Skip to content

vllm.model_executor.models.midashenglm

Inference-only MiDashengLM model compatible with HuggingFace weights.

_Tuple2 module-attribute

_Tuple2 = Union[int, tuple[int, int], Sequence[int]]

AudioPatchEmbed

Bases: Module

Source code in vllm/model_executor/models/midashenglm.py
class AudioPatchEmbed(nn.Module):

    def __init__(
        self,
        input_size: _Tuple2 = 64,
        patch_size: _Tuple2 = 16,
        patch_stride: _Tuple2 = 16,
        in_chans: int = 1,
        embed_dim: int = 768,
        norm_layer: Optional[Callable] = None,
        flatten: bool = False,
    ):
        super().__init__()
        self.input_size = _resolve_tuple2(input_size)
        self.patch_size = _resolve_tuple2(patch_size)
        self.patch_stride = _resolve_tuple2(patch_stride)
        self.grid_size = (
            self.input_size[0] // self.patch_stride[0],
            self.input_size[1] // self.patch_stride[1],
        )
        self.num_patches = self.grid_size[0] * self.grid_size[1]
        self.flatten = flatten

        self.proj = nn.Conv2d(
            in_chans,
            embed_dim,
            kernel_size=self.patch_size,
            stride=self.patch_stride,
        )
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.proj(x)
        if self.flatten:
            x = torch.permute(torch.flatten(
                x, 2, 3), (0, 2, 1))  # rearrange(x, "b c f t -> b (f t) c")
        x = self.norm(x)
        return x

flatten instance-attribute

flatten = flatten

grid_size instance-attribute

grid_size = (
    input_size[0] // patch_stride[0],
    input_size[1] // patch_stride[1],
)

input_size instance-attribute

input_size = _resolve_tuple2(input_size)

norm instance-attribute

norm = norm_layer(embed_dim) if norm_layer else Identity()

num_patches instance-attribute

num_patches = grid_size[0] * grid_size[1]

patch_size instance-attribute

patch_size = _resolve_tuple2(patch_size)

patch_stride instance-attribute

patch_stride = _resolve_tuple2(patch_stride)

proj instance-attribute

proj = Conv2d(
    in_chans,
    embed_dim,
    kernel_size=patch_size,
    stride=patch_stride,
)

__init__

__init__(
    input_size: _Tuple2 = 64,
    patch_size: _Tuple2 = 16,
    patch_stride: _Tuple2 = 16,
    in_chans: int = 1,
    embed_dim: int = 768,
    norm_layer: Optional[Callable] = None,
    flatten: bool = False,
)
Source code in vllm/model_executor/models/midashenglm.py
def __init__(
    self,
    input_size: _Tuple2 = 64,
    patch_size: _Tuple2 = 16,
    patch_stride: _Tuple2 = 16,
    in_chans: int = 1,
    embed_dim: int = 768,
    norm_layer: Optional[Callable] = None,
    flatten: bool = False,
):
    super().__init__()
    self.input_size = _resolve_tuple2(input_size)
    self.patch_size = _resolve_tuple2(patch_size)
    self.patch_stride = _resolve_tuple2(patch_stride)
    self.grid_size = (
        self.input_size[0] // self.patch_stride[0],
        self.input_size[1] // self.patch_stride[1],
    )
    self.num_patches = self.grid_size[0] * self.grid_size[1]
    self.flatten = flatten

    self.proj = nn.Conv2d(
        in_chans,
        embed_dim,
        kernel_size=self.patch_size,
        stride=self.patch_stride,
    )
    self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

forward

forward(x: Tensor) -> Tensor
Source code in vllm/model_executor/models/midashenglm.py
def forward(self, x: torch.Tensor) -> torch.Tensor:
    x = self.proj(x)
    if self.flatten:
        x = torch.permute(torch.flatten(
            x, 2, 3), (0, 2, 1))  # rearrange(x, "b c f t -> b (f t) c")
    x = self.norm(x)
    return x

