vllm.transformers_utils.configs ¶
Model configs may be defined in this directory for the following reasons:
- There is no configuration file defined by HF Hub or Transformers library.
- There is a need to override the existing config to support vLLM.
Modules:
Name | Description |
---|---|
arctic | Arctic model configuration |
chatglm | |
deepseek_v3 | |
deepseek_vl2 | |
dotsocr | |
eagle | |
falcon | Falcon configuration |
jais | JAIS configuration |
kimi_vl | |
medusa | |
midashenglm | |
mistral | |
mlp_speculator | |
moonvit | |
nemotron | Nemotron model configuration |
nemotron_h | NemotronH model configuration |
nemotron_vl | |
olmo3 | |
ovis | |
qwen3_next | Qwen3-Next model configuration |
radio | Radio vision model configuration |
speculators | |
step3_vl | |
ultravox | |
__all__ module-attribute
¶
__all__ = [
"ChatGLMConfig",
"DeepseekVLV2Config",
"DeepseekV3Config",
"DotsOCRConfig",
"EAGLEConfig",
"RWConfig",
"JAISConfig",
"MedusaConfig",
"MiDashengLMConfig",
"MLPSpeculatorConfig",
"MoonViTConfig",
"KimiVLConfig",
"NemotronConfig",
"NemotronHConfig",
"Nemotron_Nano_VL_Config",
"Olmo3Config",
"OvisConfig",
"RadioConfig",
"SpeculatorsConfig",
"UltravoxConfig",
"Step3VLConfig",
"Step3VisionEncoderConfig",
"Step3TextConfig",
"Qwen3NextConfig",
]
ChatGLMConfig ¶
Bases: PretrainedConfig
Source code in vllm/transformers_utils/configs/chatglm.py
apply_query_key_layer_scaling instance-attribute
¶
apply_residual_connection_post_layernorm instance-attribute
¶
attention_softmax_in_fp32 instance-attribute
¶
attribute_map class-attribute
instance-attribute
¶
__init__ ¶
__init__(
num_layers=28,
padded_vocab_size=65024,
hidden_size=4096,
ffn_hidden_size=13696,
kv_channels=128,
num_attention_heads=32,
seq_length=2048,
hidden_dropout=0.0,
attention_dropout=0.0,
layernorm_epsilon=1e-05,
rmsnorm=True,
apply_residual_connection_post_layernorm=False,
post_layer_norm=True,
add_bias_linear=False,
add_qkv_bias=False,
interleaved_qkv=False,
bias_dropout_fusion=True,
multi_query_attention=False,
multi_query_group_num=1,
apply_query_key_layer_scaling=True,
attention_softmax_in_fp32=True,
fp32_residual_connection=False,
quantization_bit=0,
pre_seq_len=None,
prefix_projection=False,
**kwargs,
)
Source code in vllm/transformers_utils/configs/chatglm.py
DeepseekV3Config ¶
Bases: PretrainedConfig
Source code in vllm/transformers_utils/configs/deepseek_v3.py
keys_to_ignore_at_inference class-attribute
instance-attribute
¶
__init__ ¶
__init__(
vocab_size=129280,
hidden_size=7168,
intermediate_size=18432,
moe_intermediate_size=2048,
num_hidden_layers=61,
num_nextn_predict_layers=1,
num_attention_heads=128,
num_key_value_heads=128,
n_shared_experts=1,
n_routed_experts=256,
ep_size=1,
routed_scaling_factor=2.5,
kv_lora_rank=512,
q_lora_rank=1536,
qk_rope_head_dim=64,
v_head_dim=128,
qk_nope_head_dim=128,
topk_method="noaux_tc",
n_group=8,
topk_group=4,
num_experts_per_tok=8,
moe_layer_freq=1,
first_k_dense_replace=3,
norm_topk_prob=True,
scoring_func="sigmoid",
hidden_act="silu",
max_position_embeddings=4096,
initializer_range=0.02,
rms_norm_eps=1e-06,
use_cache=True,
pad_token_id=None,
bos_token_id=0,
eos_token_id=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
**kwargs,
)
Source code in vllm/transformers_utils/configs/deepseek_v3.py
DeepseekVLV2Config ¶
Bases: PretrainedConfig
Source code in vllm/transformers_utils/configs/deepseek_vl2.py
candidate_resolutions class-attribute
instance-attribute
¶
projector_config instance-attribute
¶
projector_config: MlpProjectorConfig = MlpProjectorConfig(
**projector_config
)
vision_config instance-attribute
¶
vision_config: VisionEncoderConfig = VisionEncoderConfig(
**vision_config
)
__init__ ¶
__init__(
tile_tag: str = "tile_tag",
global_view_pos: str = "head",
candidate_resolutions: tuple[tuple[int, int]] = (
(384, 384),
),
**kwargs,
)
Source code in vllm/transformers_utils/configs/deepseek_vl2.py
DotsOCRConfig ¶
Bases: Qwen2Config
Source code in vllm/transformers_utils/configs/dotsocr.py
EAGLEConfig ¶
Bases: PretrainedConfig
Source code in vllm/transformers_utils/configs/eagle.py
__init__ ¶
__init__(
model: Union[PretrainedConfig, dict, None] = None,
truncated_vocab_size: Optional[int] = None,
method: Optional[str] = "eagle",
**kwargs,
)
Source code in vllm/transformers_utils/configs/eagle.py
from_pretrained classmethod
¶
from_pretrained(
pretrained_model_name_or_path: Union[str, PathLike],
**kwargs,
) -> EAGLEConfig
Source code in vllm/transformers_utils/configs/eagle.py
JAISConfig ¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [JAISModel
