Skip to content

vllm.v1.attention.backends.utils

KVCacheLayoutType module-attribute

KVCacheLayoutType = Literal['NHD', 'HND']

KV_SHARING_FAST_PREFILL_METADATA_FIELDS module-attribute

KV_SHARING_FAST_PREFILL_METADATA_FIELDS = [
    ("logits_indices_padded", Optional[Tensor], None),
    ("num_logits_indices", int, 0),
]

M module-attribute

M = TypeVar('M')

PAD_SLOT_ID module-attribute

PAD_SLOT_ID = -1

_KV_CACHE_LAYOUT_OVERRIDE module-attribute

_KV_CACHE_LAYOUT_OVERRIDE: Union[
    KVCacheLayoutType, None
] = None

logger module-attribute

logger = init_logger(__name__)

AttentionCGSupport

Bases: Enum

Constants for the cudagraph support of the attention backend Here we do not consider the cascade attention, as currently it is never cudagraph supported.

Source code in vllm/v1/attention/backends/utils.py
class AttentionCGSupport(enum.Enum):
    """ Constants for the cudagraph support of the attention backend
    Here we do not consider the cascade attention, as currently
    it is never cudagraph supported."""

    ALWAYS = 3
    """Cudagraph always supported; supports mixed-prefill-decode"""
    UNIFORM_BATCH = 2
    """Cudagraph supported for batches the only contain query lengths that are
    the same, this can be used for spec-decode 
        i.e. "decodes" are 1 + num_speculative_tokens"""
    UNIFORM_SINGLE_TOKEN_DECODE = 1
    """Cudagraph supported for batches the only contain query_len==1 decodes"""
    NEVER = 0
    """NO cudagraph support"""

ALWAYS class-attribute instance-attribute

ALWAYS = 3

Cudagraph always supported; supports mixed-prefill-decode

NEVER class-attribute instance-attribute

NEVER = 0

NO cudagraph support

UNIFORM_BATCH class-attribute instance-attribute

UNIFORM_BATCH = 2

Cudagraph supported for batches the only contain query lengths that are the same, this can be used for spec-decode i.e. "decodes" are 1 + num_speculative_tokens

UNIFORM_SINGLE_TOKEN_DECODE class-attribute instance-attribute

UNIFORM_SINGLE_TOKEN_DECODE = 1

Cudagraph supported for batches the only contain query_len==1 decodes

AttentionMetadataBuilder

Bases: ABC, Generic[M]

Source code in vllm/v1/attention/backends/utils.py
class AttentionMetadataBuilder(abc.ABC, Generic[M]):
    # Does this backend/builder support CUDA Graphs for attention (default: no).
    cudagraph_support: ClassVar[AttentionCGSupport] = \
        AttentionCGSupport.NEVER
    # Does this backend/builder reorder the batch?
    # If not, set this to None. Otherwise set it to the query
    # length that will be pulled into the front of the batch.
    reorder_batch_threshold: Optional[int] = None

    @abstractmethod
    def __init__(self, kv_cache_spec: AttentionSpec, layer_names: list[str],
                 vllm_config: VllmConfig, device: torch.device):
        self.kv_cache_spec = kv_cache_spec
        self.layer_names = layer_names
        self.vllm_config = vllm_config
        self.device = device

    def _init_reorder_batch_threshold(
            self,
            reorder_batch_threshold: int = 1,
            supports_spec_as_decode: bool = False) -> None:
        self.reorder_batch_threshold = reorder_batch_threshold
        if self.reorder_batch_threshold is not None \
            and supports_spec_as_decode:
            # If the backend supports spec-as-decode kernels, then we can set
            # the reorder_batch_threshold based on the number of speculative
            # tokens from the config.
            speculative_config = self.vllm_config.speculative_config
            if (speculative_config is not None
                    and speculative_config.num_speculative_tokens is not None):
                self.reorder_batch_threshold = \
                    1 + speculative_config.num_speculative_tokens

    @abstractmethod
    def build(self,
              common_prefix_len: int,
              common_attn_metadata: CommonAttentionMetadata,
              fast_build: bool = False) -> M:
        """
        Central method that builds attention metadata.
        Some builders (MLA) require reorder_batch to be called prior to build.

        Args:
            common_prefix_len: The length of the common prefix of the batch.
            common_attn_metadata: The common attention metadata.
            fast_build: The meta-data will prioritize speed of building over
                then speed at execution. Can be used for spec-decode where the
                result of a build call may only be used for few layers/iters.
        """
        raise NotImplementedError

    def reorder_batch(self, input_batch: "InputBatch",
                      scheduler_output: "SchedulerOutput") -> bool:
        """
        Update the order of requests in the batch based on the attention
        backend's needs. For example, some attention backends (namely MLA) may
        want to separate requests based on if the attention computation will be
        compute-bound or memory-bound.

        Args:
            input_batch: input batch
            scheduler_output: scheduler output.

        Returns:
            True if the batch was modified, False otherwise.
        """
        raise NotImplementedError

    def build_for_cudagraph_capture(
            self, common_attn_metadata: CommonAttentionMetadata) -> M:
        """
        Build attention metadata for CUDA graph capture. Uses build by default.
        Subclasses that override this method should call self.build or
        super().build_for_cudagraph_capture.
        """
        return self.build(common_prefix_len=0,
                          common_attn_metadata=common_attn_metadata)

    def build_for_drafting(
        self,
        common_attn_metadata: CommonAttentionMetadata,
        draft_index: int,
    ) -> M:
        """
        Build attention metadata for draft model. Uses build by default.

        Args:
            common_attn_metadata: The common attention metadata.
            draft_index: The index of the current draft operation.
                When speculating a chain of tokens, this index refers to the
                draft attempt for the i-th token.
                For tree-based attention, this index instead refers to the
                draft attempt for the i-th level in the tree of tokens.
        """
        return self.build(common_prefix_len=0,
                          common_attn_metadata=common_attn_metadata,
                          fast_build=True)

    def use_cascade_attention(
        self,
        common_prefix_len: int,
        query_lens: np.ndarray,
        num_query_heads: int,
        num_kv_heads: int,
        use_alibi: bool,
        use_sliding_window: bool,
        use_local_attention: bool,
        num_sms: int,
    ) -> bool:
        return False

cudagraph_support class-attribute

cudagraph_support: AttentionCGSupport = NEVER

device instance-attribute

device = device

kv_cache_spec instance-attribute

kv_cache_spec = kv_cache_spec

layer_names instance-attribute

layer_names = layer_names

reorder_batch_threshold class-attribute instance-attribute

reorder_batch_threshold: Optional[int] = None

vllm_config instance-attribute

vllm_config = vllm_config

__init__ abstractmethod

__init__(
    kv_cache_spec: AttentionSpec,
    layer_names: list[str],
    vllm_config: VllmConfig,
    device: device,
)
Source code in vllm/v1/attention/backends/utils.py
@abstractmethod
def __init__(self, kv_cache_spec: AttentionSpec, layer_names: list[str],
             vllm_config: VllmConfig, device: torch.device):
    self.kv_cache_spec = kv_cache_spec
    self.layer_names = layer_names
    self.vllm_config = vllm_config
    self.device = device