AudioProjectorSubsample

Bases: Module

Source code in vllm/model_executor/models/midashenglm.py
class AudioProjectorSubsample(nn.Module):

    def __init__(
        self,
        in_dim: int,
        out_dim: int,
        downsample_rate=5,
        dtype: Optional[torch.dtype] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()
        self.k = downsample_rate
        self.net = nn.Sequential(
            ColumnParallelLinear(
                input_size=in_dim * self.k,
                output_size=out_dim,
                quant_config=quant_config,
                prefix=f"{prefix}.net.0",
                return_bias=False,
            ),
            get_act_fn("gelu"),
            RowParallelLinear(
                input_size=out_dim,
                output_size=out_dim,
                quant_config=quant_config,
                prefix=f"{prefix}.net.2",
                return_bias=False,
            ),
        )

    def forward(self, x, mask=None):
        batch_size, seq_len, dim = x.shape
        num_frames_to_discard = seq_len % self.k
        if num_frames_to_discard > 0:
            x = x[:, :-num_frames_to_discard, :]
            if mask is not None:
                mask = mask[:, :-num_frames_to_discard]
        if mask is None:
            mask = torch.ones(x.shape[:-1], dtype=torch.long, device=x.device)
        x = x.reshape(batch_size, -1, self.k *
                      dim)  # rearrange(x, "b (s k) d -> b s (k d)", k=self.k)
        for layer in self.net:
            x = layer(x)
        mask = mask.reshape(
            batch_size, -1,
            self.k)  # rearrange(mask, "b (s k) -> b s k", k=self.k)
        mask = mask.any(dim=-1).long()
        return x, mask

k instance-attribute

k = downsample_rate

net instance-attribute

net = Sequential(
    ColumnParallelLinear(
        input_size=in_dim * k,
        output_size=out_dim,
        quant_config=quant_config,
        prefix=f"{prefix}.net.0",
        return_bias=False,
    ),
    get_act_fn("gelu"),
    RowParallelLinear(
        input_size=out_dim,
        output_size=out_dim,
        quant_config=quant_config,
        prefix=f"{prefix}.net.2",
        return_bias=False,
    ),
)

__init__

__init__(
    in_dim: int,
    out_dim: int,
    downsample_rate=5,
    dtype: Optional[dtype] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/midashenglm.py
def __init__(
    self,
    in_dim: int,
    out_dim: int,
    downsample_rate=5,
    dtype: Optional[torch.dtype] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
):
    super().__init__()
    self.k = downsample_rate
    self.net = nn.Sequential(
        ColumnParallelLinear(
            input_size=in_dim * self.k,
            output_size=out_dim,
            quant_config=quant_config,
            prefix=f"{prefix}.net.0",
            return_bias=False,
        ),
        get_act_fn("gelu"),
        RowParallelLinear(
            input_size=out_dim,
            output_size=out_dim,
            quant_config=quant_config,
            prefix=f"{prefix}.net.2",
            return_bias=False,
        ),
    )

forward

forward(x, mask=None)
Source code in vllm/model_executor/models/midashenglm.py
def forward(self, x, mask=None):
    batch_size, seq_len, dim = x.shape
    num_frames_to_discard = seq_len % self.k
    if num_frames_to_discard > 0:
        x = x[:, :-num_frames_to_discard, :]
        if mask is not None:
            mask = mask[:, :-num_frames_to_discard]
    if mask is None:
        mask = torch.ones(x.shape[:-1], dtype=torch.long, device=x.device)
    x = x.reshape(batch_size, -1, self.k *
                  dim)  # rearrange(x, "b (s k) d -> b s (k d)", k=self.k)
    for layer in self.net:
        x = layer(x)
    mask = mask.reshape(
        batch_size, -1,
        self.k)  # rearrange(mask, "b (s k) -> b s k", k=self.k)
    mask = mask.any(dim=-1).long()
    return x, mask

DashengAttention

Bases: Module

Source code in vllm/model_executor/models/midashenglm.py
class DashengAttention(nn.Module):

    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        qkv_bias: bool = False,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()
        assert dim % num_heads == 0, "dim should be divisible by num_heads"
        self.embed_dim = dim
        tp_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tp_size == 0
        self.num_heads = self.total_num_heads // tp_size
        if self.total_num_heads >= tp_size:
            # Number of heads is greater than TP size, so we partition
            # the KV heads across multiple tensor parallel GPUs.
            assert self.total_num_heads % tp_size == 0
        else:
            # Number of heads is less than TP size, so we replicate
            # the KV heads across multiple tensor parallel GPUs.
            assert tp_size % self.total_num_heads == 0
        self.num_kv_heads = max(1, self.total_num_heads // tp_size)
        self.head_dim = self.embed_dim // self.total_num_heads
        self.q_size = self.num_heads * self.head_dim
        self.kv_size = self.num_kv_heads * self.head_dim
        self.scale = self.head_dim**-0.5