]. It is used to instantiate a JAIS model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the documentation from [PretrainedConfig
] for more information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vocab_size | `int`, *optional*, defaults to 50257 | Vocabulary size of the JAIS model. Defines the number of different tokens that can be represented by the | 50257 |
n_positions | `int`, *optional*, defaults to 1024 | The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). | 1024 |
n_embd | `int`, *optional*, defaults to 768 | Dimensionality of the embeddings and hidden states. | 768 |
n_layer | `int`, *optional*, defaults to 12 | Number of hidden layers in the Transformer encoder. | 12 |
n_head | `int`, *optional*, defaults to 12 | Number of attention heads for each attention layer in the Transformer encoder. | 12 |
n_inner | `int`, *optional*, defaults to None | Dimensionality of the inner feed-forward layers. | None |
activation_function | `str`, *optional*, defaults to `"gelu"` | Activation function, to be selected in the list | 'gelu_new' |
resid_pdrop | `float`, *optional*, defaults to 0.1 | The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | 0.1 |
embd_pdrop | `float`, *optional*, defaults to 0.1 | The dropout ratio for the embeddings. | 0.1 |
attn_pdrop | `float`, *optional*, defaults to 0.1 | The dropout ratio for the attention. | 0.1 |
layer_norm_epsilon | `float`, *optional*, defaults to 1e-5 | The epsilon to use in the layer normalization layers. | 1e-05 |
initializer_range | `float`, *optional*, defaults to 0.02 | The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 0.02 |
scale_attn_weights | `bool`, *optional*, defaults to `True` | Scale attention weights by dividing by sqrt(hidden_size).. | True |
use_cache | `bool`, *optional*, defaults to `True` | Whether or not the model should return the last key/values attentions (not used by all models). | True |
scale_attn_by_inverse_layer_idx | `bool`, *optional*, default `True` | Whether to additionally scale attention weights by | False |
reorder_and_upcast_attn | `bool`, *optional*, defaults to `False` | Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention dot-product/softmax to float() when training with mixed precision. | False |
position_embedding_type | `str`, *optional*, defaults to `"learned"` | Positional embedding can be either | 'learned' |
mup_width_scale | `float`, *optional*, defaults to 1.0 | muP parameter to scale learning rate and initializers. Calculated as ( | 1.0 |
mup_embeddings_scale | `float`, *optional*, defaults to 1.0 | muP parameter to scale token and position embeddings. | 1.0 |
mup_output_alpha | `float`, *optional*, defaults to 1.0 | muP parameter to scale output logits ( | 1.0 |
mup_scale_qk_dot_by_d | `bool`, *optional*, defaults to `False` | Scale attention weights by dividing by hidden_size instead of sqrt(hidden_size). Need to set scale_attn_weights to | False |
alibi_scaling | `dict`, *optional* | Dictionary containing the scaling configuration for ALiBi embeddings. Currently only supports linear scaling strategy. Can specify either the scaling | None |
architectures | `list`, *optional*, defaults to ['JAISLMHeadModel'] | architecture names for Jais. | None |
Example:
>>> from transformers import JAISConfig, JAISModel
>>> # Initializing a JAIS configuration
>>> configuration = JAISConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = JAISModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in vllm/transformers_utils/configs/jais.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
|
attribute_map class-attribute
instance-attribute
¶
attribute_map = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
keys_to_ignore_at_inference class-attribute
instance-attribute
¶
scale_attn_by_inverse_layer_idx instance-attribute
¶
__init__ ¶
__init__(
vocab_size=50257,
n_positions=1024,
n_embd=768,
n_layer=12,
n_head=12,
n_inner=None,
activation_function="gelu_new",
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-05,
initializer_range=0.02,
scale_attn_weights=True,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
scale_attn_by_inverse_layer_idx=False,
reorder_and_upcast_attn=False,
position_embedding_type="learned",
mup_width_scale=1.0,
mup_embeddings_scale=1.0,
mup_output_alpha=1.0,
mup_scale_qk_dot_by_d=False,
alibi_scaling=None,
architectures=None,
**kwargs,
)
Source code in vllm/transformers_utils/configs/jais.py
_alibi_scaling_validation ¶
Validate the alibi_scaling
configuration.
