_kv_heads=attn_module.num_kv_heads,
                    head_size=attn_module.head_size,
                    dtype=self.kv_cache_dtype,
                    cache_dtype_str=cache_dtype_str)
            elif self.attention_chunk_size is not None \
                    and isinstance(attn_module, ChunkedLocalAttention):
                kv_cache_spec[layer_name] = ChunkedLocalAttentionSpec(
                    block_size=block_size,
                    num_kv_heads=attn_module.num_kv_heads,
                    head_size=attn_module.head_size,
                    dtype=self.kv_cache_dtype,
                    attention_chunk_size=self.attention_chunk_size)
            else:
                kv_cache_spec[layer_name] = FullAttentionSpec(
                    block_size=block_size,
                    num_kv_heads=attn_module.num_kv_heads,
                    head_size=attn_module.head_size,
                    dtype=self.kv_cache_dtype)
        elif attn_module.attn_type == AttentionType.ENCODER_DECODER:
            kv_cache_spec[layer_name] = CrossAttentionSpec(
                block_size=block_size,
                num_kv_heads=attn_module.num_kv_heads,
                head_size=attn_module.head_size,
                dtype=self.kv_cache_dtype)
        elif attn_module.attn_type in (AttentionType.ENCODER,
                                       AttentionType.ENCODER_ONLY):
            # encoder-only attention does not need KV cache.
            continue
        else:
            raise ValueError(
                f"Unknown attention type: {attn_module.attn_type}")

    mamba_layers = get_layers_from_vllm_config(self.vllm_config, MambaBase)
    if len(mamba_layers) > 0:
        if (self.vllm_config.speculative_config is not None
                and self.vllm_config.model_config.hf_config.model_type
                not in ["qwen3_next"]):
            raise NotImplementedError(
                "Mamba with speculative decoding is not supported yet.")
        if self.vllm_config.cache_config.enable_prefix_caching:
            raise NotImplementedError(
                "Prefix caching is not supported for Mamba yet.")
        max_model_len = self.vllm_config.model_config.max_model_len

        page_size_padded = (
            self.vllm_config.cache_config.mamba_page_size_padded)

        # Set block_size to max_model_len, so that mamba model will always
        # have only one block in the KV cache.
        for layer_name, mamba_module in mamba_layers.items():
            kv_cache_spec[layer_name] = MambaSpec(
                shapes=mamba_module.get_state_shape(),
                dtypes=mamba_module.get_state_dtype(),
                block_size=max_model_len,
                page_size_padded=page_size_padded,
                mamba_type=mamba_module.mamba_type,
                num_speculative_blocks=(
                    self.speculative_config.num_speculative_tokens
                    if self.speculative_config else 0),
            )
    ds_indexer_layers = get_layers_from_vllm_config(
        self.vllm_config, DeepseekV32IndexerCache)
    for layer_name, ds_indexer_module in ds_indexer_layers.items():
        kv_cache_spec[layer_name] = ds_indexer_module.get_kv_cache_spec()

    return kv_cache_spec

get_local_padding

get_local_padding(num_tokens_unpadded: int) -> int
Source code in vllm/v1/worker/gpu_model_runner.py
def get_local_padding(self, num_tokens_unpadded: int) -> int:

    num_tokens_padded = num_tokens_unpadded

    if (self.compilation_config.cudagraph_mode != CUDAGraphMode.NONE
            and num_tokens_unpadded <= self.cudagraph_batch_sizes[-1]):
        # Use piecewise CUDA graphs.
        # Add padding to the batch size.
        num_tokens_padded = self.vllm_config.pad_for_cudagraph(
            num_tokens_unpadded)
    else:
        # Eager mode.
        # Pad tokens to multiple of tensor_parallel_size when
        # enabled collective fusion for SP
        tp_size = self.vllm_config.parallel_config.tensor_parallel_size
        if self.vllm_config.compilation_config.pass_config. \
            enable_sequence_parallelism and tp_size > 1:
            num_tokens_padded = round_up(num_tokens_unpadded, tp_size)

    num_pad_tokens = num_tokens_padded - num_tokens_unpadded
    return num_pad_tokens

get_model

get_model() -> Module
Source code in vllm/v1/worker/gpu_model_runner.py
def get_model(self) -> nn.Module:
    # get raw model out of the cudagraph wrapper.
    if isinstance(self.model, (CUDAGraphWrapper, UBatchWrapper)):
        return self.model.unwrap()
    return self.model

get_supported_generation_tasks

get_supported_generation_tasks() -> list[GenerationTask]
Source code in vllm/v1/worker/gpu_model_runner.py
def get_supported_generation_tasks(self) -> list[GenerationTask]:
    model = self.get_model()
    supported_tasks = list[GenerationTask]()

    if is_text_generation_model(model):
        supported_tasks.append("generate")

    if supports_transcription(model):
        if model.supports_transcription_only:
            return ["transcription"]

        supported_tasks.append("transcription")

    return supported_tasks

get_supported_pooling_tasks

get_supported_pooling_tasks() -> list[PoolingTask]
Source code in vllm/v1/worker/gpu_model_runner.py
def get_supported_pooling_tasks(self) -> list[PoolingTask]:
    model = self.get_model()
    if not is_pooling_model(model):
        return []

    supported_tasks = list(model.pooler.get_supported_tasks())

    if (self.scheduler_config.chunked_prefill_enabled
            and "encode" in supported_tasks):
        supported_tasks.remove("encode")

        logger.debug_once("Chunked prefill is not supported with "
                          "encode task which using ALL pooling. "
                          "Please turn off chunked prefill by "
                          "`--no-enable-chunked-prefill` before using it.")