_init_reorder_batch_threshold

_init_reorder_batch_threshold(
    reorder_batch_threshold: int = 1,
    supports_spec_as_decode: bool = False,
) -> None
Source code in vllm/v1/attention/backends/utils.py
def _init_reorder_batch_threshold(
        self,
        reorder_batch_threshold: int = 1,
        supports_spec_as_decode: bool = False) -> None:
    self.reorder_batch_threshold = reorder_batch_threshold
    if self.reorder_batch_threshold is not None \
        and supports_spec_as_decode:
        # If the backend supports spec-as-decode kernels, then we can set
        # the reorder_batch_threshold based on the number of speculative
        # tokens from the config.
        speculative_config = self.vllm_config.speculative_config
        if (speculative_config is not None
                and speculative_config.num_speculative_tokens is not None):
            self.reorder_batch_threshold = \
                1 + speculative_config.num_speculative_tokens

build abstractmethod

build(
    common_prefix_len: int,
    common_attn_metadata: CommonAttentionMetadata,
    fast_build: bool = False,
) -> M

Central method that builds attention metadata. Some builders (MLA) require reorder_batch to be called prior to build.

Parameters:

Name Type Description Default
common_prefix_len int

The length of the common prefix of the batch.

required
common_attn_metadata CommonAttentionMetadata

The common attention metadata.

required
fast_build bool

The meta-data will prioritize speed of building over then speed at execution. Can be used for spec-decode where the result of a build call may only be used for few layers/iters.

False
Source code in vllm/v1/attention/backends/utils.py
@abstractmethod
def build(self,
          common_prefix_len: int,
          common_attn_metadata: CommonAttentionMetadata,
          fast_build: bool = False) -> M:
    """
    Central method that builds attention metadata.
    Some builders (MLA) require reorder_batch to be called prior to build.

    Args:
        common_prefix_len: The length of the common prefix of the batch.
        common_attn_metadata: The common attention metadata.
        fast_build: The meta-data will prioritize speed of building over
            then speed at execution. Can be used for spec-decode where the
            result of a build call may only be used for few layers/iters.
    """
    raise NotImplementedError

build_for_cudagraph_capture

build_for_cudagraph_capture(
    common_attn_metadata: CommonAttentionMetadata,
) -> M

Build attention metadata for CUDA graph capture. Uses build by default. Subclasses that override this method should call self.build or super().build_for_cudagraph_capture.

Source code in vllm/v1/attention/backends/utils.py
def build_for_cudagraph_capture(
        self, common_attn_metadata: CommonAttentionMetadata) -> M:
    """
    Build attention metadata for CUDA graph capture. Uses build by default.
    Subclasses that override this method should call self.build or
    super().build_for_cudagraph_capture.
    """
    return self.build(common_prefix_len=0,
                      common_attn_metadata=common_attn_metadata)

build_for_drafting

build_for_drafting(
    common_attn_metadata: CommonAttentionMetadata,
    draft_index: int,
) -> M

Build attention metadata for draft model. Uses build by default.

Parameters:

Name Type Description Default
common_attn_metadata CommonAttentionMetadata

The common attention metadata.

required
draft_index int

The index of the current draft operation. When speculating a chain of tokens, this index refers to the draft attempt for the i-th token. For tree-based attention, this index instead refers to the draft attempt for the i-th level in the tree of tokens.

required
Source code in vllm/v1/attention/backends/utils.py
def build_for_drafting(
    self,
    common_attn_metadata: CommonAttentionMetadata,
    draft_index: int,
) -> M:
    """
    Build attention metadata for draft model. Uses build by default.

    Args:
        common_attn_metadata: The common attention metadata.
        draft_index: The index of the current draft operation.
            When speculating a chain of tokens, this index refers to the
            draft attempt for the i-th token.
            For tree-based attention, this index instead refers to the
            draft attempt for the i-th level in the tree of tokens.
    """
    return self.build(common_prefix_len=0,
                      common_attn_metadata=common_attn_metadata,
                      fast_build=True)

reorder_batch

reorder_batch(
    input_batch: InputBatch,
    scheduler_output: SchedulerOutput,
) -> bool

Update the order of requests in the batch based on the attention backend's needs. For example, some attention backends (namely MLA) may want to separate requests based on if the attention computation will be compute-bound or memory-bound.

Parameters:

Name Type Description Default
input_batch InputBatch

input batch

required
scheduler_output SchedulerOutput

scheduler output.

required

Returns:

Type Description
bool

True if the batch was modified, False otherwise.

Source code in vllm/v1/attention/backends/utils.py
def reorder_batch(self, input_batch: "InputBatch",
                  scheduler_output: "SchedulerOutput") -> bool:
    """
    Update the order of requests in the batch based on the attention
    backend's needs. For example, some attention backends (namely MLA) may
    want to separate requests based on if the attention computation will be
    compute-bound or memory-bound.

    Args:
        input_batch: input batch
        scheduler_output: scheduler output.

    Returns:
        True if the batch was modified, False otherwise.
    """
    raise NotImplementedError

use_cascade_attention

use_cascade_attention(
    common_prefix_len: int,
    query_lens: ndarray,
    num_query_heads: int,
    num_kv_heads: int,
    use_alibi: bool,
    use_sliding_window: bool,
    use_local_attention: bool,
    num_sms: int,
) -> bool
Source code in vllm/v1/attention/backends/utils.py
def use_cascade_attention(
    self,
    common_prefix_len: int,
    query_lens: np.ndarray,
    num_query_heads: int,
    num_kv_heads: int,
    use_alibi: bool,
    use_sliding_window: bool,
    use_local_attention: bool,
    num_sms: int,
) -> bool:
    return False

CommonAttentionMetadata dataclass

Per-batch attention metadata, shared across layers and backends. AttentionMetadataBuilder instances use it to construct per-layer metadata.

For many of the tensors we keep both GPU and CPU versions.

Source code in vllm/v1/attention/backends/utils.py
@dataclass
class CommonAttentionMetadata:
    """
    Per-batch attention metadata, shared across layers and backends.
    AttentionMetadataBuilder instances use it to construct per-layer metadata.