Source code in vllm/transformers_utils/configs/jais.py
KimiVLConfig ¶
Bases: PretrainedConfig
Source code in vllm/transformers_utils/configs/kimi_vl.py
media_placeholder_token_id instance-attribute
¶
__init__ ¶
__init__(
vision_config: Optional[
Union[dict, MoonViTConfig]
] = None,
text_config: Optional[
Union[dict, DeepseekV2Config]
] = None,
ignore_index: int = -100,
media_placeholder_token_id: int = 163605,
pad_token_id: int = 0,
**kwargs,
)
Source code in vllm/transformers_utils/configs/kimi_vl.py
MLPSpeculatorConfig ¶
Bases: PretrainedConfig
Source code in vllm/transformers_utils/configs/mlp_speculator.py
__init__ ¶
__init__(
vocab_size: int = 32000,
emb_dim: int = 4096,
inner_dim: int = 0,
n_predict: int = 3,
top_k_tokens_per_head: Optional[list[int]] = None,
n_candidates: int = 5,
tie_weights: bool = False,
scale_input: bool = False,
**kwargs,
)
Initialize an MLPSpeculatorConfig
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vocab_size | int | int the model vocab size | 32000 |
emb_dim | int | int the model embedding dimension | 4096 |
inner_dim | int | int the inner dimension of the model. If 0, will be the emb_dim. | 0 |
n_predict | int | int the number of lookaheads for the speculator | 3 |
top_k_tokens_per_head | Optional[list[int]] | list[int] Number of tokens to consider from each head when forming the candidate tree. For each candidate branch in the tree, head n produces topk[n] additional sub-branches. NOTE: This parameter is currently unused. | None |
n_candidates | int | int number of child candidates to create per sequence | 5 |
tie_weights | bool | bool If true, use a single set of weights for every model head/stage after the first. The initial projection from the base model may have a different size, so that stays separate. | False |
scale_input | bool | bool if True, will scale the initial hidden states from the base model. | False |
Source code in vllm/transformers_utils/configs/mlp_speculator.py
MedusaConfig ¶
Bases: PretrainedConfig
Source code in vllm/transformers_utils/configs/medusa.py
truncated_vocab_size instance-attribute
¶
__init__ ¶
__init__(
hidden_size: int = 4096,
vocab_size: int = 32001,
num_heads: int = 5,
num_hidden_layers: int = 1,
max_paths: int = 64,
topk: int = 10,
truncated_vocab_size: Optional[int] = None,
**kwargs,
)
Source code in vllm/transformers_utils/configs/medusa.py
from_pretrained classmethod
¶
from_pretrained(
pretrained_model_name_or_path: Union[str, PathLike],
**kwargs,
) -> MedusaConfig
Source code in vllm/transformers_utils/configs/medusa.py
MiDashengLMConfig ¶
Bases: PretrainedConfig
Source code in vllm/transformers_utils/configs/midashenglm.py
audio_encoder_config instance-attribute
¶
audio_encoder_config = DashengConfig(
**(audio_encoder_config or {})
)
text_config instance-attribute
¶
__init__ ¶
__init__(
audio_encoder_config: Optional[dict] = None,
subsample_factor: int = 5,
text_config: Optional[dict] = None,
audio_token_id: Optional[int] = None,
**kwargs,
)
Source code in vllm/transformers_utils/configs/midashenglm.py
MoonViTConfig ¶
Bases: PretrainedConfig
Source code in vllm/transformers_utils/configs/moonvit.py
__init__ ¶
__init__(
patch_size: int = 14,
init_pos_emb_height: int = 64,
init_pos_emb_width: int = 64,
num_attention_heads: int = 16,
num_hidden_layers: int = 27,
hidden_size: int = 1152,
intermediate_size: int = 4304,
merge_kernel_size: tuple[int, int] = (2, 2),
**kwargs,
)
Source code in vllm/transformers_utils/configs/moonvit.py
NemotronConfig ¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [NemotronModel
]. It is used to instantiate a Nemotron model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Nemotron-8B.