    if "score" in supported_tasks:
        num_labels = getattr(self.model_config.hf_config, "num_labels", 0)
        if num_labels != 1:
            supported_tasks.remove("score")
            logger.debug_once(
                "Score API is only enabled for num_labels == 1.")

    return supported_tasks

get_supported_tasks

get_supported_tasks() -> tuple[SupportedTask, ...]
Source code in vllm/v1/worker/gpu_model_runner.py
def get_supported_tasks(self) -> tuple[SupportedTask, ...]:
    tasks = list[SupportedTask]()

    if self.model_config.runner_type == "generate":
        tasks.extend(self.get_supported_generation_tasks())
    if self.model_config.runner_type == "pooling":
        tasks.extend(self.get_supported_pooling_tasks())

    return tuple(tasks)

initialize_attn_backend

initialize_attn_backend(
    kv_cache_config: KVCacheConfig,
) -> None

Initialize the attention backends and attention metadata builders.

Source code in vllm/v1/worker/gpu_model_runner.py
def initialize_attn_backend(self, kv_cache_config: KVCacheConfig) -> None:
    """
    Initialize the attention backends and attention metadata builders.
    """
    assert len(self.attn_groups) == 0, \
        "Attention backends are already initialized"

    class AttentionGroupKey(NamedTuple):
        attn_backend: type[AttentionBackend]
        kv_cache_spec: KVCacheSpec

    def get_attn_backends_for_group(
        kv_cache_group_spec: KVCacheGroupSpec,
    ) -> dict[AttentionGroupKey, list[str]]:
        layers = get_layers_from_vllm_config(
            self.vllm_config, AttentionLayerBase,
            kv_cache_group_spec.layer_names)
        attn_backends = {}
        attn_backend_layers = defaultdict(list)
        # Dedupe based on full class name; this is a bit safer than
        # using the class itself as the key because when we create dynamic
        # attention backend subclasses (e.g. ChunkedLocalAttention) unless
        # they are cached correctly, there will be different objects per
        # layer.
        for layer_name in kv_cache_group_spec.layer_names:
            attn_backend = layers[layer_name].get_attn_backend()

            if layer_name in self.kv_sharing_fast_prefill_eligible_layers:
                attn_backend = create_fast_prefill_custom_backend(
                    "FastPrefill",
                    attn_backend,
                )

            full_cls_name = attn_backend.full_cls_name()
            layer_kv_cache_spec = kv_cache_group_spec.kv_cache_spec
            if isinstance(layer_kv_cache_spec, UniformTypeKVCacheSpecs):
                layer_kv_cache_spec = layer_kv_cache_spec.kv_cache_specs[
                    layer_name]
            key = (full_cls_name, layer_kv_cache_spec)
            attn_backends[key] = AttentionGroupKey(attn_backend,
                                                   layer_kv_cache_spec)
            attn_backend_layers[key].append(layer_name)
        return {
            attn_backends[k]: v
            for k, v in attn_backend_layers.items()
        }

    def create_attn_groups(
        attn_backends_map: dict[AttentionGroupKey, list[str]],
    ) -> list[AttentionGroup]:
        attn_groups: list[AttentionGroup] = []
        for (attn_backend,
             kv_cache_spec), layer_names in attn_backends_map.items():
            attn_group = AttentionGroup.create_with_metadata_builders(
                attn_backend,
                layer_names,
                kv_cache_spec,
                self.vllm_config,
                self.device,
                num_metadata_builders=1
                if not self.parallel_config.enable_dbo else 2,
            )

            attn_groups.append(attn_group)
        return attn_groups

    for kv_cache_group_spec in kv_cache_config.kv_cache_groups:
        attn_backends = get_attn_backends_for_group(kv_cache_group_spec)
        self.attn_groups.append(create_attn_groups(attn_backends))

    # Calculate reorder batch threshold (if needed)
    self.calculate_reorder_batch_threshold()

initialize_cudagraph_capture

initialize_cudagraph_capture() -> None

Resolve the cudagraph_mode when there are multiple attention backends with potential conflicting CUDA graph support. Then initialize the cudagraph_dispatcher based on the resolved cudagraph_mode.