    For many of the tensors we keep both GPU and CPU versions.
    """

    query_start_loc: torch.Tensor
    query_start_loc_cpu: torch.Tensor
    """(batch_size + 1,), the start location of each request in query Tensor"""

    seq_lens: torch.Tensor
    seq_lens_cpu: torch.Tensor
    """(batch_size,), the length of each request including both computed tokens
    and newly scheduled tokens"""

    num_computed_tokens_cpu: torch.Tensor
    """(batch_size,), the number of computed tokens for each request"""

    num_reqs: int
    """Number of requests"""
    num_actual_tokens: int
    """Total number of tokens in batch"""
    max_query_len: int
    """Longest query in batch"""
    max_seq_len: int
    """Longest context length in batch"""

    block_table_tensor: torch.Tensor
    slot_mapping: torch.Tensor

    causal: bool = True

    # Needed by FastPrefillAttentionBuilder
    logits_indices_padded: Optional[torch.Tensor] = None
    num_logits_indices: Optional[int] = None

    # Needed by CrossAttentionBuilder
    encoder_seq_lens: Optional[np.ndarray] = None

block_table_tensor instance-attribute

block_table_tensor: Tensor

causal class-attribute instance-attribute

causal: bool = True

encoder_seq_lens class-attribute instance-attribute

encoder_seq_lens: Optional[ndarray] = None

logits_indices_padded class-attribute instance-attribute

logits_indices_padded: Optional[Tensor] = None

max_query_len instance-attribute

max_query_len: int

Longest query in batch

max_seq_len instance-attribute

max_seq_len: int

Longest context length in batch

num_actual_tokens instance-attribute

num_actual_tokens: int

Total number of tokens in batch

num_computed_tokens_cpu instance-attribute

num_computed_tokens_cpu: Tensor

(batch_size,), the number of computed tokens for each request

num_logits_indices class-attribute instance-attribute

num_logits_indices: Optional[int] = None

num_reqs instance-attribute

num_reqs: int

Number of requests

query_start_loc instance-attribute

query_start_loc: Tensor

query_start_loc_cpu instance-attribute

query_start_loc_cpu: Tensor

(batch_size + 1,), the start location of each request in query Tensor

seq_lens instance-attribute

seq_lens: Tensor

seq_lens_cpu instance-attribute

seq_lens_cpu: Tensor

(batch_size,), the length of each request including both computed tokens and newly scheduled tokens

slot_mapping instance-attribute

slot_mapping: Tensor

__init__

__init__(
    query_start_loc: Tensor,
    query_start_loc_cpu: Tensor,
    seq_lens: Tensor,
    seq_lens_cpu: Tensor,
    num_computed_tokens_cpu: Tensor,
    num_reqs: int,
    num_actual_tokens: int,
    max_query_len: int,
    max_seq_len: int,
    block_table_tensor: Tensor,
    slot_mapping: Tensor,
    causal: bool = True,
    logits_indices_padded: Optional[Tensor] = None,
    num_logits_indices: Optional[int] = None,
    encoder_seq_lens: Optional[ndarray] = None,
) -> None

KVSharingFastPrefillMetadata

Bases: Protocol

Source code in vllm/v1/attention/backends/utils.py
@runtime_checkable
class KVSharingFastPrefillMetadata(Protocol):
    logits_indices_padded: torch.Tensor
    num_logits_indices: int

logits_indices_padded instance-attribute

logits_indices_padded: Tensor

num_logits_indices instance-attribute

num_logits_indices: int

PerLayerParameters dataclass

Currently, FlashInfer backend only support models in which all layers share the same values for the following hyperparameters. Should not be used for trtllm-gen backend since it supports different values for the following hyperparameters.

Source code in vllm/v1/attention/backends/utils.py
@dataclass
class PerLayerParameters:
    """
    Currently, FlashInfer backend only support models in which all layers share
    the same values for the following hyperparameters. Should not be used for
    trtllm-gen backend since it supports different values for the following
    hyperparameters.
    """

    window_left: int
    logits_soft_cap: Optional[float]
    sm_scale: float
    has_sinks: bool = False

has_sinks class-attribute instance-attribute

has_sinks: bool = False

logits_soft_cap instance-attribute

logits_soft_cap: Optional[float]

sm_scale instance-attribute

sm_scale: float

window_left instance-attribute

window_left: int

__init__

__init__(
    window_left: int,
    logits_soft_cap: Optional[float],
    sm_scale: float,
    has_sinks: bool = False,
) -> None

_make_metadata_with_slice

_make_metadata_with_slice(
    ubatch_slice: UBatchSlice,
    attn_metadata: CommonAttentionMetadata,
) -> CommonAttentionMetadata

This function creates a new CommonAttentionMetadata that corresponds to the requests included in ubatch_slice

Source code in vllm/v1/attention/backends/utils.py
def _make_metadata_with_slice(
        ubatch_slice: UBatchSlice,
        attn_metadata: CommonAttentionMetadata) -> CommonAttentionMetadata:
    """
    This function creates a new CommonAttentionMetadata that corresponds to 
    the requests included in ubatch_slice
    """

    assert not ubatch_slice.is_empty(), (
        f"Ubatch slice {ubatch_slice} is empty")

    request_slice = ubatch_slice.request_slice
    token_slice = ubatch_slice.token_slice

    start_locs = attn_metadata.query_start_loc_cpu
    first_req = request_slice.start
    first_tok = token_slice.start
    last_req = request_slice.stop - 1
    last_tok = token_slice.stop - 1

    assert start_locs[first_req] <= first_tok < start_locs[first_req + 1], \
        "Token slice start outside of first request"
    assert start_locs[last_req] <= last_tok < start_locs[last_req+1], \
        "Token slice end outside of last request"

    # If the "middle" request has tokens in both ubatches, we have to split it.
    # If ubatch_slice is the first ubatch then we will be splitting the last
    # request. If it's the second microbatch, then we will be splitting the
    # first request
    splits_first_request = first_tok > start_locs[first_req]
    splits_last_request = last_tok < start_locs[last_req + 1] - 1

    query_start_loc_cpu = slice_query_start_locs(start_locs, request_slice)
    query_start_loc = slice_query_start_locs(attn_metadata.query_start_loc,
                                             request_slice)

    assert len(query_start_loc) >= 2, (
        f"query_start_loc must have at least 2 elements, "
        f"got {len(query_start_loc)}")

    if splits_first_request:
        tokens_skipped = first_tok - start_locs[first_req]
        query_start_loc[1:] -= tokens_skipped
        query_start_loc_cpu[1:] -= tokens_skipped
    seq_lens = attn_metadata.seq_lens[request_slice]
    seq_lens_cpu = attn_metadata.seq_lens_cpu[request_slice]

    if splits_last_request:
        tokens_skipped = query_start_loc_cpu[-1] - token_slice.stop
        query_start_loc[-1] -= tokens_skipped
        query_start_loc_cpu[-1] -= tokens_skipped