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the documentation from [PretrainedConfig
] for more information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vocab_size | `int`, *optional*, defaults to 256000 | Vocabulary size of the Nemotron model. Defines the number of different tokens that can be represented by the | 256000 |
hidden_size | `int`, *optional*, defaults to 6144 | Dimension of the hidden representations. | 6144 |
intermediate_size | `int`, *optional*, defaults to 24576 | Dimension of the MLP representations. | 24576 |
num_hidden_layers | `int`, *optional*, defaults to 32 | Number of hidden layers in the Transformer decoder. | 32 |
num_attention_heads | `int`, *optional*, defaults to 48 | Number of attention heads for each attention layer in the Transformer decoder. | 48 |
head_dim | `int`, *optional* | Projection weights dimension in multi-head attention. Set to hidden_size // num_attention_heads if None | None |
num_key_value_heads | `int`, *optional* | This is the number of key_value heads that should be used to implement Grouped Query Attention. If | None |
hidden_act | `str` or `function`, *optional*, defaults to `"relu2"` | The non-linear activation function (function or string) in the decoder. | 'relu2' |
max_position_embeddings | `int`, *optional*, defaults to 4096 | The maximum sequence length that this model might ever be used with. | 4096 |
initializer_range | `float`, *optional*, defaults to 0.0134 | The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 0.0134 |
norm_eps | `float`, *optional*, defaults to 1e-05 | The epsilon used by the normalization layers. | 1e-05 |
use_cache | `bool`, *optional*, defaults to `True` | Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if | True |
pad_token_id | `int`, *optional* | Padding token id. | None |
bos_token_id | `int`, *optional*, defaults to 2 | Beginning of stream token id. | 2 |
eos_token_id | `int`, *optional*, defaults to 3 | End of stream token id. | 3 |
tie_word_embeddings | `bool`, *optional*, defaults to `False` | Whether to tie weight embeddings | False |
rope_theta | `float`, *optional*, defaults to 10000.0 | The base period of the RoPE embeddings. | 10000.0 |
partial_rotary_factor | `float`, *optional*, defaults to 0.5 | Percentage of the query and keys which will have rotary embedding. | 0.5 |
attention_bias | `bool`, *optional*, defaults to `False` | Whether to use a bias in the query, key, value and output projection layers during self-attention. | False |
attention_dropout | `float`, *optional*, defaults to 0.0 | The dropout ratio for the attention probabilities. | 0.0 |
mlp_bias | `bool`, *optional*, defaults to `False` | Whether to use a bias in up_proj and down_proj layers in the MLP layers. | False |
>>> from transformers import NemotronModel, NemotronConfig
>>> # Initializing a Nemotron nemotron-15b style configuration
>>> configuration = NemotronConfig()
>>> # Initializing a model from the nemotron-15b style configuration
>>> model = NemotronModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in vllm/transformers_utils/configs/nemotron.py
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
head_dim instance-attribute
¶
keys_to_ignore_at_inference class-attribute
instance-attribute
¶
__init__ ¶
__init__(
vocab_size=256000,
hidden_size=6144,
intermediate_size=24576,
num_hidden_layers=32,
num_attention_heads=48,
head_dim=None,
num_key_value_heads=None,
hidden_act="relu2",
max_position_embeddings=4096,
initializer_range=0.0134,
norm_eps=1e-05,
use_cache=True,
pad_token_id=None,
bos_token_id=2,
eos_token_id=3,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
partial_rotary_factor=0.5,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
**kwargs,
)
Source code in vllm/transformers_utils/configs/nemotron.py
_rope_scaling_validation ¶
Validate the rope_scaling
configuration.
Source code in vllm/transformers_utils/configs/nemotron.py
NemotronHConfig ¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [NemotronHModel
]. It is used to instantiate a NemotronH model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the NemotronH-v0.1 model. Args: vocab_size (int
, optional, defaults to 131072): Vocabulary size of the NemotronH model. Defines the number of different tokens that can be represented by the inputs_ids
passed when calling [NemotronHModel
] tie_word_embeddings (bool
, optional, defaults to False
): Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the model has an output word embedding layer. hidden_size (int
, optional, defaults to 4096): Dimension of the hidden representations. intermediate_size (int
, optional, defaults to 21504): Dimension of the MLP representations. num_hidden_layers (int
, optional, defaults to 52): Number of hidden layers in the Transformer encoder. hybrid_override_pattern (str
, optional, defaults to "M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-"
): The pattern of the hybrid model. The pattern is a string of characters where each character represents M: Mamba2, : Attention, -: MLP num_attention_heads (int
, optional, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. attention_head_dim (int
, optional, defaults to 128): Dimension of each attention head. num_key_value_heads (int
, optional, defaults to 8): This is the number of key_value heads that should be used to implement Grouped Query Attention. If num_key_value_heads=num_attention_heads
, the model will use Multi Head Attention (MHA), if num_key_value_heads=1
the model will use Multi Query Attention (MQA) otherwise GQA is used. mlp_hidden_act (str
, optional, defaults to "relu2"): The non-linear activation function in the MLP layers. attention_bias (bool
, optional, defaults to False
): Whether to use bias in attention layers. mlp_bias (bool
, optional, defaults to False
): Whether to use bias in MLP layers. use_bias (bool
, optional, defaults to False
): Whether to use bias in the model. initializer_range (float
, optional, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_epsilon (float
