Skip to content

vllm.v1.attention.backends.mla.cutlass_mla

MAX_HEADS module-attribute

MAX_HEADS = 128

g_sm100_workspace module-attribute

g_sm100_workspace = SM100Workspace(128 * 1024 * 1024)

logger module-attribute

logger = init_logger(__name__)

CutlassMLABackend

Bases: MLACommonBackend

Source code in vllm/v1/attention/backends/mla/cutlass_mla.py
class CutlassMLABackend(MLACommonBackend):

    @staticmethod
    def get_name() -> str:
        return "CUTLASS_MLA"

    @staticmethod
    def get_impl_cls() -> type["CutlassMLAImpl"]:
        return CutlassMLAImpl

    @staticmethod
    def get_builder_cls() -> type["CutlassMLAMetadataBuilder"]:
        return CutlassMLAMetadataBuilder

get_builder_cls staticmethod

get_builder_cls() -> type[CutlassMLAMetadataBuilder]
Source code in vllm/v1/attention/backends/mla/cutlass_mla.py
@staticmethod
def get_builder_cls() -> type["CutlassMLAMetadataBuilder"]:
    return CutlassMLAMetadataBuilder

get_impl_cls staticmethod

get_impl_cls() -> type[CutlassMLAImpl]
Source code in vllm/v1/attention/backends/mla/cutlass_mla.py
@staticmethod
def get_impl_cls() -> type["CutlassMLAImpl"]:
    return CutlassMLAImpl

get_name staticmethod

get_name() -> str
Source code in vllm/v1/attention/backends/mla/cutlass_mla.py
@staticmethod
def get_name() -> str:
    return "CUTLASS_MLA"

CutlassMLAImpl

Bases: MLACommonImpl[MLACommonMetadata]

Source code in vllm/v1/attention/backends/mla/cutlass_mla.py
class CutlassMLAImpl(MLACommonImpl[MLACommonMetadata]):
    can_return_lse_for_decode: bool = True

    def __init__(
            self,
            num_heads: int,
            head_size: int,
            scale: float,
            num_kv_heads: int,
            alibi_slopes: Optional[list[float]],
            sliding_window: Optional[int],
            kv_cache_dtype: str,
            logits_soft_cap: Optional[float],
            attn_type: str,
            kv_sharing_target_layer_name: Optional[str],
            # MLA Specific Arguments
            **mla_args) -> None:
        super().__init__(num_heads,
                         head_size,
                         scale,
                         num_kv_heads,
                         alibi_slopes,
                         sliding_window,
                         kv_cache_dtype,
                         logits_soft_cap,
                         attn_type,
                         kv_sharing_target_layer_name,
                         q_pad_num_heads=MAX_HEADS,
                         **mla_args)

        unsupported_features = [alibi_slopes, sliding_window, logits_soft_cap]
        if any(unsupported_features):
            raise NotImplementedError(
                "CutlassMLAImpl does not support one of the following: "
                "alibi_slopes, sliding_window, logits_soft_cap")

        if attn_type != AttentionType.DECODER:
            raise NotImplementedError("Encoder self-attention and "
                                      "encoder/decoder cross-attention "
                                      "are not implemented for "
                                      "CutlassMLAImpl")

        # TODO: Currently, num_kv_splits is limited to 16 to avoid hanging
        #       issues. In case the code hangs, use:
        #       FORCE_NUM_KV_SPLITS=1
        force_num_kv_splits = os.environ.get("FORCE_NUM_KV_SPLITS", None)
        if force_num_kv_splits:
            logger.warning_once("Forcing num_kv_splits to %d",
                                int(force_num_kv_splits))
            self._num_kv_splits = int(force_num_kv_splits)
        else:
            self._num_kv_splits = -1  # => Auto-detect

        # Share workspace buffer across all executions
        self._workspace = g_sm100_workspace

    def _sm100_cutlass_mla_decode(
        self,
        q_nope: torch.Tensor,
        q_pe: torch.Tensor,
        kv_c_and_k_pe_cache: torch.Tensor,
        seq_lens: torch.Tensor,
        page_table: torch.Tensor,
        workspace: torch.Tensor,
        sm_scale: float,
        num_kv_splits: int,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        assert (q_nope.ndim == 3
                ), f"q_nope must be a 3D tensor, but got {q_nope.ndim}"
        assert (
            q_pe.ndim == 3), f"q_pe must be a 3D tensor, but got {q_pe.ndim}"
        assert (
            kv_c_and_k_pe_cache.ndim == 3
        ), "kv_c_and_k_pe_cache must be a 3D tensor, but got {}".format(
            kv_c_and_k_pe_cache.ndim)