        # Make sure we don't modify the seq_lens tensors
        #  (not cudagraph compatible)
        seq_lens = seq_lens.clone()
        seq_lens_cpu = seq_lens_cpu.clone()
        seq_lens[-1] -= tokens_skipped
        seq_lens_cpu[-1] -= tokens_skipped

    max_seq_len = int(seq_lens_cpu.max())
    num_computed_tokens_cpu = attn_metadata.num_computed_tokens_cpu[
        request_slice]

    num_requests = request_slice.stop - request_slice.start
    num_actual_tokens = token_slice.stop - token_slice.start
    max_query_len = int(
        torch.max(torch.abs(query_start_loc_cpu[1:] -
                            query_start_loc_cpu[:-1])).item())

    # This is to account for the case where we are in a dummy
    # run and query_start_loc_cpu is full of 0s
    if max_query_len == 0:
        max_query_len = attn_metadata.max_query_len

    block_table_tensor = attn_metadata.block_table_tensor[request_slice]
    slot_mapping = attn_metadata.slot_mapping[token_slice]

    return CommonAttentionMetadata(
        query_start_loc=query_start_loc,
        query_start_loc_cpu=query_start_loc_cpu,
        seq_lens=seq_lens,
        seq_lens_cpu=seq_lens_cpu,
        num_computed_tokens_cpu=num_computed_tokens_cpu,
        num_reqs=num_requests,
        num_actual_tokens=num_actual_tokens,
        max_query_len=max_query_len,
        max_seq_len=max_seq_len,
        block_table_tensor=block_table_tensor,
        slot_mapping=slot_mapping,
    )

compute_causal_conv1d_metadata

compute_causal_conv1d_metadata(query_start_loc_p: Tensor)
Source code in vllm/v1/attention/backends/utils.py
def compute_causal_conv1d_metadata(query_start_loc_p: torch.Tensor):

    # Needed for causal_conv1d
    seqlens = query_start_loc_p.diff().to('cpu')
    nums_dict = {}  # type: ignore
    batch_ptr = None
    token_chunk_offset_ptr = None
    device = query_start_loc_p.device
    for BLOCK_M in [8]:  # cover all BLOCK_M values
        nums = -(-seqlens // BLOCK_M)
        nums_dict[BLOCK_M] = {}
        nums_dict[BLOCK_M]['nums'] = nums
        nums_dict[BLOCK_M]['tot'] = nums.sum().item()
        mlist = torch.from_numpy(np.repeat(np.arange(len(nums)), nums))
        nums_dict[BLOCK_M]['mlist'] = mlist
        mlist_len = len(nums_dict[BLOCK_M]['mlist'])
        nums_dict[BLOCK_M]['mlist_len'] = mlist_len
        MAX_NUM_PROGRAMS = max(1024, mlist_len) * 2
        offsetlist = []  # type: ignore
        for idx, num in enumerate(nums):
            offsetlist.extend(range(num))
        offsetlist = torch.tensor(offsetlist, dtype=torch.int32)
        nums_dict[BLOCK_M]['offsetlist'] = offsetlist

        if batch_ptr is None:
            # Update default value after class definition
            batch_ptr = torch.full((MAX_NUM_PROGRAMS, ),
                                   PAD_SLOT_ID,
                                   dtype=torch.int32,
                                   device=device)
            token_chunk_offset_ptr = torch.full((MAX_NUM_PROGRAMS, ),
                                                PAD_SLOT_ID,
                                                dtype=torch.int32,
                                                device=device)
        else:
            if batch_ptr.nelement() < MAX_NUM_PROGRAMS:
                batch_ptr.resize_(MAX_NUM_PROGRAMS).fill_(PAD_SLOT_ID)
                token_chunk_offset_ptr.resize_(  # type: ignore
                    MAX_NUM_PROGRAMS).fill_(PAD_SLOT_ID)

        batch_ptr[0:mlist_len].copy_(mlist)
        token_chunk_offset_ptr[  # type: ignore
            0:mlist_len].copy_(offsetlist)
        nums_dict[BLOCK_M]['batch_ptr'] = batch_ptr
        nums_dict[BLOCK_M]['token_chunk_offset_ptr'] = (token_chunk_offset_ptr
                                                        )  # type: ignore

    return nums_dict, batch_ptr, token_chunk_offset_ptr

create_fast_prefill_custom_backend

create_fast_prefill_custom_backend(
    prefix: str, underlying_attn_backend: AttentionBackend
) -> type[AttentionBackend]
Source code in vllm/v1/attention/backends/utils.py
def create_fast_prefill_custom_backend(
    prefix: str,
    underlying_attn_backend: AttentionBackend,
) -> type[AttentionBackend]:

    underlying_builder = underlying_attn_backend.get_builder_cls()

    class FastPrefillAttentionBuilder(underlying_builder):  # type: ignore

        def build(self,
                  common_prefix_len: int,
                  common_attn_metadata: CommonAttentionMetadata,
                  fast_build: bool = False) -> AttentionMetadata:
            new_common_attn_metadata =\
            make_kv_sharing_fast_prefill_common_attn_metadata(common_attn_metadata)
            metadata = super().build(common_prefix_len,
                                     new_common_attn_metadata, fast_build)

            class KVSharingFastPrefillAttentionMetadata(
                    metadata.__class__,  #  type: ignore
                    KVSharingFastPrefillMetadata):

                def __init__(self, metadata, common_attn_metadata):
                    # Shallow copy all fields in metadata cls
                    for field in fields(metadata.__class__):
                        setattr(self, field.name,
                                getattr(metadata, field.name))