, optional, defaults to 1e-5): The epsilon used by the layer normalization layers. residual_in_fp32 (bool
, optional, defaults to False
): Whether or not residuals should be in float32
. If set to False
residuals will keep the same dtype
as the rest of the model. use_cache (bool
, optional, defaults to True
): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if config.is_decoder=True
. num_logits_to_keep (int
or None
, optional, defaults to 1): Number of prompt logits to calculate during generation. If None
, all logits will be calculated. If an integer value, only last num_logits_to_keep
logits will be calculated. pad_token_id (int
, optional, defaults to 0): The id of the padding token. bos_token_id (int
, optional, defaults to 1): The id of the "beginning-of-sequence" token. eos_token_id (int
, optional, defaults to 2): The id of the "end-of-sequence" token. sliding_window (int
, optional, defaults to None): Sliding window attention window size. max_position_embeddings (int
, optional, defaults to 4096): The maximum sequence length that this model might ever be used with. attention_dropout (float
, optional, defaults to 0.0): The dropout ratio for the attention probabilities. hidden_dropout (float
, optional, defaults to 0.0): The dropout ratio for the hidden states. use_mamba_kernels (bool
, optional, defaults to True
): Flag indicating whether or not to use the fast mamba kernels. These are available only if mamba-ssm
and causal-conv1d
are installed, and the mamba modules are running on a CUDA device. ssm_state_size (int
, optional, defaults to 128): The dimension of the mamba state space latents. mamba_num_heads (int
, optional, defaults to 128): Number of heads in Mamba layers. mamba_n_groups (int
, optional, defaults to 8): Number of groups in Mamba layers. mamba_head_dim (int
, optional, defaults to 64): Dimension of each Mamba head. mamba_d_conv (int
, optional, defaults to 4): The size of the mamba convolution kernel. mamba_expand (int
, optional, defaults to 2): Expanding factor used to determine the mamba intermediate size. mamba_hidden_act (str
, optional, defaults to "silu"): The non-linear activation function in the Mamba layers. mamba_dt_min (float
, optional, defaults to 0.001): Minimum value for the time step in Mamba. mamba_dt_max (float
, optional, defaults to 0.1): Maximum value for the time step in Mamba. mamba_dt_limit (tuple
, optional, defaults to (0.0, float("inf"))): Limits for the time step in Mamba. mamba_dt_init_floor (float
, optional, defaults to 1e-4): Floor value for time step initialization in Mamba. mamba_conv_bias (bool
, optional, defaults to True
): Whether to use bias in the convolution layer of the mamba mixer block. mamba_proj_bias (bool
, optional, defaults to False
): Whether to use bias in the input and output projections of the mamba mixer block. mamba_chunk_size (int
, optional, defaults to 256): Size of chunks for Mamba processing. rescale_prenorm_residual (bool
, optional*, defaults to True
): Whether to rescale the pre-normalization residual connections.
Source code in vllm/transformers_utils/configs/nemotron_h.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
|
keys_to_ignore_at_inference class-attribute
instance-attribute
¶
__init__ ¶
__init__(
vocab_size=131072,
tie_word_embeddings=False,
hidden_size=4096,
intermediate_size=21504,
num_hidden_layers=52,
hybrid_override_pattern="M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-",
num_attention_heads=32,
head_dim=128,
num_key_value_heads=8,
mlp_hidden_act="relu2",
attention_bias=False,
mlp_bias=False,
use_bias=False,
initializer_range=0.02,
layer_norm_epsilon=1e-05,
residual_in_fp32=False,
use_cache=True,
num_logits_to_keep=1,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
sliding_window=None,
max_position_embeddings=4096,
attention_dropout=0.0,
hidden_dropout=0.0,
use_mamba_kernels=True,
ssm_state_size=128,
mamba_num_heads=128,
mamba_n_groups=8,
mamba_head_dim=64,
mamba_d_conv=4,
mamba_expand=2,
mamba_hidden_act="silu",
mamba_dt_min=0.001,
mamba_dt_max=0.1,
mamba_dt_limit=(0.0, float("inf")),
mamba_dt_init_floor=0.0001,
mamba_conv_bias=True,
mamba_proj_bias=False,
mamba_chunk_size=256,
rescale_prenorm_residual=True,
**kwargs,
)
Source code in vllm/transformers_utils/configs/nemotron_h.py
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
|
Nemotron_Nano_VL_Config ¶
Bases: PretrainedConfig
Source code in vllm/transformers_utils/configs/nemotron_vl.py
__init__ ¶
__init__(
vision_config=None,
llm_config=None,
force_image_size=None,
downsample_ratio=0.5,
template=None,
ps_version="v1",
image_tag_type="internvl",
projector_hidden_size=4096,
vit_hidden_size=1280,
**kwargs,
)
Source code in vllm/transformers_utils/configs/nemotron_vl.py
Olmo3Config ¶
Bases: PretrainedConfig
Source code in vllm/transformers_utils/configs/olmo3.py
keys_to_ignore_at_inference class-attribute
instance-attribute
¶
__init__ ¶
__init__(
vocab_size=50304,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
use_cache=True,
pad_token_id=1,
bos_token_id=None,
eos_token_id=50279,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
rms_norm_eps=1e-05,
sliding_window=4096,
layer_types=None,
**kwargs,
)
Source code in vllm/transformers_utils/configs/olmo3.py
OvisConfig ¶
Bases: PretrainedConfig
Source code in vllm/transformers_utils/configs/ovis.py
conversation_formatter_class instance-attribute
¶
__init__ ¶
__init__(
llm_config: Optional[
Union[PretrainedConfig, dict]
] = None,
visual_tokenizer_config: Optional[
Union[PretrainedConfig, dict]
] = None,
multimodal_max_length=8192,
hidden_size=None,
conversation_formatter_class=None,
llm_attn_implementation=None,
disable_tie_weight=False,
**kwargs,
)
Source code in vllm/transformers_utils/configs/ovis.py
Qwen3NextConfig ¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [Qwen3NextModel
]. It is used to instantiate a Qwen3-Next model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of Qwen3-Next-80B-A3B-Instruct Qwen/Qwen3-Next-80B-A3B-Instruct.