Source code in vllm/v1/worker/gpu_model_runner.py
def initialize_cudagraph_capture(self) -> None:
    """
    Resolve the cudagraph_mode when there are multiple attention 
    backends with potential conflicting CUDA graph support.
    Then initialize the cudagraph_dispatcher based on the resolved
    cudagraph_mode.
    """
    min_cg_support = AttentionCGSupport.ALWAYS
    min_cg_builder_name = None

    for attn_group in self._attn_group_iterator():
        builder = attn_group.get_metadata_builder()
        if builder.cudagraph_support.value < min_cg_support.value:
            min_cg_support = builder.cudagraph_support
            min_cg_builder_name = builder.__class__.__name__
    # Flexible resolve the cudagraph mode
    cudagraph_mode = self.compilation_config.cudagraph_mode
    # check cudagraph for mixed batch is supported
    if cudagraph_mode.mixed_mode() == CUDAGraphMode.FULL \
        and min_cg_support != AttentionCGSupport.ALWAYS:
        msg = (f"CUDAGraphMode.{cudagraph_mode.name} is not supported "
               f"with {min_cg_builder_name} backend (support: "
               f"{min_cg_support})")
        if min_cg_support == AttentionCGSupport.NEVER:
            # if not supported any full cudagraphs, just raise it.
            msg += "; please try cudagraph_mode=PIECEWISE, and "\
                "make sure compilation level is piecewise"
            raise ValueError(msg)

        # attempt to resolve the full cudagraph related mode
        if self.compilation_config.splitting_ops_contain_attention():
            msg += "; setting cudagraph_mode=FULL_AND_PIECEWISE"
            cudagraph_mode = self.compilation_config.cudagraph_mode = \
                CUDAGraphMode.FULL_AND_PIECEWISE
        else:
            msg += "; setting cudagraph_mode=FULL_DECODE_ONLY"
            cudagraph_mode = self.compilation_config.cudagraph_mode = \
                CUDAGraphMode.FULL_DECODE_ONLY
        logger.warning(msg)

    # check that if we are doing decode full-cudagraphs it is supported
    if (cudagraph_mode.decode_mode() == CUDAGraphMode.FULL
            and min_cg_support == AttentionCGSupport.NEVER):
        msg = (f"CUDAGraphMode.{cudagraph_mode.name} is not supported "
               f"with {min_cg_builder_name} backend (support: "
               f"{min_cg_support})")
        if (self.compilation_config.level == CompilationLevel.PIECEWISE and
            (self.compilation_config.splitting_ops_contain_attention()
             or self.compilation_config.use_inductor_graph_partition)):
            msg += "; setting cudagraph_mode=PIECEWISE because "\
                "attention is compiled piecewise"
            cudagraph_mode = self.compilation_config.cudagraph_mode = \
                CUDAGraphMode.PIECEWISE
        else:
            msg += "; setting cudagraph_mode=NONE because "\
                "attention is not compiled piecewise"
            cudagraph_mode = self.compilation_config.cudagraph_mode = \
                CUDAGraphMode.NONE
        logger.warning(msg)

    # check that if we are doing spec-decode + decode full-cudagraphs it is
    # supported
    if (cudagraph_mode.decode_mode() == CUDAGraphMode.FULL
            and self.uniform_decode_query_len > 1 and min_cg_support.value
            < AttentionCGSupport.UNIFORM_BATCH.value):
        msg = (f"CUDAGraphMode.{cudagraph_mode.name} is not supported"
               f" with spec-decode for attention backend "
               f"{min_cg_builder_name} (support: {min_cg_support})")
        if self.compilation_config.splitting_ops_contain_attention():
            msg += "; setting cudagraph_mode=PIECEWISE"
            cudagraph_mode = self.compilation_config.cudagraph_mode = \
                CUDAGraphMode.PIECEWISE
        else:
            msg += "; setting cudagraph_mode=NONE"
            cudagraph_mode = self.compilation_config.cudagraph_mode = \
                CUDAGraphMode.NONE
        logger.warning(msg)

    # double check that we can support full cudagraph if they are requested
    # even after automatic downgrades
    if cudagraph_mode.has_full_cudagraphs() \
        and min_cg_support == AttentionCGSupport.NEVER:
        raise ValueError(f"CUDAGraphMode.{cudagraph_mode.name} is not "
                         f"supported with {min_cg_builder_name} backend ("
                         f"support:{min_cg_support}) "
                         "; please try cudagraph_mode=PIECEWISE, "
                         "and make sure compilation level is piecewise")

    # Trigger cudagraph dispatching keys initialization here (after
    # initializing attn backends).
    self.cudagraph_dispatcher.initialize_cudagraph_keys(
        self.compilation_config.cudagraph_mode,
        self.uniform_decode_query_len)

initialize_kv_cache

initialize_kv_cache(kv_cache_config: KVCacheConfig) -> None

Initialize KV cache based on kv_cache_config. Args: kv_cache_config: Configuration for the KV cache, including the KV cache size of each layer

Source code in vllm/v1/worker/gpu_model_runner.py
def initialize_kv_cache(self, kv_cache_config: KVCacheConfig) -> None:
    """
    Initialize KV cache based on `kv_cache_config`.
    Args:
        kv_cache_config: Configuration for the KV cache, including the KV
        cache size of each layer
    """
    kv_cache_config = deepcopy(kv_cache_config)
    self.kv_cache_config = kv_cache_config
    self.may_reinitialize_input_batch(kv_cache_config)
    self.may_add_encoder_only_layers_to_kv_cache_config()
    self.maybe_add_kv_sharing_layers_to_kv_cache_groups(kv_cache_config)
    self.initialize_attn_backend(kv_cache_config)
    kv_caches = self.initialize_kv_cache_tensors(kv_cache_config)

    if self.speculative_config and self.speculative_config.use_eagle():
        assert isinstance(self.drafter, EagleProposer)
        # validate all draft model layers belong to the same kv cache
        # group
        self.drafter.validate_same_kv_cache_group(kv_cache_config)

    if has_kv_transfer_group():
        kv_transfer_group = get_kv_transfer_group()
        kv_transfer_group.register_kv_caches(kv_caches)
        kv_transfer_group.set_host_xfer_buffer_ops(copy_kv_blocks)

    if self.dcp_world_size > 1:
        layer_names = self.attn_groups[0][0].layer_names
        layers = get_layers_from_vllm_config(self.vllm_config,
                                             AttentionLayerBase,
                                             layer_names)
        for layer in layers.values():
            assert layer.impl.need_to_return_lse_for_decode, (
                "DCP requires attention impls to return"
                " the softmax lse for decode, but the impl "
                f"{layer.impl.__class__.__name__} "
                "does not return the softmax lse for decode.")