                    # Set additional fields that will be used in model code
                    assert (common_attn_metadata.logits_indices_padded
                            is not None
                            and common_attn_metadata.num_logits_indices
                            is not None)
                    self.logits_indices_padded = \
                        common_attn_metadata.logits_indices_padded
                    self.num_logits_indices = \
                        common_attn_metadata.num_logits_indices

            return KVSharingFastPrefillAttentionMetadata(
                metadata, common_attn_metadata)

    attn_backend = subclass_attention_backend(
        name_prefix=prefix,
        attention_backend_cls=underlying_attn_backend,
        builder_cls=FastPrefillAttentionBuilder)

    return attn_backend

get_kv_cache_layout cached

get_kv_cache_layout()
Source code in vllm/v1/attention/backends/utils.py
@functools.lru_cache
def get_kv_cache_layout():
    # Format specified by the code.
    global _KV_CACHE_LAYOUT_OVERRIDE

    if _KV_CACHE_LAYOUT_OVERRIDE is not None:
        cache_layout = _KV_CACHE_LAYOUT_OVERRIDE
        logger.info_once("`_KV_CACHE_LAYOUT_OVERRIDE` variable detected. " \
                         "Setting KV cache layout to %s.", cache_layout)
        return cache_layout

    # Format specified by the user.
    cache_layout = envs.VLLM_KV_CACHE_LAYOUT
    # When neither the user nor the override specified a layout, get default
    if cache_layout is None:
        cache_layout = get_kv_connector_cache_layout()
    else:
        assert is_valid_kv_cache_layout(cache_layout)
        logger.info_once("`VLLM_KV_CACHE_LAYOUT` environment variable " \
        "detected. Setting KV cache layout to %s.", cache_layout)
    return cache_layout

get_per_layer_parameters

get_per_layer_parameters(
    vllm_config: VllmConfig,
    layer_names: list[str],
    cls_: type[AttentionImpl],
) -> dict[str, PerLayerParameters]

Scan layers in layer_names and determine some hyperparameters to use during plan.

Source code in vllm/v1/attention/backends/utils.py
def get_per_layer_parameters(
        vllm_config: VllmConfig, layer_names: list[str],
        cls_: type['AttentionImpl']) -> dict[str, PerLayerParameters]:
    """
    Scan layers in `layer_names` and determine some hyperparameters
    to use during `plan`.
    """

    layers = get_layers_from_vllm_config(vllm_config, Attention, layer_names)
    per_layer_params: dict[str, PerLayerParameters] = {}

    for key, layer in layers.items():
        impl = layer.impl
        assert isinstance(impl, cls_)

        # Infer hyperparameters from the attention layer
        window_size = getattr(impl, "sliding_window", None)
        window_left = window_size[0] if window_size is not None else -1
        logits_soft_cap = getattr(impl, "logits_soft_cap", None)
        sm_scale = impl.scale
        has_sinks = getattr(impl, "sinks", None) is not None

        per_layer_params[key] = PerLayerParameters(window_left,
                                                   logits_soft_cap, sm_scale,
                                                   has_sinks)

    return per_layer_params

infer_global_hyperparameters

infer_global_hyperparameters(
    per_layer_params: dict[str, PerLayerParameters],
) -> PerLayerParameters

Currently, FlashInfer backend other than trtllm-gen only support models in which all layers share the same values for the following hyperparameters: - window_left - logits_soft_cap - sm_scale

So this function asserts that all layers share the same values for these hyperparameters and returns the global values.

Source code in vllm/v1/attention/backends/utils.py
def infer_global_hyperparameters(
        per_layer_params: dict[str, PerLayerParameters]) -> PerLayerParameters:
    """
    Currently, FlashInfer backend other than trtllm-gen 
    only support models in which all layers share
    the same values for the following hyperparameters:
    - `window_left`
    - `logits_soft_cap`
    - `sm_scale`

    So this function asserts that all layers share the same values for these
    hyperparameters and returns the global values.
    """

    assert len(per_layer_params) > 0, "No attention layers found in the model."

    param_sets = list(per_layer_params.values())
    global_params = param_sets[0]

    # trtllm attention doesn't need global hyper params so disable the check
    if not envs.VLLM_USE_TRTLLM_ATTENTION:
        for params in param_sets:
            if params.window_left != global_params.window_left:
                raise ValueError(
                    "Window left is not the same for all layers. " \
                    "One potential fix is to set disable_sliding_window=True")
            assert params == global_params, (
                "FlashInfer backend currently only supports models in which all"
                "layers share the same values "
                "for the following hyperparameters:"
                "`window_left`, `logits_soft_cap`, `sm_scale`.")

    return global_params

is_valid_kv_cache_layout

is_valid_kv_cache_layout(value: str) -> bool
Source code in vllm/v1/attention/backends/utils.py
def is_valid_kv_cache_layout(value: str) -> bool:
    return value in get_args(KVCacheLayoutType)

make_kv_sharing_fast_prefill_common_attn_metadata

make_kv_sharing_fast_prefill_common_attn_metadata(
    common_attn_metadata: CommonAttentionMetadata,
) -> CommonAttentionMetadata
Source code in vllm/v1/attention/backends/utils.py
def make_kv_sharing_fast_prefill_common_attn_metadata(
    common_attn_metadata: CommonAttentionMetadata,
) -> CommonAttentionMetadata:
    if common_attn_metadata.max_query_len == 1:
        # All requests are decode (assume 1 token for now)
        # Skip computing fast prefill path
        return common_attn_metadata

    assert common_attn_metadata.logits_indices_padded is not None
    assert common_attn_metadata.num_logits_indices is not None

    logits_indices_padded = common_attn_metadata.logits_indices_padded
    num_logits_indices = common_attn_metadata.num_logits_indices
    # Get rid of CUDAGraph padding, if any
    logits_indices = logits_indices_padded[:num_logits_indices]
    num_reqs = common_attn_metadata.num_reqs
    query_start_loc = common_attn_metadata.query_start_loc
    seq_lens = common_attn_metadata.seq_lens
    # Example inputs
    # num_reqs: 3
    # generation_indices:  [14, 18, 19, 27]
    # query_start_loc: [0, 15, 20, 28]
    # seq_lens:        [41, 31, 40]

    # Find how many decode indices belong to each request
    # request_ids: [0, 1, 1, 2]
    request_ids = torch.bucketize(logits_indices,
                                  query_start_loc[1:],
                                  right=True)

    # Figure out how many tokens are in each request
    # num_decode_tokens: [1, 2, 1]
    num_decode_tokens = torch.bincount(request_ids, minlength=num_reqs)