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the documentation from [PretrainedConfig
] for more information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vocab_size | `int`, *optional*, defaults to 151936 | Vocabulary size of the model. Defines the number of different tokens that can be represented by the | 151936 |
hidden_size | `int`, *optional*, defaults to 2048 | Dimension of the hidden representations. | 2048 |
intermediate_size | `int`, *optional*, defaults to 5632 | Dimension of the MLP representations. | 5632 |
num_hidden_layers | `int`, *optional*, defaults to 48 | Number of hidden layers in the Transformer encoder. | 48 |
num_attention_heads | `int`, *optional*, defaults to 16 | Number of attention heads for each attention layer in the Transformer encoder. | 16 |
num_key_value_heads | `int`, *optional*, defaults to 2 | This is the number of key_value heads that should be used to implement Grouped Query Attention. If | 2 |
hidden_act | `str`, *optional*, defaults to `"silu"` | The non-linear activation function in the decoder. | 'silu' |
max_position_embeddings | `int`, *optional*, defaults to 32768 | The maximum sequence length that this model might ever be used with. | 32768 |
initializer_range | `float`, *optional*, defaults to 0.02 | The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 0.02 |
rms_norm_eps | `float`, *optional*, defaults to 1e-06 | The epsilon used by the rms normalization layers. | 1e-06 |
use_cache | `bool`, *optional*, defaults to `True` | Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if | True |
tie_word_embeddings | `bool`, *optional*, defaults to `False` | Whether the model's input and output word embeddings should be tied. | False |
rope_theta | `float`, *optional*, defaults to 10000.0 | The base period of the RoPE embeddings. | 10000.0 |
rope_scaling | `Dict`, *optional* | Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longer | None |
partial_rotary_factor | `float`, *optional*, defaults to 0.25 | Percentage of the query and keys which will have rotary embedding. | 0.25 |
attention_bias | `bool`, *optional*, defaults to `False` | Whether to use a bias in the query, key, value and output projection layers during self-attention. | False |
attention_dropout | `float`, *optional*, defaults to 0.0 | The dropout ratio for the attention probabilities. | 0.0 |
head_dim | `int`, *optional*, defaults to 256 | Projection weights dimension in multi-head attention. | 256 |
linear_conv_kernel_dim | `int`, *optional*, defaults to 4 | Kernel size of the convolution used in linear attention layers. | 4 |
linear_key_head_dim | `int`, *optional*, defaults to 128 | Dimension of each key head in linear attention. | 128 |
linear_value_head_dim | `int`, *optional*, defaults to 128 | Dimension of each value head in linear attention. | 128 |
linear_num_key_heads | `int`, *optional*, defaults to 16 | Number of key heads used in linear attention layers. | 16 |
linear_num_value_heads | `int`, *optional*, defaults to 32 | Number of value heads used in linear attention layers. | 32 |
decoder_sparse_step | `int`, *optional*, defaults to 1 | The frequency of the MoE layer. | 1 |
moe_intermediate_size | `int`, *optional*, defaults to 512 | Intermediate size of the routed expert. | 512 |
shared_expert_intermediate_size | `int`, *optional*, defaults to 512 | Intermediate size of the shared expert. | 512 |
num_experts_per_tok | `int`, *optional*, defaults to 10 | Number of selected experts. | 10 |
num_experts | `int`, *optional*, defaults to 512 | Number of routed experts. | 512 |
norm_topk_prob | `bool`, *optional*, defaults to `True` | Whether to normalize the topk probabilities. | True |
output_router_logits | `bool`, *optional*, defaults to `False` | Whether or not the router logits should be returned by the model. Enabling this will also allow the model to output the auxiliary loss, including load balancing loss and router z-loss. | False |
router_aux_loss_coef | `float`, *optional*, defaults to 0.001 | The aux loss factor for the total loss. | 0.001 |
mlp_only_layers | `list[int]`, *optional*, defaults to `[]` | Indicate which layers use Qwen3NextMLP rather than Qwen3NextSparseMoeBlock The list contains layer index, from 0 to num_layers-1 if we have num_layers layers If | None |
layer_types | `list[str]`, *optional* | Types of each layer (attention or linear). | None |
>>> from transformers import Qwen3NextModel, Qwen3NextConfig
>>> # Initializing a Qwen3Next style configuration
>>> configuration = Qwen3NextConfig()
>>> # Initializing a model from the Qwen3-Next-80B-A3B style configuration
>>> model = Qwen3NextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in vllm/transformers_utils/configs/qwen3_next.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
|
base_model_pp_plan class-attribute
instance-attribute
¶
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (
