class MultiModalHasher:
@classmethod
def serialize_item(cls, obj: object) -> Iterable[Union[bytes, memoryview]]:
# Simple cases
if isinstance(obj, (bytes, memoryview)):
return (obj, )
if isinstance(obj, str):
return (obj.encode("utf-8"), )
if isinstance(obj, (int, float)):
return (np.array(obj).tobytes(), )
if isinstance(obj, Image.Image):
exif = obj.getexif()
if Image.ExifTags.Base.ImageID in exif and isinstance(
exif[Image.ExifTags.Base.ImageID], uuid.UUID):
# If the image has exif ImageID tag, use that
return (exif[Image.ExifTags.Base.ImageID].bytes, )
data = {"mode": obj.mode, "data": np.asarray(obj)}
if obj.palette is not None:
data["palette"] = obj.palette.palette
if obj.palette.rawmode is not None:
data["palette_rawmode"] = obj.palette.rawmode
return cls.iter_item_to_bytes("image", data)
if isinstance(obj, torch.Tensor):
tensor_obj: torch.Tensor = obj.cpu()
tensor_dtype = tensor_obj.dtype
tensor_shape = tensor_obj.shape
# NumPy does not support bfloat16.
# Workaround: View the tensor as a contiguous 1D array of bytes
if tensor_dtype == torch.bfloat16:
tensor_obj = tensor_obj.contiguous()
tensor_obj = tensor_obj.view(
(tensor_obj.numel(), )).view(torch.uint8)
return cls.iter_item_to_bytes(
"tensor", {
"original_dtype": str(tensor_dtype),
"original_shape": tuple(tensor_shape),
"data": tensor_obj.numpy(),
})
return cls.iter_item_to_bytes("tensor", tensor_obj.numpy())
if isinstance(obj, np.ndarray):
# If the array is non-contiguous, we need to copy it first
arr_data = obj.view(
np.uint8).data if obj.flags.c_contiguous else obj.tobytes()
return cls.iter_item_to_bytes("ndarray", {
"dtype": obj.dtype.str,
"shape": obj.shape,
"data": arr_data,
})
logger.warning(
"No serialization method found for %s. "
"Falling back to pickle.", type(obj))
return (pickle.dumps(obj), )
@classmethod
def iter_item_to_bytes(
cls,
key: str,
obj: object,
) -> Iterable[Union[bytes, memoryview]]:
# Recursive cases
if isinstance(obj, (list, tuple)):
for i, elem in enumerate(obj):
yield from cls.iter_item_to_bytes(f"{key}.{i}", elem)
elif isinstance(obj, dict):
for k, v in obj.items():
yield from cls.iter_item_to_bytes(f"{key}.{k}", v)
else:
yield key.encode("utf-8")
yield from cls.serialize_item(obj)
@classmethod
def hash_kwargs(cls, **kwargs: object) -> str:
hasher = blake3()
for k, v in kwargs.items():
for bytes_ in cls.iter_item_to_bytes(k, v):
hasher.update(bytes_)
return hasher.hexdigest()