        B_q, H, D_q_nope = q_nope.shape
        B_q_2, H_2, D_q_pe = q_pe.shape
        assert (B_q == B_q_2) and (H == H_2)

        _, PAGE_SIZE, D_ckv = kv_c_and_k_pe_cache.shape

        D_latent = 512
        D_rope = 64
        assert D_q_nope == D_latent
        assert D_q_pe == D_rope
        assert D_ckv == D_latent + D_rope

        MAX_HEADS = 128
        assert H <= MAX_HEADS, f"H must be <= {MAX_HEADS}, but got {H}"

        assert len(page_table.shape) == 2
        B_block_table, block_num = page_table.shape
        assert B_block_table == B_q
        assert (block_num
                > 0), f"block num must be greater than 0, got {block_num}"
        assert block_num % (128 / PAGE_SIZE) == 0

        assert q_nope.dtype in (
            torch.float16, torch.bfloat16, torch.float8_e4m3fn), (
                f"q_nope.dtype needs to be fp16 or bf16 or e4m3 but got "
                f"{q_nope.dtype}.")
        assert q_nope.dtype == q_pe.dtype == kv_c_and_k_pe_cache.dtype
        assert (
            seq_lens.dtype == torch.int32
        ), f"seq_lens.dtype needs to be int32 but got {seq_lens.dtype}."
        assert (
            page_table.dtype == torch.int32
        ), f"page_table.dtype needs to be int32 but got {page_table.dtype}."

        dtype = (torch.bfloat16 if is_quantized_kv_cache(self.kv_cache_dtype)
                 else q_nope.dtype)
        out = q_nope.new_empty((B_q, MAX_HEADS, D_latent), dtype=dtype)
        lse = (torch.empty(
            (B_q, MAX_HEADS), dtype=torch.float32, device=q_nope.device)
               if self.need_to_return_lse_for_decode else torch.Tensor())

        ops.sm100_cutlass_mla_decode(
            out,
            lse,
            q_nope,
            q_pe,
            kv_c_and_k_pe_cache,
            seq_lens,
            page_table,
            workspace,
            sm_scale,
            num_kv_splits,
        )

        if H < MAX_HEADS:
            # Extract the subsets of the outputs
            lse = lse[:, :H] if self.need_to_return_lse_for_decode else lse
            out = out[:, :H]

        return out, lse

    def _forward_decode(
        self,
        q: Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]],
        kv_c_and_k_pe_cache: torch.Tensor,
        attn_metadata: MLACommonMetadata,
        layer: AttentionLayer,
    ) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
        assert kv_c_and_k_pe_cache.numel() > 0
        assert attn_metadata.decode is not None

        if type(q) is tuple:
            q_nope, q_pe = q
        else:
            q_nope, q_pe = torch.split(
                q, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)

        # Adjust workspace size (if necessary)
        self._workspace.ensure_size(attn_metadata, self._num_kv_splits)

        # Run MLA
        o, lse = self._sm100_cutlass_mla_decode(
            q_nope,
            q_pe,
            kv_c_and_k_pe_cache,
            attn_metadata.decode.seq_lens,
            attn_metadata.decode.block_table,
            self._workspace.get_buf(),
            self.scale,
            self._num_kv_splits,
        )

        return o, (lse if self.need_to_return_lse_for_decode else None)

_num_kv_splits instance-attribute

_num_kv_splits = int(force_num_kv_splits)

_workspace instance-attribute

_workspace = g_sm100_workspace

can_return_lse_for_decode class-attribute instance-attribute

can_return_lse_for_decode: bool = True

__init__

__init__(
    num_heads: int,
    head_size: int,
    scale: float,
    num_kv_heads: int,
    alibi_slopes: Optional[list[float]],
    sliding_window: Optional[int],
    kv_cache_dtype: str,
    logits_soft_cap: Optional[float],
    attn_type: str,
    kv_sharing_target_layer_name: Optional[str],
    **mla_args,
) -> None
Source code in vllm/v1/attention/backends/mla/cutlass_mla.py
def __init__(
        self,
        num_heads: int,
        head_size: int,
        scale: float,
        num_kv_heads: int,
        alibi_slopes: Optional[list[float]],
        sliding_window: Optional[int],
        kv_cache_dtype: str,
        logits_soft_cap: Optional[float],
        attn_type: str,
        kv_sharing_target_layer_name: Optional[str],
        # MLA Specific Arguments
        **mla_args) -> None:
    super().__init__(num_heads,
                     head_size,
                     scale,
                     num_kv_heads,
                     alibi_slopes,
                     sliding_window,
                     kv_cache_dtype,
                     logits_soft_cap,
                     attn_type,
                     kv_sharing_target_layer_name,
                     q_pad_num_heads=MAX_HEADS,
                     **mla_args)

    unsupported_features = [alibi_slopes, sliding_window, logits_soft_cap]
    if any(unsupported_features):
        raise NotImplementedError(
            "CutlassMLAImpl does not support one of the following: "
            "alibi_slopes, sliding_window, logits_soft_cap")

    if attn_type != AttentionType.DECODER:
        raise NotImplementedError("Encoder self-attention and "
                                  "encoder/decoder cross-attention "
                                  "are not implemented for "
                                  "CutlassMLAImpl")