initialize_kv_cache_tensors

initialize_kv_cache_tensors(
    kv_cache_config: KVCacheConfig,
) -> dict[str, Tensor]

Initialize the memory buffer for KV cache.

Parameters:

Name Type Description Default
kv_cache_config KVCacheConfig

The KV cache config

required

Returns: Dict[str, torch.Tensor]: A map between layer names to their corresponding memory buffer for KV cache.

Source code in vllm/v1/worker/gpu_model_runner.py
def initialize_kv_cache_tensors(
        self, kv_cache_config: KVCacheConfig) -> dict[str, torch.Tensor]:
    """
    Initialize the memory buffer for KV cache.

    Args:
        kv_cache_config: The KV cache config
    Returns:
        Dict[str, torch.Tensor]: A map between layer names to their
        corresponding memory buffer for KV cache.
    """
    # Initialize the memory buffer for KV cache
    kv_cache_raw_tensors = self._allocate_kv_cache_tensors(kv_cache_config)
    # Change the memory buffer to the desired shape
    kv_caches = self._reshape_kv_cache_tensors(kv_cache_config,
                                               kv_cache_raw_tensors)

    # Set up cross-layer KV cache sharing
    for layer_name, target_layer_name in self.shared_kv_cache_layers.items(
    ):
        logger.debug("%s reuses KV cache of %s", layer_name,
                     target_layer_name)
        kv_caches[layer_name] = kv_caches[target_layer_name]

    num_attn_module = 2 \
        if self.model_config.hf_config.model_type == "longcat_flash" else 1
    bind_kv_cache(kv_caches,
                  self.compilation_config.static_forward_context,
                  self.kv_caches, num_attn_module)
    return kv_caches

load_model

load_model(eep_scale_up: bool = False) -> None

Parameters:

Name Type Description Default
eep_scale_up bool

the model loading is for elastic EP scale up.

False
Source code in vllm/v1/worker/gpu_model_runner.py
def load_model(self, eep_scale_up: bool = False) -> None:
    """
    Args:
        eep_scale_up: the model loading is for elastic EP scale up.
    """
    logger.info("Starting to load model %s...", self.model_config.model)
    if eep_scale_up:
        from vllm.distributed.parallel_state import get_ep_group
        num_local_physical_experts = torch.empty(1,
                                                 dtype=torch.int32,
                                                 device="cpu")
        torch.distributed.broadcast(num_local_physical_experts,
                                    group=get_ep_group().cpu_group,
                                    group_src=0)
        num_local_physical_experts = int(num_local_physical_experts.item())
        new_ep_size = get_ep_group().world_size
        global_expert_load, old_global_expert_indices = (
            EplbState.recv_state())
        num_logical_experts = global_expert_load.shape[1]
        self.parallel_config.eplb_config.num_redundant_experts = (
            num_local_physical_experts * new_ep_size - num_logical_experts)
        assert old_global_expert_indices.shape[
            1] % num_local_physical_experts == 0
        old_ep_size = old_global_expert_indices.shape[
            1] // num_local_physical_experts
        rank_mapping = {
            old_ep_rank: old_ep_rank
            for old_ep_rank in range(old_ep_size)
        }
    else:
        global_expert_load = None
        old_global_expert_indices = None
        rank_mapping = None

    with DeviceMemoryProfiler() as m:
        time_before_load = time.perf_counter()
        model_loader = get_model_loader(self.load_config)
        logger.info("Loading model from scratch...")
        self.model = model_loader.load_model(
            vllm_config=self.vllm_config, model_config=self.model_config)
        if self.lora_config:
            self.model = self.load_lora_model(self.model, self.vllm_config,
                                              self.device)
        if hasattr(self, "drafter"):
            logger.info("Loading drafter model...")
            self.drafter.load_model(self.model)
        if self.use_aux_hidden_state_outputs:
            if supports_eagle3(self.model):
                self.model.set_aux_hidden_state_layers(
                    self.model.get_eagle3_aux_hidden_state_layers())
            else:
                raise RuntimeError(
                    "Model does not support EAGLE3 interface but "
                    "aux_hidden_state_outputs was requested")
        time_after_load = time.perf_counter()
    self.model_memory_usage = m.consumed_memory
    logger.info("Model loading took %.4f GiB and %.6f seconds",
                self.model_memory_usage / GiB_bytes,
                time_after_load - time_before_load)
    prepare_communication_buffer_for_model(self.model)

    self.is_multimodal_pruning_enabled = (supports_multimodal_pruning(
        self.model) and self.model_config.multimodal_config.
                                          is_multimodal_pruning_enabled())

