vllm.model_executor.models.modernbert ¶
ModernBertAttention ¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
Wqkv instance-attribute
¶
Wqkv = QKVParallelLinear(
hidden_size, head_dim, num_heads, bias=attention_bias
)
attn instance-attribute
¶
attn = EncoderOnlyAttention(
num_heads,
head_dim,
scaling,
prefix=f"{layer_id}.attn",
per_layer_sliding_window=sliding_window,
)
rotary_emb instance-attribute
¶
rotary_emb = ModernBertRotaryEmbedding(
config=config,
head_size=head_dim,
dim=head_dim,
base=rope_theta,
)
__init__ ¶
Source code in vllm/model_executor/models/modernbert.py
forward ¶
Source code in vllm/model_executor/models/modernbert.py
ModernBertEmbeddings ¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
tok_embeddings instance-attribute
¶
tok_embeddings = VocabParallelEmbedding(
vocab_size, hidden_size
)
__init__ ¶
Source code in vllm/model_executor/models/modernbert.py
forward ¶
Source code in vllm/model_executor/models/modernbert.py
ModernBertEncoderLayer ¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
layers instance-attribute
¶
layers = ModuleList(
[
(ModernBertLayer(config=config, layer_id=layer_id))
for layer_id in (range(num_hidden_layers))
]
)
__init__ ¶
__init__(vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/modernbert.py
forward ¶
ModernBertForSequenceClassification ¶
Bases: Module
, SupportsCrossEncoding
Source code in vllm/model_executor/models/modernbert.py
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
|
model instance-attribute
¶
model = ModernBertModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "modernbert"),
)
pooler instance-attribute
¶
pooler = DispatchPooler(
{
"encode": for_encode(pooler_config),
"classify": ClassifierPooler(
pooling=pooling,
classifier=classifier,
act_fn=act_fn_for_seq_cls(model_config),
),
"score": ClassifierPooler(
pooling=pooling,
classifier=classifier,
act_fn=act_fn_for_cross_encoder(model_config),
),
}
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/modernbert.py
forward ¶
forward(
input_ids: Optional[LongTensor],
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Tensor
Source code in vllm/model_executor/models/modernbert.py
get_input_embeddings ¶
load_weights ¶
Source code in vllm/model_executor/models/modernbert.py
ModernBertLayer ¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
__init__ ¶
Source code in vllm/model_executor/models/modernbert.py
forward ¶
Source code in vllm/model_executor/models/modernbert.py
ModernBertMLP ¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
__init__ ¶
Source code in vllm/model_executor/models/modernbert.py
ModernBertModel ¶
Bases: Module
Source code in vllm/model_executor/models/modernbert.py
hf_to_vllm_mapper class-attribute
instance-attribute
¶
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_prefix={"layers.": "encoder_layer.layers."}
)
__init__ ¶
__init__(vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/modernbert.py
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Tensor
Source code in vllm/model_executor/models/modernbert.py
get_input_embeddings ¶
load_weights ¶
Source code in vllm/model_executor/models/modernbert.py
ModernBertPooler ¶
Bases: Pooler
Source code in vllm/model_executor/models/modernbert.py
__init__ ¶
Source code in vllm/model_executor/models/modernbert.py
forward ¶
forward(
hidden_states: Union[Tensor, list[Tensor]],
pooling_metadata: PoolingMetadata,
) -> Union[Tensor, list[Tensor]]
Source code in vllm/model_executor/models/modernbert.py
get_pooling_updates ¶
get_pooling_updates(
task: PoolingTask,
) -> PoolingParamsUpdate
get_supported_tasks ¶
get_supported_tasks() -> Set[PoolingTask]
ModernBertRotaryEmbedding ¶
Bases: RotaryEmbedding