    # TODO: Currently, num_kv_splits is limited to 16 to avoid hanging
    #       issues. In case the code hangs, use:
    #       FORCE_NUM_KV_SPLITS=1
    force_num_kv_splits = os.environ.get("FORCE_NUM_KV_SPLITS", None)
    if force_num_kv_splits:
        logger.warning_once("Forcing num_kv_splits to %d",
                            int(force_num_kv_splits))
        self._num_kv_splits = int(force_num_kv_splits)
    else:
        self._num_kv_splits = -1  # => Auto-detect

    # Share workspace buffer across all executions
    self._workspace = g_sm100_workspace

_forward_decode

_forward_decode(
    q: Union[Tensor, tuple[Tensor, Tensor]],
    kv_c_and_k_pe_cache: Tensor,
    attn_metadata: MLACommonMetadata,
    layer: AttentionLayer,
) -> tuple[Tensor, Optional[Tensor]]
Source code in vllm/v1/attention/backends/mla/cutlass_mla.py
def _forward_decode(
    self,
    q: Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]],
    kv_c_and_k_pe_cache: torch.Tensor,
    attn_metadata: MLACommonMetadata,
    layer: AttentionLayer,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
    assert kv_c_and_k_pe_cache.numel() > 0
    assert attn_metadata.decode is not None

    if type(q) is tuple:
        q_nope, q_pe = q
    else:
        q_nope, q_pe = torch.split(
            q, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)

    # Adjust workspace size (if necessary)
    self._workspace.ensure_size(attn_metadata, self._num_kv_splits)

    # Run MLA
    o, lse = self._sm100_cutlass_mla_decode(
        q_nope,
        q_pe,
        kv_c_and_k_pe_cache,
        attn_metadata.decode.seq_lens,
        attn_metadata.decode.block_table,
        self._workspace.get_buf(),
        self.scale,
        self._num_kv_splits,
    )

    return o, (lse if self.need_to_return_lse_for_decode else None)

_sm100_cutlass_mla_decode

_sm100_cutlass_mla_decode(
    q_nope: Tensor,
    q_pe: Tensor,
    kv_c_and_k_pe_cache: Tensor,
    seq_lens: Tensor,
    page_table: Tensor,
    workspace: Tensor,
    sm_scale: float,
    num_kv_splits: int,
) -> tuple[Tensor, Tensor]
Source code in vllm/v1/attention/backends/mla/cutlass_mla.py
def _sm100_cutlass_mla_decode(
    self,
    q_nope: torch.Tensor,
    q_pe: torch.Tensor,
    kv_c_and_k_pe_cache: torch.Tensor,
    seq_lens: torch.Tensor,
    page_table: torch.Tensor,
    workspace: torch.Tensor,
    sm_scale: float,
    num_kv_splits: int,
) -> tuple[torch.Tensor, torch.Tensor]:
    assert (q_nope.ndim == 3
            ), f"q_nope must be a 3D tensor, but got {q_nope.ndim}"
    assert (
        q_pe.ndim == 3), f"q_pe must be a 3D tensor, but got {q_pe.ndim}"
    assert (
        kv_c_and_k_pe_cache.ndim == 3
    ), "kv_c_and_k_pe_cache must be a 3D tensor, but got {}".format(
        kv_c_and_k_pe_cache.ndim)

    B_q, H, D_q_nope = q_nope.shape
    B_q_2, H_2, D_q_pe = q_pe.shape
    assert (B_q == B_q_2) and (H == H_2)

    _, PAGE_SIZE, D_ckv = kv_c_and_k_pe_cache.shape

    D_latent = 512
    D_rope = 64
    assert D_q_nope == D_latent
    assert D_q_pe == D_rope
    assert D_ckv == D_latent + D_rope

    MAX_HEADS = 128
    assert H <= MAX_HEADS, f"H must be <= {MAX_HEADS}, but got {H}"

    assert len(page_table.shape) == 2
    B_block_table, block_num = page_table.shape
    assert B_block_table == B_q
    assert (block_num
            > 0), f"block num must be greater than 0, got {block_num}"
    assert block_num % (128 / PAGE_SIZE) == 0

    assert q_nope.dtype in (
        torch.float16, torch.bfloat16, torch.float8_e4m3fn), (
            f"q_nope.dtype needs to be fp16 or bf16 or e4m3 but got "
            f"{q_nope.dtype}.")
    assert q_nope.dtype == q_pe.dtype == kv_c_and_k_pe_cache.dtype
    assert (
        seq_lens.dtype == torch.int32
    ), f"seq_lens.dtype needs to be int32 but got {seq_lens.dtype}."
    assert (
        page_table.dtype == torch.int32
    ), f"page_table.dtype needs to be int32 but got {page_table.dtype}."

