class XPUPlatform(Platform):
_enum = PlatformEnum.XPU
device_name: str = "xpu"
device_type: str = "xpu"
dispatch_key: str = "XPU"
# Intel XPU's device key is "GPU" for Ray.
# see https://github.com/ray-project/ray/blob/6a5eb5865eeb9ccf058a79b44f107e327e360673/python/ray/_private/accelerators/intel_gpu.py#L20 # noqa: E501
ray_device_key: str = "GPU"
dist_backend: str = "ccl" # ccl | xccl
device_control_env_var: str = "ZE_AFFINITY_MASK"
@classmethod
def get_attn_backend_cls(cls, selected_backend: _Backend, head_size: int,
dtype: torch.dtype, kv_cache_dtype: Optional[str],
block_size: int, use_v1: bool, use_mla: bool,
has_sink: bool, use_sparse) -> str:
if use_sparse:
raise NotImplementedError(
"Sparse Attention is not supported on XPU.")
use_v1 = envs.VLLM_USE_V1
if not use_v1:
raise ValueError("XPU backend only supports V1.")
TRITON_ATTN = "vllm.v1.attention.backends.triton_attn.TritonAttentionBackend" # noqa: E501
FLASH_ATTN = "vllm.v1.attention.backends.flash_attn.FlashAttentionBackend" # noqa: E501
if selected_backend == _Backend.TRITON_ATTN:
logger.info_once("Using Triton backend on V1 engine.")
return TRITON_ATTN
elif selected_backend == _Backend.FLASH_ATTN:
logger.info_once("Using Flash Attention backend on V1 engine.")
return FLASH_ATTN
elif selected_backend:
raise ValueError(
f"Invalid attention backend for {cls.device_name}, "
f"with use_v1: {use_v1} use_mla: {use_mla}")
logger.info("Using Flash Attention backend on V1 engine.")
return "vllm.v1.attention.backends.flash_attn.FlashAttentionBackend"
@classmethod
def is_kv_cache_dtype_supported(cls, kv_cache_dtype: str,
model_config: "ModelConfig") -> bool:
"""
Check if the kv_cache_dtype is supported.
XPU only support fp8 kv cache with triton backend.
"""
if envs.is_set("VLLM_ATTENTION_BACKEND") and \
envs.VLLM_ATTENTION_BACKEND == "TRITON_ATTN":
return kv_cache_dtype in ["fp8_e4m3", "fp8_e5m2", "fp8"]
return False
@classmethod
def set_device(cls, device: torch.device) -> None:
"""
Set the device for the current platform.
"""
torch.xpu.set_device(device)
@classmethod
def get_device_capability(
cls,
device_id: int = 0,
) -> Optional[DeviceCapability]:
# capacity format differs from cuda's and will cause unexpected
# failure, so use None directly
return None
@classmethod
def get_device_name(cls, device_id: int = 0) -> str:
return torch.xpu.get_device_name(device_id)
@classmethod
def get_punica_wrapper(cls) -> str:
return "vllm.lora.punica_wrapper.punica_xpu.PunicaWrapperXPU"
@classmethod
def get_device_total_memory(cls, device_id: int = 0) -> int:
device_props = torch.xpu.get_device_properties(device_id)
return device_props.total_memory
@classmethod
def inference_mode(cls):
return torch.no_grad()
@classmethod
def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
cache_config = vllm_config.cache_config
model_config = vllm_config.model_config
# in V1(or with ipex chunked prefill) block_size is 64
if cache_config and cache_config.block_size is None:
cache_config.block_size = 64
# lazy import to avoid circular import
from vllm.config import CompilationLevel, CUDAGraphMode
compilation_config = vllm_config.compilation_config
if compilation_config.compile_sizes is None:
compilation_config.compile_sizes = []
assert compilation_config.cudagraph_mode == CUDAGraphMode.NONE, \
"CUDA graph mode should be NONE on XPU"
if vllm_config.lora_config is not None:
compilation_config.level = CompilationLevel.NO_COMPILATION
# check and update parallel config
parallel_config = vllm_config.parallel_config
parallel_config.worker_cls = "vllm.v1.worker.xpu_worker.XPUWorker"
if parallel_config.distributed_executor_backend is None:
if parallel_config.world_size > 1:
parallel_config.distributed_executor_backend = "ray"
else:
parallel_config.distributed_executor_backend = "uni"
elif parallel_config.distributed_executor_backend == "mp":