    # Calculate new query_start_loc with tokens in generation_indices
    # decode_query_start_loc: [0, 1, 3, 4]
    decode_query_start_loc = torch.empty(num_reqs + 1,
                                         device=query_start_loc.device,
                                         dtype=query_start_loc.dtype)

    decode_query_start_loc[0] = 0
    decode_query_start_loc[1:] = torch.cumsum(num_decode_tokens, dim=0)
    decode_max_query_len = int(num_decode_tokens.max().item())
    total_num_decode_tokens = int(num_decode_tokens.sum().item())

    common_attn_metadata = CommonAttentionMetadata(
        query_start_loc=decode_query_start_loc,
        query_start_loc_cpu=decode_query_start_loc.to("cpu",
                                                      non_blocking=True),
        seq_lens=seq_lens,
        seq_lens_cpu=seq_lens.to("cpu", non_blocking=True),
        num_computed_tokens_cpu=common_attn_metadata.num_computed_tokens_cpu,
        num_reqs=num_reqs,
        num_actual_tokens=total_num_decode_tokens,
        max_query_len=decode_max_query_len,
        max_seq_len=common_attn_metadata.max_seq_len,
        block_table_tensor=common_attn_metadata.block_table_tensor,
        slot_mapping=common_attn_metadata.slot_mapping,
        causal=True,
    )
    return common_attn_metadata

make_local_attention_virtual_batches

make_local_attention_virtual_batches(
    attn_chunk_size: int,
    common_attn_metadata: CommonAttentionMetadata,
    block_size: int = 0,
) -> CommonAttentionMetadata
Source code in vllm/v1/attention/backends/utils.py
def make_local_attention_virtual_batches(
    attn_chunk_size: int,
    common_attn_metadata: CommonAttentionMetadata,
    block_size: int = 0,
) -> CommonAttentionMetadata:
    query_start_loc_np = common_attn_metadata.query_start_loc_cpu.numpy()
    seq_lens_np = common_attn_metadata.seq_lens_cpu.numpy()
    block_table = common_attn_metadata.block_table_tensor
    device = common_attn_metadata.query_start_loc.device

    q_seqlens = query_start_loc_np[1:] - query_start_loc_np[:-1]
    actual_batch_size = seq_lens_np.shape[0]

    # Handle if we are starting in the middle of a local attention block,
    #  we assume q_seqlens > 0 (for all elements), for each batch idx we compute
    #  the number of tokens that are not in the first local attention block and
    #  then we can simply use a cdiv for the rest.
    # For example if we have:
    #   attn_chunk_size = 4
    #   q_seqlens = [4, 10, 5]
    #   k_seqlens = [6, 17, 9]
    # Then we would get:
    #   new_tokens_in_first_block = [2, 1, 4]
    #   local_blocks = [2, 4, 2]
    q_tokens_in_first_block = np.minimum(
        attn_chunk_size - ((seq_lens_np - q_seqlens) % attn_chunk_size),
        q_seqlens).astype(np.int32)
    tokens_in_last_block = attn_chunk_size + (seq_lens_np % -attn_chunk_size)
    local_blocks = 1 + cdiv(q_seqlens - q_tokens_in_first_block,
                            attn_chunk_size)

    # Once we know the number of local blocks we can compute the request spans
    #  for each batch idx, we can figure out the number of "virtual" requests we
    #  have to make,
    # For the above example we would get:
    #   seqlens_q_local = [2, 2, 1, 4, 4, 1, 4, 1]
    #
    # First Get batched arange. (E.g., [2, 4, 2] -> [0, 1, 0, 1, 2, 3, 0, 1])
    #   (TODO: max a utility to share this code with _prepare_inputs)
    # arange step 1. [2, 4, 2] -> [2, 6, 8]
    cu_num_blocks = np.cumsum(local_blocks)
    virtual_batches = cu_num_blocks[-1]
    # arange step 2. [2, 6, 8] -> [0, 0, 2, 2, 2, 2, 6, 6]
    block_offsets = np.repeat(cu_num_blocks - local_blocks, local_blocks)
    # arange step 3. [0, 1, 0, 1, 2, 3, 0, 1]
    arange = np.arange(virtual_batches, dtype=np.int32) - block_offsets
    # also compute reverse arange (i.e. [1, 0, 3, 2, 1, 0, 1, 0])
    rarange = np.repeat(local_blocks, local_blocks) - arange - 1
    # Then we can compute the seqlens_q_local, handling the fact that the
    #  first and last blocks could be partial
    seqlens_q_local = \
        np.repeat(q_seqlens - q_tokens_in_first_block, local_blocks)
    # set the first block since this may be a partial block
    seqlens_q_local[arange == 0] = q_tokens_in_first_block
    # set the remaining blocks
    seqlens_q_local[arange > 0] = np.minimum(
        seqlens_q_local - attn_chunk_size * (arange - 1),
        attn_chunk_size)[arange > 0]

    # convert from q_seqlens to cu_seqlens_q
    cu_seqlens_q_local = np.empty(virtual_batches + 1, dtype=np.int32)
    np.cumsum(seqlens_q_local, out=cu_seqlens_q_local[1:])
    cu_seqlens_q_local[0] = 0

    # compute the seqlens_k_local,
    #  basically a full local attention block for all but the last block in each
    #  batch
    # For our example this will be:
    #   seqlens_k_local = [4, 2, 4, 4, 4, 1, 4, 1]
    seqlens_k_local = np.full(cu_num_blocks[-1],
                              attn_chunk_size,
                              dtype=np.int32)
    seqlens_k_local[cu_num_blocks - 1] = tokens_in_last_block
    num_computed_tokens_local = seqlens_k_local - seqlens_q_local

    k_seqstarts_absolute = np.repeat(seq_lens_np, local_blocks) - \
        (rarange * attn_chunk_size + \
            np.repeat(tokens_in_last_block, local_blocks))
    # For the example the local attention blocks start at:
    #                           _b0_  _____b1_____  _b2_
    #   k_seqstarts_absolute = [0, 4, 4, 8, 12, 16, 4, 8]
    block_starts = k_seqstarts_absolute // block_size
    assert attn_chunk_size % block_size == 0, \
        f"attn_chunk_size {attn_chunk_size} is not " \
        f"divisible by block_size {block_size}"
    pages_per_local_batch = attn_chunk_size // block_size

    # Create a block_table for the local attention blocks
    # For out example if we have a block-table like (assuming block_size=2):
    #   block_table = [
    #     [ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9],  < batch 0
    #     [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],  < batch 1
    #     [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],  < batch 2
    #   ]
    # Then for the local batches we would want a block-table like
    #   block_table_local = [
    #     [  0,  1 ], < local-batch 0, (batch 0, starting from k[0])
    #     [  2,  3 ], < local-batch 1, (batch 0, starting from k[4])
    #     [ 12, 13 ], < local-batch 2, (batch 1, starting from k[4])
    #     [ 14, 15 ], < local-batch 3, (batch 1, starting from k[8])
    #     [ 16, 17 ], < local-batch 4, (batch 1, starting from k[12])
    #     [ 18, 19 ], < local-batch 5, (batch 1, starting from k[16])
    #     [ 22, 23 ], < local-batch 6, (batch 2, starting from k[4])
    #     [ 24, 25 ], < local-batch 7, (batch 2, starting from k[8])
    #   ]
    block_indices = (block_starts[:, None] +
                     np.arange(pages_per_local_batch, dtype=np.int32))
    block_indices = block_indices.reshape(-1).clip(max=block_table.shape[1] -
                                                   1)
    batch_indices = np.repeat(np.arange(actual_batch_size, dtype=np.int32),
                              local_blocks * pages_per_local_batch)

