Skip to content

vllm.multimodal.hasher

logger module-attribute

logger = init_logger(__name__)

MultiModalHasher

Source code in vllm/multimodal/hasher.py
class MultiModalHasher:

    @classmethod
    def serialize_item(cls, obj: object) -> Iterable[Union[bytes, memoryview]]:
        # Simple cases
        if isinstance(obj, (bytes, memoryview)):
            return (obj, )
        if isinstance(obj, str):
            return (obj.encode("utf-8"), )
        if isinstance(obj, (int, float)):
            return (np.array(obj).tobytes(), )

        if isinstance(obj, Image.Image):
            exif = obj.getexif()
            if Image.ExifTags.Base.ImageID in exif and isinstance(
                    exif[Image.ExifTags.Base.ImageID], uuid.UUID):
                # If the image has exif ImageID tag, use that
                return (exif[Image.ExifTags.Base.ImageID].bytes, )
            data = {"mode": obj.mode, "data": np.asarray(obj)}
            if obj.palette is not None:
                data["palette"] = obj.palette.palette
                if obj.palette.rawmode is not None:
                    data["palette_rawmode"] = obj.palette.rawmode
            return cls.iter_item_to_bytes("image", data)
        if isinstance(obj, torch.Tensor):
            tensor_obj: torch.Tensor = obj.cpu()
            tensor_dtype = tensor_obj.dtype
            tensor_shape = tensor_obj.shape

            # NumPy does not support bfloat16.
            # Workaround: View the tensor as a contiguous 1D array of bytes
            if tensor_dtype == torch.bfloat16:
                tensor_obj = tensor_obj.contiguous()
                tensor_obj = tensor_obj.view(
                    (tensor_obj.numel(), )).view(torch.uint8)

                return cls.iter_item_to_bytes(
                    "tensor", {
                        "original_dtype": str(tensor_dtype),
                        "original_shape": tuple(tensor_shape),
                        "data": tensor_obj.numpy(),
                    })
            return cls.iter_item_to_bytes("tensor", tensor_obj.numpy())
        if isinstance(obj, np.ndarray):
            # If the array is non-contiguous, we need to copy it first
            arr_data = obj.view(
                np.uint8).data if obj.flags.c_contiguous else obj.tobytes()
            return cls.iter_item_to_bytes("ndarray", {
                "dtype": obj.dtype.str,
                "shape": obj.shape,
                "data": arr_data,
            })
        logger.warning(
            "No serialization method found for %s. "
            "Falling back to pickle.", type(obj))

        return (pickle.dumps(obj), )

    @classmethod
    def iter_item_to_bytes(
        cls,
        key: str,
        obj: object,
    ) -> Iterable[Union[bytes, memoryview]]:
        # Recursive cases
        if isinstance(obj, (list, tuple)):
            for i, elem in enumerate(obj):
                yield from cls.iter_item_to_bytes(f"{key}.{i}", elem)
        elif isinstance(obj, dict):
            for k, v in obj.items():
                yield from cls.iter_item_to_bytes(f"{key}.{k}", v)
        else:
            yield key.encode("utf-8")
            yield from cls.serialize_item(obj)

    @classmethod
    def hash_kwargs(cls, **kwargs: object) -> str:
        hasher = blake3()

        for k, v in kwargs.items():
            for bytes_ in cls.iter_item_to_bytes(k, v):
                hasher.update(bytes_)

        return hasher.hexdigest()

hash_kwargs classmethod

hash_kwargs(**kwargs: object) -> str
Source code in vllm/multimodal/hasher.py
@classmethod
def hash_kwargs(cls, **kwargs: object) -> str:
    hasher = blake3()

    for k, v in kwargs.items():
        for bytes_ in cls.iter_item_to_bytes(k, v):
            hasher.update(bytes_)

    return hasher.hexdigest()

iter_item_to_bytes classmethod

iter_item_to_bytes(
    key: str, obj: object
) -> Iterable[Union[bytes, memoryview]]
Source code in vllm/multimodal/hasher.py
@classmethod
def iter_item_to_bytes(
    cls,
    key: str,
    obj: object,
) -> Iterable[Union[bytes, memoryview]]:
    # Recursive cases
    if isinstance(obj, (list, tuple)):
        for i, elem in enumerate(obj):
            yield from cls.iter_item_to_bytes(f"{key}.{i}", elem)
    elif isinstance(obj, dict):
        for k, v in obj.items():
            yield from cls.iter_item_to_bytes(f"{key}.{k}", v)
    else:
        yield key.encode("utf-8")
        yield from cls.serialize_item(obj)

serialize_item classmethod

serialize_item(
    obj: object,
) -> Iterable[Union[bytes, memoryview]]
Source code in vllm/multimodal/hasher.py
@classmethod
def serialize_item(cls, obj: object) -> Iterable[Union[bytes, memoryview]]:
    # Simple cases
    if isinstance(obj, (bytes, memoryview)):
        return (obj, )
    if isinstance(obj, str):
        return (obj.encode("utf-8"), )
    if isinstance(obj, (int, float)):
        return (np.array(obj).tobytes(), )

    if isinstance(obj, Image.Image):
        exif = obj.getexif()
        if Image.ExifTags.Base.ImageID in exif and isinstance(
                exif[Image.ExifTags.Base.ImageID], uuid.UUID):
            # If the image has exif ImageID tag, use that
            return (exif[Image.ExifTags.Base.ImageID].bytes, )
        data = {"mode": obj.mode, "data": np.asarray(obj)}
        if obj.palette is not None:
            data["palette"] = obj.palette.palette
            if obj.palette.rawmode is not None:
                data["palette_rawmode"] = obj.palette.rawmode
        return cls.iter_item_to_bytes("image", data)
    if isinstance(obj, torch.Tensor):
        tensor_obj: torch.Tensor = obj.cpu()
        tensor_dtype = tensor_obj.dtype
        tensor_shape = tensor_obj.shape

        # NumPy does not support bfloat16.
        # Workaround: View the tensor as a contiguous 1D array of bytes
        if tensor_dtype == torch.bfloat16:
            tensor_obj = tensor_obj.contiguous()
            tensor_obj = tensor_obj.view(
                (tensor_obj.numel(), )).view(torch.uint8)

            return cls.iter_item_to_bytes(
                "tensor", {
                    "original_dtype": str(tensor_dtype),
                    "original_shape": tuple(tensor_shape),
                    "data": tensor_obj.numpy(),
                })
        return cls.iter_item_to_bytes("tensor", tensor_obj.numpy())
    if isinstance(obj, np.ndarray):
        # If the array is non-contiguous, we need to copy it first
        arr_data = obj.view(
            np.uint8).data if obj.flags.c_contiguous else obj.tobytes()
        return cls.iter_item_to_bytes("ndarray", {
            "dtype": obj.dtype.str,
            "shape": obj.shape,
            "data": arr_data,
        })
    logger.warning(
        "No serialization method found for %s. "
        "Falling back to pickle.", type(obj))

    return (pickle.dumps(obj), )