class BaseThinkingReasoningParser(ReasoningParser):
"""
Base class for reasoning parsers that use thinking tokens.
This class provides common functionality for parsers that use start and end
tokens to delimit reasoning content (
e.g., <think>...</think>, <seed:think>...</seed:think>).
Subclasses must implement the start and end tokens via abstract
properties.
"""
@property
@abstractmethod
def start_token(self) -> str:
"""The token that starts reasoning content."""
raise NotImplementedError
@property
@abstractmethod
def end_token(self) -> str:
"""The token that ends reasoning content."""
raise NotImplementedError
def __init__(self, tokenizer: AnyTokenizer, *args, **kwargs):
super().__init__(tokenizer, *args, **kwargs)
if not self.model_tokenizer:
raise ValueError(
"The model tokenizer must be passed to the ReasoningParser "
"constructor during construction.")
if not self.start_token or not self.end_token:
raise ValueError(
"start_token and end_token must be defined in subclasses")
self.start_token_id = self.vocab.get(self.start_token)
self.end_token_id = self.vocab.get(self.end_token)
if self.start_token_id is None or self.end_token_id is None:
raise RuntimeError(
f"{self.__class__.__name__} reasoning parser could not locate "
"think start/end tokens in the tokenizer!")
def is_reasoning_end(self, input_ids: list[int]) -> bool:
return self.end_token_id in input_ids
def extract_content_ids(self, input_ids: list[int]) -> list[int]:
"""
Extract the content after the end tokens
"""
if self.end_token_id not in input_ids[:-1]:
return []
else:
return input_ids[input_ids.index(self.end_token_id) + 1:]
def extract_reasoning_content_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
) -> Union[DeltaMessage, None]:
"""
Extract reasoning content from a delta message.
Handles streaming output where previous + delta = current.
Uses token IDs for faster processing.
"""
# Skip single special tokens
if len(delta_token_ids) == 1 and (delta_token_ids[0] in [
self.start_token_id, self.end_token_id
]):
return None
# Check if start token is present in previous or delta.
# Keep compatibility with models that don't generate start tokens.
if self.start_token_id in previous_token_ids:
if self.end_token_id in delta_token_ids:
# start token in previous, end token in delta,
# extract reasoning content
end_index = delta_text.find(self.end_token)
reasoning_content = delta_text[:end_index]
content = delta_text[end_index + len(self.end_token):]
return DeltaMessage(
reasoning_content=reasoning_content,
content=content if content else None,
)
elif self.end_token_id in previous_token_ids:
# start token in previous, end token in previous,
# reasoning content continues
return DeltaMessage(content=delta_text)
else:
# start token in previous, no end token in previous or delta,
# reasoning content continues
return DeltaMessage(reasoning_content=delta_text)
elif self.start_token_id in delta_token_ids:
if self.end_token_id in delta_token_ids:
# start token in delta, end token in delta,
# extract reasoning content
start_index = delta_text.find(self.start_token)
end_index = delta_text.find(self.end_token)
reasoning_content = delta_text[start_index +
len(self.start_token):end_index]
content = delta_text[end_index + len(self.end_token):]
return DeltaMessage(
reasoning_content=reasoning_content,
content=content if content else None,
)
else:
# start token in delta, no end token in delta,
# reasoning content continues
return DeltaMessage(reasoning_content=delta_text)
else:
# not find thinking start token
return DeltaMessage(content=delta_text)
def extract_reasoning_content(
self, model_output: str, request: Union[ChatCompletionRequest,
ResponsesRequest]
) -> tuple[Optional[str], Optional[str]]:
"""
Extract reasoning content from the model output.
This is the base implementation that works for most models.
Subclasses can override this method for specific behavior.
"""
# Check if the start token is present in the model output, remove it
# if it is present.
model_output_parts = model_output.partition(self.start_token)
model_output = model_output_parts[2] if model_output_parts[
1] else model_output_parts[0]
# For models that may not generate start token,
# assume the reasoning content is always at the start.
if self.end_token not in model_output:
return model_output, None
else:
reasoning_content, _, content = model_output.partition(
self.end_token)
# If generation stops right after end-of-think, return null content
final_content = content or None
return reasoning_content, final_content