vllm.v1.spec_decode.ngram_proposer ¶
NgramProposer ¶
Source code in vllm/v1/spec_decode/ngram_proposer.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
|
valid_ngram_num_drafts instance-attribute
¶
__init__ ¶
__init__(vllm_config: VllmConfig)
Source code in vllm/v1/spec_decode/ngram_proposer.py
batch_propose ¶
batch_propose(
num_requests: int,
valid_ngram_requests: list,
num_tokens_no_spec: ndarray,
token_ids_cpu: ndarray,
) -> list[list[int]]
Batch version of ngram proposer using numba for acceleration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
valid_ngram_requests | list | Set of indices of requests that need ngram proposals. | required |
num_tokens_no_spec | ndarray | Numpy array of shape (batch_size,) representing the number of tokens without speculative tokens for each request. | required |
token_ids_cpu | ndarray | Numpy array of shape (batch_size, max_model_len) representing the token IDs for each request. | required |
Returns:
Type | Description |
---|---|
list[list[int]] | list[list[int]]: A list where each element is a list of proposed token IDs for the corresponding request. |
Source code in vllm/v1/spec_decode/ngram_proposer.py
load_model ¶
propose ¶
propose(
sampled_token_ids: list[list[int]],
req_ids: list[str],
num_tokens_no_spec: ndarray,
token_ids_cpu: ndarray,
spec_decode_unsupported_reqs: set,
) -> list[list[int]]
Source code in vllm/v1/spec_decode/ngram_proposer.py
_find_longest_matched_ngram_and_propose_tokens ¶
_find_longest_matched_ngram_and_propose_tokens(
origin_tokens: ndarray,
min_ngram: int,
max_ngram: int,
max_model_len: int,
k: int,
) -> ndarray
Find the longest n-gram which matches the suffix of the given tokens whose length is within [min_ngram, max_ngram] (inclusive).
If found, we will extract k right after the matched ngram.
Source code in vllm/v1/spec_decode/ngram_proposer.py
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
|
batch_propose_numba ¶
batch_propose_numba(
valid_ngram_requests: list,
num_tokens_no_spec: ndarray,
token_ids_cpu: ndarray,
min_n: int,
max_n: int,
max_model_len: int,
k: int,
valid_ngram_draft: ndarray,
valid_ngram_num_drafts: ndarray,
)