    # NOTE: https://github.com/pytorch/pytorch/pull/160256 causes performance
    # regression when using numpy arrays (batch and block indices) to index into
    # torch tensor (block_table). As a workaround, convert numpy arrays to torch
    # tensor first, which recovers perf.
    batch_indices_torch = torch.from_numpy(batch_indices)
    block_indices_torch = torch.from_numpy(block_indices)
    block_table_local = block_table[batch_indices_torch, block_indices_torch]\
        .view(virtual_batches, -1)

    query_start_loc_cpu = torch.from_numpy(cu_seqlens_q_local)
    seq_lens_cpu = torch.from_numpy(seqlens_k_local)
    max_seq_len = int(seq_lens_cpu.max())

    return CommonAttentionMetadata(
        query_start_loc_cpu=query_start_loc_cpu,
        query_start_loc=query_start_loc_cpu.to(device=device,
                                               non_blocking=True),
        seq_lens_cpu=seq_lens_cpu,
        seq_lens=seq_lens_cpu.to(device=device, non_blocking=True),
        num_computed_tokens_cpu=torch.from_numpy(num_computed_tokens_local),
        num_reqs=len(seq_lens_cpu),
        num_actual_tokens=common_attn_metadata.num_actual_tokens,
        max_query_len=seqlens_q_local.max(),
        max_seq_len=max_seq_len,
        block_table_tensor=block_table_local,
        slot_mapping=common_attn_metadata.slot_mapping,
        causal=True,
    )

reorder_batch_to_split_decodes_and_prefills

reorder_batch_to_split_decodes_and_prefills(
    input_batch: InputBatch,
    scheduler_output: SchedulerOutput,
    decode_threshold: int = 1,
) -> bool

Reorders the batch to split into prefill and decode requests; places all requests with <= decode_threshold tokens at the front of the batch.

Returns:

Type Description
bool

True if the batch was modified, False otherwise.

Source code in vllm/v1/attention/backends/utils.py
def reorder_batch_to_split_decodes_and_prefills(
    input_batch: "InputBatch",
    scheduler_output: "SchedulerOutput",
    decode_threshold: int = 1,
) -> bool:
    """
    Reorders the batch to split into prefill and decode requests; places all
    requests with <= decode_threshold tokens at the front of the batch.

    Returns:
        True if the batch was modified, False otherwise.
    """
    # We now want to reorder the batch so that the "decode" requests are at
    # the front and the "prefill" requests are at the back using the least
    # amount of swaps possible. (NOTE for now we loosely use "decode" to mean
    # requests where attention is likely memory-bound and "prefill" to mean
    # requests where attention is likely compute-bound, TODO(lucas): figure out
    # a better naming here)
    decodes = []
    prefills = []
    num_decode_tokens = 0
    num_prefill_tokens = 0

    for i, req_id in enumerate(input_batch.req_ids):
        num_tokens = scheduler_output.num_scheduled_tokens[req_id]
        # for now treat 1 scheduled token as "decode" even if it's not,
        # we should update this to something like < 8 in the future but
        # currently the TritonMLA._forward_decode only supports
        # num_tokens = 1
        if num_tokens <= decode_threshold:
            decodes.append(i)
            num_decode_tokens += num_tokens
        else:
            prefills.append(i)
            num_prefill_tokens += num_tokens

    # We hope that this is fairly minimal since decodes
    # should be around for a number of iterations so hopefully they are
    # relatively stationary (and new request are generally appended to the
    # persistent batch so already should be at the back)
    # To achieve this we loop over the decodes in descending order and
    # the prefills in ascending order. We swap decodes from the  "back"
    # i.e. past where the last decode should be in the reodorered with
    # prefills from the front of the batch.
    # `decodes` and `prefills` are already in ascending order just based on
    # the above loop
    num_decodes = len(decodes)
    num_prefills = len(prefills)
    modified_batch = False

    for i in range(1, min(num_decodes, num_prefills) + 1):
        # If the decode is at the "back" of the batch, i, we can swap it
        # with the prefill closest to the front of the batch
        decode_idx = decodes[num_decodes - i]
        if decode_idx < num_decodes:
            break

        input_batch.swap_states(prefills[i - 1], decode_idx)
        modified_batch = True

    return modified_batch

reshape_attn_output_for_spec_decode

reshape_attn_output_for_spec_decode(
    attn_output: Tensor,
) -> Tensor

Reshapes the attention output tensor, so that the batch_size and seq_len dimensions are combined.

Source code in vllm/v1/attention/backends/utils.py
def reshape_attn_output_for_spec_decode(
        attn_output: torch.Tensor) -> torch.Tensor:
    """
    Reshapes the attention output tensor, so that
    the batch_size and seq_len dimensions are combined.
    """
    if attn_output.dim() == 3:
        # Already in the correct shape
        return attn_output
    assert attn_output.dim() == 4, \
        f"attn_output must be 4D, got {attn_output.dim()}D"
    total_tokens = attn_output.shape[0] * attn_output.shape[1]
    return attn_output.view(total_tokens, attn_output.shape[2],
                            attn_output.shape[3])

reshape_query_for_spec_decode

reshape_query_for_spec_decode(
    query: Tensor, batch_size: int
) -> Tensor

Reshapes the query tensor for the specified batch size, so that it has shape (batch_size, seq_len, num_heads, head_dim).

Source code in vllm/v1/attention/backends/utils.py
def reshape_query_for_spec_decode(query: torch.Tensor,
                                  batch_size: int) -> torch.Tensor:
    """
    Reshapes the query tensor for the specified batch size, so that
    it has shape (batch_size, seq_len, num_heads, head_dim).
    """
    assert query.dim() == 3, f"query must be 3D, got {query.dim()}D"
    total_tokens = query.shape[0]
    num_heads = query.shape[1]
    head_dim = query.shape[2]
    assert total_tokens % batch_size == 0, (
        f"{total_tokens=} is not divisible by {batch_size=}")
    seq_len = total_tokens // batch_size
    return query.view(batch_size, seq_len, num_heads, head_dim)

set_kv_cache_layout

set_kv_cache_layout(cache_layout: KVCacheLayoutType)
Source code in vllm/v1/attention/backends/utils.py
def set_kv_cache_layout(cache_layout: KVCacheLayoutType):
    global _KV_CACHE_LAYOUT_OVERRIDE
    _KV_CACHE_LAYOUT_OVERRIDE = cache_layout

slice_query_start_locs

slice_query_start_locs(
    query_start_loc: Tensor, request_slice: slice
) -> Tensor

Creates a new query_start_loc that corresponds to the requests in request_slice.