    if is_mixture_of_experts(
            self.model) and self.parallel_config.enable_eplb:
        logger.info("EPLB is enabled for model %s.",
                    self.model_config.model)
        self.eplb_state = EplbState.build(
            self.model,
            self.device,
            self.parallel_config,
            global_expert_load,
            old_global_expert_indices,
            rank_mapping,
        )

    if (
        self.vllm_config.compilation_config.level == \
            CompilationLevel.DYNAMO_AS_IS and supports_dynamo()
    ):
        backend = self.vllm_config.compilation_config.init_backend(
            self.vllm_config)
        compilation_counter.dynamo_as_is_count += 1
        self.model.compile(fullgraph=True, backend=backend)
        return
    # for other compilation levels, cudagraph behavior is controlled by
    # CudagraphWraper and CudagraphDispatcher of vllm.

    # wrap the model with full cudagraph wrapper if needed.
    if self.compilation_config.cudagraph_mode.has_full_cudagraphs() \
        and not self.parallel_config.enable_dbo:
        self.model = CUDAGraphWrapper(self.model,
                                      self.vllm_config,
                                      runtime_mode=CUDAGraphMode.FULL)
    elif self.parallel_config.enable_dbo:
        if self.compilation_config.cudagraph_mode.has_full_cudagraphs():
            self.model = UBatchWrapper(self.model, self.vllm_config,
                                       CUDAGraphMode.FULL, self.device)
        else:
            self.model = UBatchWrapper(self.model, self.vllm_config,
                                       CUDAGraphMode.NONE, self.device)

may_add_encoder_only_layers_to_kv_cache_config

may_add_encoder_only_layers_to_kv_cache_config() -> None

Add encoder-only layers to the KV cache config.

Source code in vllm/v1/worker/gpu_model_runner.py
def may_add_encoder_only_layers_to_kv_cache_config(self) -> None:
    """
    Add encoder-only layers to the KV cache config.
    """
    block_size = self.vllm_config.cache_config.block_size
    encoder_only_attn_specs: dict[AttentionSpec,
                                  list[str]] = defaultdict(list)
    attn_layers = get_layers_from_vllm_config(self.vllm_config, Attention)
    for layer_name, attn_module in attn_layers.items():
        if attn_module.attn_type == AttentionType.ENCODER_ONLY:
            attn_spec: AttentionSpec = EncoderOnlyAttentionSpec(
                block_size=block_size,
                num_kv_heads=attn_module.num_kv_heads,
                head_size=attn_module.head_size,
                dtype=self.kv_cache_dtype)
            encoder_only_attn_specs[attn_spec].append(layer_name)
            self.runner_only_attn_layers.add(layer_name)
    if len(encoder_only_attn_specs) > 0:
        assert len(
            encoder_only_attn_specs
        ) == 1, "Only support one encoder-only attention spec now"
        spec, layer_names = encoder_only_attn_specs.popitem()
        self.kv_cache_config.kv_cache_groups.append(
            KVCacheGroupSpec(layer_names=layer_names, kv_cache_spec=spec))

may_reinitialize_input_batch

may_reinitialize_input_batch(
    kv_cache_config: KVCacheConfig,
) -> None

Re-initialize the input batch if the block sizes are different from [self.cache_config.block_size]. This usually happens when there are multiple KV cache groups.

Parameters:

Name Type Description Default
kv_cache_config KVCacheConfig

The KV cache configuration.

required
Source code in vllm/v1/worker/gpu_model_runner.py
def may_reinitialize_input_batch(self,
                                 kv_cache_config: KVCacheConfig) -> None:
    """
    Re-initialize the input batch if the block sizes are different from
    `[self.cache_config.block_size]`. This usually happens when there
    are multiple KV cache groups.

    Args:
        kv_cache_config: The KV cache configuration.
    """
    block_sizes = [
        kv_cache_group.kv_cache_spec.block_size
        for kv_cache_group in kv_cache_config.kv_cache_groups
    ]
    if block_sizes != [self.cache_config.block_size]:
        assert self.cache_config.cpu_offload_gb == 0, (
            "Cannot re-initialize the input batch when CPU weight "
            "offloading is enabled. See https://github.com/vllm-project/vllm/pull/18298 "  # noqa: E501
            "for more details.")
        self.input_batch = InputBatch(
            max_num_reqs=self.max_num_reqs,
            max_model_len=max(self.max_model_len, self.max_encoder_len),
            max_num_batched_tokens=self.max_num_tokens,
            device=self.device,
            pin_memory=self.pin_memory,
            vocab_size=self.model_config.get_vocab_size(),
            block_sizes=block_sizes,
            is_spec_decode=bool(self.vllm_config.speculative_config),
            logitsprocs=self.input_batch.logitsprocs,
            is_pooling_model=self.is_pooling_model,
            num_speculative_tokens=(
                self.vllm_config.speculative_config.num_speculative_tokens
                if self.vllm_config.speculative_config else 0),
        )

maybe_add_kv_sharing_layers_to_kv_cache_groups

maybe_add_kv_sharing_layers_to_kv_cache_groups(
    kv_cache_config: KVCacheConfig,
) -> None