    dtype = (torch.bfloat16 if is_quantized_kv_cache(self.kv_cache_dtype)
             else q_nope.dtype)
    out = q_nope.new_empty((B_q, MAX_HEADS, D_latent), dtype=dtype)
    lse = (torch.empty(
        (B_q, MAX_HEADS), dtype=torch.float32, device=q_nope.device)
           if self.need_to_return_lse_for_decode else torch.Tensor())

    ops.sm100_cutlass_mla_decode(
        out,
        lse,
        q_nope,
        q_pe,
        kv_c_and_k_pe_cache,
        seq_lens,
        page_table,
        workspace,
        sm_scale,
        num_kv_splits,
    )

    if H < MAX_HEADS:
        # Extract the subsets of the outputs
        lse = lse[:, :H] if self.need_to_return_lse_for_decode else lse
        out = out[:, :H]

    return out, lse

CutlassMLAMetadataBuilder

Bases: MLACommonMetadataBuilder[MLACommonMetadata]

Source code in vllm/v1/attention/backends/mla/cutlass_mla.py
class CutlassMLAMetadataBuilder(MLACommonMetadataBuilder[MLACommonMetadata]):
    # enable full CUDA Graph support for decode-only capture
    cudagraph_support: ClassVar[
        AttentionCGSupport] = AttentionCGSupport.UNIFORM_SINGLE_TOKEN_DECODE

cudagraph_support class-attribute

SM100Workspace

Source code in vllm/v1/attention/backends/mla/cutlass_mla.py
class SM100Workspace:

    def __init__(self, initial_workspace_size):
        self._workspace_buf = torch.empty(initial_workspace_size,
                                          device="cuda",
                                          dtype=torch.uint8)

        self._block_size = 128  # Forced to 128

        # Pre-compute sm_count to avoid recomputing it. Use device 0 as a proxy
        # (assumes all devices are similar)
        properties = torch.cuda.get_device_properties(torch.device("cuda:0"))
        self._sm_count = properties.multi_processor_count

    def get_buf(self):
        return self._workspace_buf

    def ensure_size(self, attn_metadata: MLACommonMetadata,
                    num_kv_splits: int):
        batch_size = attn_metadata.num_reqs
        max_seq_len = attn_metadata.max_query_len

        workspace_size = ops.sm100_cutlass_mla_get_workspace_size(
            max_seq_len * self._block_size,
            batch_size,
            self._sm_count,
            num_kv_splits=num_kv_splits)

        if self._workspace_buf.shape[0] < workspace_size:
            self._workspace_buf.resize_(workspace_size)

_block_size instance-attribute

_block_size = 128

_sm_count instance-attribute

_sm_count = multi_processor_count

_workspace_buf instance-attribute

_workspace_buf = empty(
    initial_workspace_size, device="cuda", dtype=uint8
)

__init__

__init__(initial_workspace_size)
Source code in vllm/v1/attention/backends/mla/cutlass_mla.py
def __init__(self, initial_workspace_size):
    self._workspace_buf = torch.empty(initial_workspace_size,
                                      device="cuda",
                                      dtype=torch.uint8)

    self._block_size = 128  # Forced to 128

    # Pre-compute sm_count to avoid recomputing it. Use device 0 as a proxy
    # (assumes all devices are similar)
    properties = torch.cuda.get_device_properties(torch.device("cuda:0"))
    self._sm_count = properties.multi_processor_count

ensure_size

ensure_size(
    attn_metadata: MLACommonMetadata, num_kv_splits: int
)
Source code in vllm/v1/attention/backends/mla/cutlass_mla.py
def ensure_size(self, attn_metadata: MLACommonMetadata,
                num_kv_splits: int):
    batch_size = attn_metadata.num_reqs
    max_seq_len = attn_metadata.max_query_len

    workspace_size = ops.sm100_cutlass_mla_get_workspace_size(
        max_seq_len * self._block_size,
        batch_size,
        self._sm_count,
        num_kv_splits=num_kv_splits)

    if self._workspace_buf.shape[0] < workspace_size:
        self._workspace_buf.resize_(workspace_size)

get_buf

get_buf()
Source code in vllm/v1/attention/backends/mla/cutlass_mla.py
def get_buf(self):
    return self._workspace_buf