Note: This function creates a new tensor to hold the new query_start_locs. This will break cudagraph compatibility.

Source code in vllm/v1/attention/backends/utils.py
def slice_query_start_locs(
    query_start_loc: torch.Tensor,
    request_slice: slice,
) -> torch.Tensor:
    """
    Creates a new query_start_loc that corresponds to the requests in 
    request_slice.

    Note: This function creates a new tensor to hold the new query_start_locs.
    This will break cudagraph compatibility.
    """
    return query_start_loc[request_slice.start: request_slice.stop + 1] -\
        query_start_loc[request_slice.start]

split_attn_metadata

split_attn_metadata(
    ubatch_slices: list[UBatchSlice],
    common_attn_metadata: CommonAttentionMetadata,
) -> list[CommonAttentionMetadata]

Creates a new CommonAttentionMetadata instance that corresponds to the requests for each UBatchSlice in ubatch_slices.

Note: This function does not modify common_attn_metadata

Source code in vllm/v1/attention/backends/utils.py
def split_attn_metadata(
    ubatch_slices: list[UBatchSlice],
    common_attn_metadata: CommonAttentionMetadata,
) -> list[CommonAttentionMetadata]:
    """
    Creates a new CommonAttentionMetadata instance that corresponds to the 
    requests for each UBatchSlice in ubatch_slices.

    Note: This function does not modify common_attn_metadata
    """
    results = []
    for ubatch_slice in ubatch_slices:
        results.append(
            _make_metadata_with_slice(ubatch_slice, common_attn_metadata))

    return results

split_decodes_and_prefills

split_decodes_and_prefills(
    common_attn_metadata: CommonAttentionMetadata,
    decode_threshold: int = 1,
    require_uniform: bool = False,
) -> tuple[int, int, int, int]

Assuming a reordered batch, finds the boundary between prefill and decode requests.

Parameters:

Name Type Description Default
common_attn_metadata CommonAttentionMetadata

CommonAttentionMetadata object containing the batch metadata.

required
decode_threshold int

The maximum query length to be considered a decode.

1
require_uniform bool

If True, requires that all decode requests have the same query length. When set, some queries may be considered prefills even if they are <= decode_threshold, in order to ensure uniformity.

False

Returns:

Name Type Description
num_decodes int

The number of decode requests.

num_prefills int

The number of prefill requests.

num_decode_tokens int

The number of tokens in the decode requests.

num_prefill_tokens int

The number of tokens in the prefill requests.

Source code in vllm/v1/attention/backends/utils.py
def split_decodes_and_prefills(
        common_attn_metadata: CommonAttentionMetadata,
        decode_threshold: int = 1,
        require_uniform: bool = False) -> tuple[int, int, int, int]:
    """
    Assuming a reordered batch, finds the boundary between prefill and decode
    requests.

    Args:
        common_attn_metadata: CommonAttentionMetadata object containing the
            batch metadata.
        decode_threshold: The maximum query length to be considered a decode.
        require_uniform: If True, requires that all decode requests have the
            same query length. When set, some queries may be considered prefills
            even if they are <= decode_threshold, in order to ensure uniformity.

    Returns:
        num_decodes: The number of decode requests.
        num_prefills: The number of prefill requests.
        num_decode_tokens: The number of tokens in the decode requests.
        num_prefill_tokens: The number of tokens in the prefill requests.
    """
    max_query_len = common_attn_metadata.max_query_len
    num_reqs = common_attn_metadata.num_reqs
    num_tokens = common_attn_metadata.num_actual_tokens
    query_start_loc = common_attn_metadata.query_start_loc_cpu

    if max_query_len <= decode_threshold and \
        (not require_uniform or decode_threshold <= 1):
        return num_reqs, 0, num_tokens, 0

    query_lens = query_start_loc[1:] - query_start_loc[:-1]
    if query_lens[0].item() > decode_threshold:
        # first request is not decode, so no decode requests
        return 0, num_reqs, 0, num_tokens

    if require_uniform:
        is_prefill = query_lens != query_lens[0]
    else:
        is_prefill = query_lens > decode_threshold

    if not torch.any(is_prefill):
        return num_reqs, 0, num_tokens, 0

    first_prefill = is_prefill.int().argmax(dim=-1).item()
    assert torch.all(query_lens[:first_prefill] <= decode_threshold)
    num_decodes = first_prefill
    num_prefills = num_reqs - num_decodes
    num_decode_tokens = query_start_loc[first_prefill].item()
    num_prefill_tokens = num_tokens - num_decode_tokens
    return (num_decodes, num_prefills, num_decode_tokens, num_prefill_tokens)

subclass_attention_backend

subclass_attention_backend(
    name_prefix: str,
    attention_backend_cls: type[AttentionBackend],
    builder_cls: type[AttentionMetadataBuilder[M]],
) -> type[AttentionBackend]

Return a new subclass where get_builder_cls returns builder_cls.

Source code in vllm/v1/attention/backends/utils.py
def subclass_attention_backend(
        name_prefix: str, attention_backend_cls: type[AttentionBackend],
        builder_cls: type[AttentionMetadataBuilder[M]]
) -> type[AttentionBackend]:
    """
    Return a new subclass where `get_builder_cls` returns `builder_cls`.
    """
    name: str = name_prefix + attention_backend_cls.__name__  # type: ignore

    return type(name, (attention_backend_cls, ),
                {"get_builder_cls": lambda: builder_cls})

subclass_attention_metadata

subclass_attention_metadata(
    name_prefix: str,
    metadata_cls: Any,
    fields: list[tuple[str, Any, Any]],
) -> Any

Return a new subclass of metadata_cls with additional fields

Source code in vllm/v1/attention/backends/utils.py
def subclass_attention_metadata(
    name_prefix: str,
    metadata_cls: Any,
    fields: list[tuple[str, Any, Any]],
) -> Any:
    """
    Return a new subclass of `metadata_cls` with additional fields
    """
    name: str = name_prefix + metadata_cls.__name__  # type: ignore
    Wrapped = make_dataclass(name, fields, bases=(metadata_cls, ))
    return Wrapped