["hidden_states", "attention_mask"],
["hidden_states"],
),
"norm": (["hidden_states"], ["hidden_states"]),
}
base_model_tp_plan class-attribute
instance-attribute
¶
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.experts.*.gate_proj": "colwise",
"layers.*.mlp.experts.*.up_proj": "colwise",
"layers.*.mlp.experts.*.down_proj": "rowwise",
"layers.*.mlp.shared_experts.gate_proj": "colwise",
"layers.*.mlp.shared_experts.up_proj": "colwise",
"layers.*.mlp.shared_experts.down_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
keys_to_ignore_at_inference class-attribute
instance-attribute
¶
shared_expert_intermediate_size instance-attribute
¶
__init__ ¶
__init__(
vocab_size=151936,
hidden_size=2048,
intermediate_size=5632,
num_hidden_layers=48,
num_attention_heads=16,
num_key_value_heads=2,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-06,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
partial_rotary_factor=0.25,
attention_bias=False,
attention_dropout=0.0,
head_dim=256,
linear_conv_kernel_dim=4,
linear_key_head_dim=128,
linear_value_head_dim=128,
linear_num_key_heads=16,
linear_num_value_heads=32,
decoder_sparse_step=1,
moe_intermediate_size=512,
shared_expert_intermediate_size=512,
num_experts_per_tok=10,
num_experts=512,
norm_topk_prob=True,
output_router_logits=False,
router_aux_loss_coef=0.001,
mlp_only_layers=None,
layer_types=None,
**kwargs,
)
Source code in vllm/transformers_utils/configs/qwen3_next.py
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
|
RWConfig ¶
Bases: PretrainedConfig
Source code in vllm/transformers_utils/configs/falcon.py
attribute_map class-attribute
instance-attribute
¶
attribute_map = {
"num_hidden_layers": "n_layer",
"num_attention_heads": "n_head",
"num_kv_heads": "n_head_kv",
}
keys_to_ignore_at_inference class-attribute
instance-attribute
¶
__init__ ¶
__init__(
vocab_size=250880,
hidden_size=64,
n_layer=2,
n_head=8,
layer_norm_epsilon=1e-05,
initializer_range=0.02,
use_cache=True,
bos_token_id=1,
eos_token_id=2,
hidden_dropout=0.0,
attention_dropout=0.0,
multi_query=True,
n_head_kv=None,
alibi=False,
bias=False,
parallel_attn=False,
new_decoder_architecture=False,
**kwargs,
) -> None
Source code in vllm/transformers_utils/configs/falcon.py
RadioConfig ¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a Radio vision model. It is used to instantiate a Radio model according to the specified arguments, defining the model architecture.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name | str | Name of the vision transformer model (e.g., "vit_base_patch16_224"). Used to determine architecture dimensions from | required |
image_size | int | The size (resolution) of each image. | 224 |
patch_size | int | The size (resolution) of each patch. | 16 |
qkv_bias | bool | Whether to add a bias to the queries, keys and values. | True |
qk_normalization | bool | Whether to apply normalization to queries and keys. | False |
norm_type | str | The normalization type to use. | 'layer_norm' |
layer_norm_eps | float | The epsilon used by the layer normalization layers. | 1e-06 |
initializer_factor | float | A factor for initializing all weight matrices. | 1.0 |
hidden_act | str | The non-linear activation function in the encoder. | 'gelu' |
max_img_size | int | Maximum image size for position embeddings. | 2048 |
norm_mean | Union[tuple[float, float, float], list] | Mean values for image normalization (RGB channels). Defaults to (0.48145466, 0.4578275, 0.40821073)). | OPENAI_CLIP_MEAN |
norm_std | Union[tuple[float, float, float], list] | Standard deviation values for image normalization (RGB channels). Defaults to (0.26862954, 0.26130258, 0.27577711)). | OPENAI_CLIP_STD |
reg_tokens | Optional[int] | Number of register tokens to use. | None |
Source code in vllm/transformers_utils/configs/radio.py
norm_mean instance-attribute
¶
norm_mean = (
list(norm_mean)
if isinstance(norm_mean, (tuple, list))
else norm_mean
)
norm_std instance-attribute
¶
norm_std = (
list(norm_std)
if isinstance(norm_std, (tuple, list))
else norm_std
)
__init__ ¶
__init__(
model_name: str,
image_size: int = 224,
patch_size: int = 16,
qkv_bias: bool = True,
qk_normalization: bool = False,
norm_type: str = "layer_norm",
layer_norm_eps: float = 1e-06,
initializer_factor: float = 1.0,
hidden_act: str = "gelu",
max_img_size: int = 2048,
norm_mean: Union[
tuple[float, float, float], list
] = OPENAI_CLIP_MEAN,
norm_std: Union[
tuple[float, float, float], list
] = OPENAI_CLIP_STD,
reg_tokens: Optional[int] = None,
**kwargs,
)
Source code in vllm/transformers_utils/configs/radio.py
SpeculatorsConfig ¶
Bases: PretrainedConfig
Source code in vllm/transformers_utils/configs/speculators/base.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
|
build_vllm_speculative_config classmethod
¶
Build vLLM-compatible speculative configuration from speculators format.