Add layers that re-use KV cache to KV cache group of its target layer. Mapping of KV cache tensors happens in initialize_kv_cache_tensors()

Source code in vllm/v1/worker/gpu_model_runner.py
def maybe_add_kv_sharing_layers_to_kv_cache_groups(
        self, kv_cache_config: KVCacheConfig) -> None:
    """
    Add layers that re-use KV cache to KV cache group of its target layer.
    Mapping of KV cache tensors happens in `initialize_kv_cache_tensors()`
    """
    if not self.shared_kv_cache_layers:
        # No cross-layer KV sharing, return
        return

    add_kv_sharing_layers_to_kv_cache_groups(
        self.shared_kv_cache_layers,
        kv_cache_config.kv_cache_groups,
        self.runner_only_attn_layers,
    )

    if self.cache_config.kv_sharing_fast_prefill:
        # In You Only Cache Once (https://arxiv.org/abs/2405.05254) or other
        # similar KV sharing setups, only the layers that generate KV caches
        # are involved in the prefill phase, enabling prefill to early exit.
        attn_layers = get_layers_from_vllm_config(self.vllm_config,
                                                  Attention)
        for layer_name in reversed(attn_layers):
            if layer_name in self.shared_kv_cache_layers:
                self.kv_sharing_fast_prefill_eligible_layers.add(
                    layer_name)
            else:
                break

maybe_randomize_inputs

maybe_randomize_inputs(input_ids: Tensor)

Randomize input_ids if VLLM_RANDOMIZE_DP_DUMMY_INPUTS is set. This is to help balance expert-selection - during profile_run - during DP rank dummy run

Source code in vllm/v1/worker/gpu_model_runner.py
@contextmanager
def maybe_randomize_inputs(self, input_ids: torch.Tensor):
    """
    Randomize input_ids if VLLM_RANDOMIZE_DP_DUMMY_INPUTS is set.
    This is to help balance expert-selection
     - during profile_run
     - during DP rank dummy run
    """
    dp_size = self.vllm_config.parallel_config.data_parallel_size
    randomize_inputs = envs.VLLM_RANDOMIZE_DP_DUMMY_INPUTS and dp_size > 1
    if not randomize_inputs:
        yield
    else:
        import functools

        @functools.cache
        def rand_input_ids() -> torch.Tensor:
            return torch.randint_like(
                self.input_ids.gpu,
                low=0,
                high=self.model_config.get_vocab_size(),
                dtype=input_ids.dtype)

        logger.debug_once("Randomizing dummy data for DP Rank")
        input_ids.copy_(rand_input_ids()[:input_ids.size(0)],
                        non_blocking=True)
        yield
        input_ids.fill_(0)

pad_out_ubatch_slice

pad_out_ubatch_slice(
    ubatch_slices: UBatchSlices, num_total_tokens: int
)
Source code in vllm/v1/worker/gpu_model_runner.py
def pad_out_ubatch_slice(self, ubatch_slices: UBatchSlices,
                         num_total_tokens: int):
    padded_second_ubatch_slice = slice(ubatch_slices[1].token_slice.start,
                                       num_total_tokens)
    ubatch_slices[1] = UBatchSlice(padded_second_ubatch_slice,
                                   padded_second_ubatch_slice)

profile_run

profile_run() -> None
Source code in vllm/v1/worker/gpu_model_runner.py
def profile_run(self) -> None:
    # Profile with multimodal encoder & encoder cache.
    if self.supports_mm_inputs:
        if self.model_config.multimodal_config.skip_mm_profiling:
            logger.info(
                "Skipping memory profiling for multimodal encoder and "
                "encoder cache.")
        else:
            mm_budget = self.mm_budget
            assert mm_budget is not None

            if (encoder_budget := mm_budget.get_encoder_budget()) > 0:
                # NOTE: Currently model is profiled with a single non-text
                # modality with the max possible input tokens even when
                # it supports multiple.
                dummy_modality = mm_budget.get_modality_with_max_tokens()
                max_mm_items_per_batch = mm_budget \
                    .max_items_per_batch_by_modality[dummy_modality]

                logger.info(
                    "Encoder cache will be initialized with a budget of "
                    "%s tokens, and profiled with %s %s items of the "
                    "maximum feature size.",
                    encoder_budget,
                    max_mm_items_per_batch,
                    dummy_modality,
                )

                # Create dummy batch of multimodal inputs.
                batched_dummy_mm_inputs = self._get_mm_dummy_batch(
                    dummy_modality,
                    max_mm_items_per_batch,
                )

                # Run multimodal encoder.
                dummy_encoder_outputs = \
                    self.model.get_multimodal_embeddings(
                    **batched_dummy_mm_inputs)

                sanity_check_mm_encoder_outputs(
                    dummy_encoder_outputs,
                    expected_num_items=max_mm_items_per_batch,
                )

                # NOTE: This happens when encoder cache needs to store
                # the embeddings that encoder outputs are scattered onto.
                # In this case we create dummy embeddings of size
                # (encode_budget, hidden_size) and scatter encoder
                # output into it.
                encoder_output_shape = dummy_encoder_outputs[0].shape
                if encoder_output_shape[0] < encoder_budget:
                    expanded_outputs = []
                    for output in dummy_encoder_outputs:
                        expanded = output.new_zeros(
                            (encoder_budget, encoder_output_shape[-1]))
                        num_tokens = output.shape[0]
                        expanded[:num_tokens].copy_(output)
                        expanded_outputs.append(expanded)

                    dummy_encoder_outputs = expanded_outputs

                # Cache the dummy encoder outputs.
                self.encoder_cache["tmp"] = dict(
                    enumerate(dummy_encoder_outputs))

