class MLPSpeculator(nn.Module):
"""
An implementation of the speculative models introduced in
"Accelerating Production LLMs with Combined Token/Embedding
Speculators"
https://arxiv.org/pdf/2404.19124
Trained speculators of this type are available on HF hub at:
https://huggingface.co/ibm-ai-platform and https://huggingface.co/ibm-granite
"""
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
super().__init__()
config = vllm_config.model_config.hf_config
self.n_predict = config.n_predict
self.vocab_size = config.vocab_size
self.emb_dim = config.emb_dim
self.inner_dim = config.inner_dim if config.inner_dim != 0 \
else config.emb_dim
self.max_speculative_tokens = config.num_lookahead_tokens
self.tie_weights = config.tie_weights
self.scale_input = config.scale_input
if self.tie_weights:
assert (
self.n_predict > 1
), "You cannot tie weights between stages when only 1 exists"
embedding = VocabParallelEmbedding(
config.vocab_size,
self.inner_dim,
org_num_embeddings=config.vocab_size)
self.emb = nn.ModuleList([embedding] * self.max_speculative_tokens)
# the initial projection from the base model may
# have a different size, so that stays separate.
proj_first = nn.Linear(self.emb_dim, self.inner_dim, bias=False)
proj_tied = nn.Linear(self.inner_dim, self.inner_dim, bias=False)
self.proj = nn.ModuleList([proj_first] + [proj_tied] *
(self.max_speculative_tokens - 1))
head = ParallelLMHead(self.vocab_size, self.inner_dim, bias=False)
self.head = nn.ModuleList([head] * self.max_speculative_tokens)
ln = MLPSpeculatorLayerNorm(self.inner_dim,
elementwise_scale_and_shift=True)
self.ln = nn.ModuleList([ln] * self.max_speculative_tokens)
else:
self.emb = nn.ModuleList([
VocabParallelEmbedding(config.vocab_size,
self.inner_dim,
org_num_embeddings=config.vocab_size)
for _ in range(self.max_speculative_tokens)
])
self.proj = nn.ModuleList([
nn.Linear((self.emb_dim if i == 0 else self.inner_dim),
self.inner_dim,
bias=False)
for i in range(self.max_speculative_tokens)
])
self.head = nn.ModuleList([
ParallelLMHead(self.vocab_size, self.inner_dim, bias=False)
for _ in range(self.max_speculative_tokens)
])
self.ln = nn.ModuleList([
MLPSpeculatorLayerNorm(self.inner_dim,
elementwise_scale_and_shift=True)
for _ in range(self.max_speculative_tokens)
])
if self.scale_input:
self.ln0 = MLPSpeculatorLayerNorm(
self.emb_dim, elementwise_scale_and_shift=False)
self.state_weight = 0.5**(0.5 / config.n_predict)
self.emb_weight = math.sqrt(
(1 - self.state_weight**2) * (self.inner_dim / 2))
self.activation = nn.GELU()
self.config = config
self.logits_processor = LogitsProcessor(config.vocab_size,
config.vocab_size, 1.0)
# NOTE(woosuk): This method is commented out because it is old code
# using V0. We should either port it to V1 or remove it.
# def generate_proposals(
# self,
# input_ids: torch.Tensor,
# previous_hidden_states: torch.Tensor,
# num_predict_tokens: int,
# sampling_metadata: SamplingMetadata,
# ) -> list[SamplerOutput]:
# if num_predict_tokens > self.max_speculative_tokens:
# raise ValueError(f"Max speculative tokens for model is "
# f"{self.max_speculative_tokens}, but "
# f"{num_predict_tokens} were requested")
# # b x 1 x d
# previous_hidden_states = previous_hidden_states.unsqueeze(1)
# if self.scale_input:
# previous_hidden_states = self.ln0(previous_hidden_states) / SQRT2
# # b x 1
# last_tokens = input_ids.unsqueeze(1)
# next_tokens = []
# for head_index in range(num_predict_tokens):
# # Project and predict
# z = self.emb[head_index](last_tokens) # b k d
# states = self.proj[head_index](previous_hidden_states)
# # Weighted add of state_weight*state and emb_weight*z
# # Let subsequent LN take care of denominator
# # state_weight is close to 1, so shouldn't be any precision issues
# states.add_(z, alpha=self.emb_weight / self.state_weight)
# states = self.activation(self.ln[head_index](states)) # b k d
# previous_hidden_states = states
# # TODO: not yet supporting top_k_tokens_per_head
# states = states.flatten(0, 1)
# logits = self.logits_processor(self.head[head_index], states,
# sampling_metadata)
# output = self.sampler(logits, sampling_metadata)
# last_tokens = output.sampled_token_ids
# next_tokens.append(output)
# return next_tokens
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
name = name.replace("speculator.", "")
param = params_dict.get(name)
if param is not None:
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params