This method extracts and transforms speculative configuration from the speculators format into the structure expected by vLLM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config_dict | dict[str, Any] | Configuration dictionary in speculators format | required |
Returns:
Type | Description |
---|---|
dict[str, Any] | Dictionary with vLLM-compatible speculative configuration |
Source code in vllm/transformers_utils/configs/speculators/base.py
extract_vllm_speculative_config classmethod
¶
Source code in vllm/transformers_utils/configs/speculators/base.py
from_pretrained classmethod
¶
from_pretrained(
pretrained_model_name_or_path: Union[str, PathLike],
**kwargs,
) -> SpeculatorsConfig
Load speculators Eagle config and convert to vLLM format.
Source code in vllm/transformers_utils/configs/speculators/base.py
validate_speculators_config classmethod
¶
Source code in vllm/transformers_utils/configs/speculators/base.py
Step3TextConfig ¶
Bases: PretrainedConfig
Source code in vllm/transformers_utils/configs/step3_vl.py
__init__ ¶
__init__(
hidden_size: int = 7168,
intermediate_size: int = 18432,
num_attention_heads: int = 64,
num_attention_groups: int = 1,
num_hidden_layers: int = 61,
max_seq_len: int = 65536,
vocab_size: int = 128815,
rms_norm_eps: float = 1e-05,
moe_intermediate_size: int = 5120,
moe_num_experts: int = 48,
moe_top_k: int = 3,
rope_theta: float = 500000,
rope_scaling: Optional[dict[str, Any]] = None,
max_position_embedding: int = 65536,
share_expert_dim: int = 5120,
share_q_dim: int = 2048,
head_dim: int = 256,
norm_expert_weight: bool = False,
moe_layers_enum: tuple[int, ...] = (
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
),
**kwargs,
) -> None
Source code in vllm/transformers_utils/configs/step3_vl.py
Step3VLConfig ¶
Bases: PretrainedConfig
Source code in vllm/transformers_utils/configs/step3_vl.py
understand_projector_stride instance-attribute
¶
__init__ ¶
__init__(
vision_config: Optional[
Union[dict, Step3VisionEncoderConfig]
] = None,
text_config: Optional[
Union[dict, Step3TextConfig]
] = None,
understand_projector_stride: int = 1,
projector_bias: bool = True,
image_token_id: int = 128001,
**kwargs,
) -> None
Source code in vllm/transformers_utils/configs/step3_vl.py
Step3VisionEncoderConfig ¶
Bases: PretrainedConfig
Source code in vllm/transformers_utils/configs/step3_vl.py
__init__ ¶
__init__(
hidden_size=1792,
intermediate_size=3072,
output_hidden_size=4096,
num_hidden_layers=63,
num_attention_heads=16,
num_channels=3,
image_size=728,
patch_size=14,
hidden_act="quick_gelu",
layer_norm_eps=1e-05,
**kwargs,
)
Source code in vllm/transformers_utils/configs/step3_vl.py
UltravoxConfig ¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [UltravoxForConditionalGeneration
]. It is used to instantiate an Ultravox model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [PretrainedConfig
] and can be used to control the model outputs. Read the documentation from [PretrainedConfig
] for more information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
audio_config | `Union[AutoConfig, dict]`, *optional* | Custom audio config or dict. | None |
text_config | `Union[AutoConfig, dict]`, *optional* | The config object of the text backbone. | None |
audio_model_id | `str`, *optional* | The model ID of the audio backbone. | None |
text_model_id | `str`, *optional* | The model ID of the text backbone. | None |
ignore_index | `int`, *optional*, defaults to -100 | The ignore index for the loss function. | -100 |
audio_token_index | `int`, *optional*, defaults to 32000 | The audio token index to encode the audio prompt. | 32000 |
stack_factor | `int`, *optional*, defaults to 8 | Audio downsampling factor for the multimodal projector. | 8 |
norm_init | `float`, *optional*, defaults to 0.4 | The initialization value for the layer normalization. | 0.4 |
projector_act | `str`, *optional*, defaults to `"swiglu"` | The activation function used by the multimodal projector. | 'swiglu' |
projector_ln_mid | `bool`, *optional*, defaults to `False` | Whether to apply layer normalization at the middle of the projector or at the end. Versions v0.4.1 and below use | False |
Source code in vllm/transformers_utils/configs/ultravox.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
audio_config instance-attribute
¶
__init__ ¶
__init__(
audio_config: Optional[dict[str, Any]] = None,
text_config: Optional[dict[str, Any]] = None,
audio_model_id: Optional[str] = None,
text_model_id: Optional[str] = None,
ignore_index: int = -100,
audio_token_index: int = 32000,
hidden_size: int = 4096,
stack_factor: int = 8,
norm_init: float = 0.4,
projector_act: str = "swiglu",
projector_ln_mid: bool = False,
**kwargs,
)