# FIXME(kunshang):
# spawn needs calling `if __name__ == '__main__':``
# fork is not supported for xpu start new process.
if envs.VLLM_WORKER_MULTIPROC_METHOD != "spawn":
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"
logger.warning(
"Please use spawn as start method if you want to use mp.")
elif (parallel_config.distributed_executor_backend != "ray"
and parallel_config.distributed_executor_backend != "uni"
and parallel_config.distributed_executor_backend
!= "external_launcher"):
logger.warning(
"%s is not supported on XPU, fallback to ray distributed"
" executor backend.",
parallel_config.distributed_executor_backend)
parallel_config.distributed_executor_backend = "ray"
if model_config and model_config.use_mla:
logger.info(
"MLA is enabled on a non-GPU platform; forcing chunked "
"prefill and prefix caching to be disabled.")
vllm_config.scheduler_config.enable_chunked_prefill = False
vllm_config.scheduler_config.chunked_prefill_enabled = False
vllm_config.scheduler_config.max_num_batched_tokens = max(
vllm_config.scheduler_config.max_model_len,
DEFAULT_MAX_NUM_BATCHED_TOKENS)
from vllm.v1.attention.backends.utils import set_kv_cache_layout
set_kv_cache_layout("NHD")
logger.info("Setting VLLM_KV_CACHE_LAYOUT to 'NHD' for XPU; "
"only NHD layout is supported by XPU attention kernels.")
@classmethod
def support_hybrid_kv_cache(cls) -> bool:
return True
@classmethod
def support_static_graph_mode(cls) -> bool:
return False
@classmethod
def is_pin_memory_available(cls):
return True
@classmethod
def get_current_memory_usage(cls,
device: Optional[torch.types.Device] = None
) -> float:
torch.xpu.reset_peak_memory_stats(device)
return torch.xpu.max_memory_allocated(device)
@classmethod
def fp8_dtype(cls) -> torch.dtype:
return torch.float8_e5m2
@classmethod
def is_data_center_gpu(cls) -> bool:
device_name = cls.get_device_name().lower()
return device_name.count("data center gpu") > 0
@classmethod
def get_device_communicator_cls(cls) -> str:
return "vllm.distributed.device_communicators.xpu_communicator.XpuCommunicator" # noqa
@classmethod
def device_count(cls) -> int:
return torch.xpu.device_count()
@classmethod
def check_if_supports_dtype(cls, torch_dtype: torch.dtype):
if torch_dtype == torch.bfloat16: # noqa: SIM102
device_name = cls.get_device_name().lower()
# client gpu a770
if device_name.count("a770") > 0:
raise ValueError(
"Intel Arc A770 have bfloat16 accuracy known issue. "
"You can use float16 instead by explicitly setting the "
"`dtype` flag in CLI, for example: --dtype=half.")
@classmethod
def opaque_attention_op(cls) -> bool:
return True
@classmethod
def insert_blocks_to_device(
cls,
src_cache: torch.Tensor,
dst_cache: torch.Tensor,
src_block_indices: torch.Tensor,
dst_block_indices: torch.Tensor,
) -> None:
"""Copy blocks from src_cache to dst_cache on XPU."""
_src_cache = src_cache[:, src_block_indices]
dst_cache[:, dst_block_indices] = _src_cache.to(dst_cache.device)
@classmethod
def swap_out_blocks_to_host(
cls,
src_cache: torch.Tensor,
dst_cache: torch.Tensor,
src_block_indices: torch.Tensor,
dst_block_indices: torch.Tensor,
) -> None:
"""Copy blocks from XPU to host (CPU)."""
_src_cache = src_cache[:, src_block_indices]
dst_cache[:, dst_block_indices] = _src_cache.cpu()