    # Add `is_profile` here to pre-allocate communication buffers
    hidden_states, last_hidden_states \
        = self._dummy_run(self.max_num_tokens, is_profile=True)
    if get_pp_group().is_last_rank:
        if self.is_pooling_model:
            output = self._dummy_pooler_run(hidden_states)
        else:
            output = self._dummy_sampler_run(last_hidden_states)
    else:
        output = None
    self._sync_device()
    del hidden_states, output
    self.encoder_cache.clear()
    gc.collect()

propose_draft_token_ids

propose_draft_token_ids(
    scheduler_output: SchedulerOutput,
    sampled_token_ids: Union[Tensor, list[list[int]]],
    sampling_metadata: SamplingMetadata,
    hidden_states: Tensor,
    sample_hidden_states: Tensor,
    aux_hidden_states: Optional[list[Tensor]],
    spec_decode_metadata: Optional[SpecDecodeMetadata],
    common_attn_metadata: CommonAttentionMetadata,
) -> Union[list[list[int]], Tensor]
Source code in vllm/v1/worker/gpu_model_runner.py
def propose_draft_token_ids(
    self,
    scheduler_output: "SchedulerOutput",
    sampled_token_ids: Union[torch.Tensor, list[list[int]]],
    sampling_metadata: SamplingMetadata,
    hidden_states: torch.Tensor,
    sample_hidden_states: torch.Tensor,
    aux_hidden_states: Optional[list[torch.Tensor]],
    spec_decode_metadata: Optional[SpecDecodeMetadata],
    common_attn_metadata: CommonAttentionMetadata,
) -> Union[list[list[int]], torch.Tensor]:
    num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
    if self.speculative_config.method == "ngram":
        assert isinstance(sampled_token_ids, list)
        assert isinstance(self.drafter, NgramProposer)
        draft_token_ids = self.drafter.propose(
            sampled_token_ids, self.input_batch.req_ids,
            self.input_batch.num_tokens_no_spec,
            self.input_batch.token_ids_cpu,
            self.input_batch.spec_decode_unsupported_reqs)
    elif self.speculative_config.method == "medusa":
        assert isinstance(sampled_token_ids, list)
        assert isinstance(self.drafter, MedusaProposer)

        if sample_hidden_states.shape[0] == len(sampled_token_ids):
            # The input to the target model does not include draft tokens.
            hidden_states = sample_hidden_states
        else:
            indices = []
            offset = 0
            assert spec_decode_metadata is not None
            for num_draft, tokens in zip(
                    spec_decode_metadata.num_draft_tokens,
                    sampled_token_ids):
                indices.append(offset + len(tokens) - 1)
                offset += num_draft + 1
            indices = torch.tensor(indices, device=self.device)
            hidden_states = sample_hidden_states[indices]

        draft_token_ids = self.drafter.propose(
            target_hidden_states=hidden_states,
            sampling_metadata=sampling_metadata,
        )
    elif self.speculative_config.use_eagle():
        assert isinstance(self.drafter, EagleProposer)

        if self.speculative_config.disable_padded_drafter_batch:
            # When padded-batch is disabled, the sampled_token_ids should be
            # the cpu-side list[list[int]] of valid sampled tokens for each
            # request, with invalid requests having empty lists.
            assert isinstance(sampled_token_ids, list), \
                "sampled_token_ids should be a python list when" \
                "padded-batch is disabled."
            next_token_ids = self.drafter.prepare_next_token_ids_cpu(
                sampled_token_ids, self.requests, self.input_batch,
                scheduler_output.num_scheduled_tokens)
        else:
            # When using padded-batch, the sampled_token_ids should be
            # the gpu tensor of sampled tokens for each request, of shape
            # (num_reqs, num_spec_tokens + 1) with rejected tokens having
            # value -1.
            assert isinstance(sampled_token_ids, torch.Tensor), \
                "sampled_token_ids should be a torch.Tensor when" \
                "padded-batch is enabled."
            next_token_ids, valid_sampled_tokens_count = \
                self.drafter.prepare_next_token_ids_padded(
                    common_attn_metadata,
                    sampled_token_ids,
                    self.requests,
                    self.input_batch,
                    self.discard_request_indices.gpu,
                    self.num_discarded_requests
                )

        if spec_decode_metadata is None:
            token_indices_to_sample = None
            # input_ids can be None for multimodal models.
            target_token_ids = self.input_ids.gpu[:num_scheduled_tokens]
            target_positions = self._get_positions(num_scheduled_tokens)
            if self.use_aux_hidden_state_outputs:
                assert aux_hidden_states is not None
                target_hidden_states = torch.cat(
                    [h[:num_scheduled_tokens] for h in aux_hidden_states],
                    dim=-1)
            else:
                target_hidden_states = hidden_states[:num_scheduled_tokens]
        else:
            if self.speculative_config.disable_padded_drafter_batch:
                token_indices_to_sample = None
                common_attn_metadata, token_indices =\
                    self.drafter.prepare_inputs(
                        common_attn_metadata,
                        sampled_token_ids,
                        spec_decode_metadata.num_draft_tokens)
            else:
                common_attn_metadata, token_indices, \
                    token_indices_to_sample =\
                    self.drafter.prepare_inputs_padded(
                        common_attn_metadata,
                        spec_decode_metadata,
                        valid_sampled_tokens_count)

            target_token_ids = self.input_ids.gpu[token_indices]
            target_positions = self._get_positions(token_indices)
            if self.use_aux_hidden_state_outputs:
                assert aux_hidden_states is not None
                target_hidden_states = torch.cat(
                    [h[token_indices] for h in aux_hidden_states], dim=-1)
            else:
                target_hidden_states = hidden_states[token_indices]

        if self.supports_mm_inputs:
            mm_embed_inputs = self._gather_mm_embeddings(
                scheduler_output,
                shift_computed_tokens=1,
            )
        else:
            mm_embed_inputs = None

        draft_token_ids = self.drafter.propose(
            target_token_ids=target_token_ids,
            target_positions=target_positions,
            target_hidden_states=target_hidden_states,
            next_token_ids=next_token_ids,
            last_token_indices=token_indices_to_sample,
            sampling_metadata=sampling_metadata,
            common_attn_metadata=common_attn_metadata,
            mm_embed_inputs=mm_embed_inputs,
        )

    return draft_token_ids

reload_weights

reload_weights() -> None
Source code in vllm/v1/worker/gpu_model_runner.py
def reload_weights(self) -> None:
    assert getattr(self, "model", None) is not None, \
        "Cannot reload weights before model is loaded."
    model_loader = get_model_loader(self.load_config)
    logger.info("Reloading weights inplace...")
    model_loader.load_weights(self.get_model(),
                              model_config=self.model_config)

save_tensorized_model

save_tensorized_model(
    tensorizer_config: TensorizerConfig,
) -> None
Source code in vllm/v1/worker/gpu_model_runner.py
def save_tensorized_model(
    self,
    tensorizer_config: "TensorizerConfig",
) -> None:
    TensorizerLoader.save_model(
        self.get_model(),
        tensorizer_config=tensorizer_config,
        model_config=self.model_config,
    )

sync_and_slice_intermediate_tensors

sync_and_slice_intermediate_tensors(
    num_tokens: int,
    intermediate_tensors: IntermediateTensors,
    sync_self: bool,
) -> IntermediateTensors
Source code in vllm/v1/worker/gpu_model_runner.py
def sync_and_slice_intermediate_tensors(
        self, num_tokens: int, intermediate_tensors: IntermediateTensors,
        sync_self: bool) -> IntermediateTensors:

    assert self.intermediate_tensors is not None

    tp = self.vllm_config.parallel_config.tensor_parallel_size
    is_rs = is_residual_scattered_for_sp(self.vllm_config, num_tokens)

    # When sequence parallelism is enabled, the "residual" tensor is sharded
    # across tensor parallel ranks, so each rank only needs its own slice.
    if sync_self:
        assert intermediate_tensors is not None
        for k, v in intermediate_tensors.items():
            is_scattered = k == "residual" and is_rs
            copy_len = num_tokens // tp if is_scattered else \
                num_tokens
            self.intermediate_tensors[k][:copy_len].copy_(
                v[:copy_len], non_blocking=True)

    return IntermediateTensors({
        k:
        v[:num_tokens //
          tp] if k == "residual" and is_rs else v[:num_tokens]
        for k, v in self.intermediate_tensors.items()
    })

synchronize_input_prep

synchronize_input_prep()
Source code in vllm/v1/worker/gpu_model_runner.py
@contextmanager
def synchronize_input_prep(self):
    if self.prepare_inputs_event is None:
        yield
        return

    # Ensure prior step has finished with reused CPU tensors.
    # This is required in the async scheduling case because
    # the CPU->GPU transfer happens async.
    self.prepare_inputs_event.synchronize()
    try:
        yield
    finally:
        self.prepare_inputs_event.record()

take_draft_token_ids

take_draft_token_ids() -> Optional[DraftTokenIds]
Source code in vllm/v1/worker/gpu_model_runner.py
def take_draft_token_ids(self) -> Optional[DraftTokenIds]:
    if self._draft_token_ids is None:
        return None
    req_ids = self.input_batch.req_ids
    if isinstance(self._draft_token_ids, torch.Tensor):
        draft_token_ids = self._draft_token_ids.tolist()
    else:
        draft_token_ids = self._draft_token_ids
    self._draft_token_ids = None
    return DraftTokenIds(req_ids, draft_token_ids)

update_config

update_config(overrides: dict[str, Any]) -> None
Source code in vllm/v1/worker/gpu_model_runner.py
def update_config(self, overrides: dict[str, Any]) -> None:
    allowed_config_names = {"load_config", "model_config"}
    for config_name, config_overrides in overrides.items():
        assert config_name in allowed_config_names, \
            f"Config `{config_name}` not supported. " \
            f"Allowed configs: {allowed_config_names}"
        config = getattr(self, config_name)
        new_config = update_config(config, config_overrides)
        setattr(self, config_name, new_config)