        self.qkv = QKVParallelLinear(
            hidden_size=self.embed_dim,
            head_size=self.head_dim,
            total_num_heads=self.total_num_heads,
            total_num_kv_heads=self.total_num_heads,
            bias=qkv_bias,
            quant_config=quant_config,
            prefix=f"{prefix}.qkv",
        )
        self.proj = RowParallelLinear(
            input_size=dim,
            output_size=dim,
            quant_config=quant_config,
            prefix=f"{prefix}.proj",
        )

    def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None):
        B, N, C = x.shape

        qkv, _ = self.qkv(x)
        qkv = qkv.reshape(B, N, 3, self.num_heads, C // self.num_heads)
        qkv = qkv.permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)

        x = scaled_dot_product_attention(
            q,
            k,
            v,
            attn_mask=mask[:, None, None, :] if mask is not None else None,
        )

        x = x.transpose(1, 2).reshape(B, N, C)
        x, _ = self.proj(x)
        return x

embed_dim instance-attribute

embed_dim = dim

head_dim instance-attribute

head_dim = embed_dim // total_num_heads

kv_size instance-attribute

kv_size = num_kv_heads * head_dim

num_heads instance-attribute

num_heads = total_num_heads // tp_size

num_kv_heads instance-attribute

num_kv_heads = max(1, total_num_heads // tp_size)

proj instance-attribute

proj = RowParallelLinear(
    input_size=dim,
    output_size=dim,
    quant_config=quant_config,
    prefix=f"{prefix}.proj",
)

q_size instance-attribute

q_size = num_heads * head_dim

qkv instance-attribute

qkv = QKVParallelLinear(
    hidden_size=embed_dim,
    head_size=head_dim,
    total_num_heads=total_num_heads,
    total_num_kv_heads=total_num_heads,
    bias=qkv_bias,
    quant_config=quant_config,
    prefix=f"{prefix}.qkv",
)

scale instance-attribute

scale = head_dim ** -0.5

total_num_heads instance-attribute

total_num_heads = num_heads

__init__

__init__(
    dim: int,
    num_heads: int = 8,
    qkv_bias: bool = False,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/midashenglm.py
def __init__(
    self,
    dim: int,
    num_heads: int = 8,
    qkv_bias: bool = False,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
):
    super().__init__()
    assert dim % num_heads == 0, "dim should be divisible by num_heads"
    self.embed_dim = dim
    tp_size = get_tensor_model_parallel_world_size()
    self.total_num_heads = num_heads
    assert self.total_num_heads % tp_size == 0
    self.num_heads = self.total_num_heads // tp_size
    if self.total_num_heads >= tp_size:
        # Number of heads is greater than TP size, so we partition
        # the KV heads across multiple tensor parallel GPUs.
        assert self.total_num_heads % tp_size == 0
    else:
        # Number of heads is less than TP size, so we replicate
        # the KV heads across multiple tensor parallel GPUs.
        assert tp_size % self.total_num_heads == 0
    self.num_kv_heads = max(1, self.total_num_heads // tp_size)
    self.head_dim = self.embed_dim // self.total_num_heads
    self.q_size = self.num_heads * self.head_dim
    self.kv_size = self.num_kv_heads * self.head_dim
    self.scale = self.head_dim**-0.5

    self.qkv = QKVParallelLinear(
        hidden_size=self.embed_dim,
        head_size=self.head_dim,
        total_num_heads=self.total_num_heads,
        total_num_kv_heads=self.total_num_heads,
        bias=qkv_bias,
        quant_config=quant_config,
        prefix=f"{prefix}.qkv",
    )
    self.proj = RowParallelLinear(
        input_size=dim,
        output_size=dim,
        quant_config=quant_config,
        prefix=f"{prefix}.proj",
    )

forward

forward(x: Tensor, mask: Optional[Tensor] = None)
Source code in vllm/model_executor/models/midashenglm.py
def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None):
    B, N, C = x.shape

    qkv, _ = self.qkv(x)
    qkv = qkv.reshape(B, N, 3, self.num_heads, C // self.num_heads)
    qkv = qkv.permute(2, 0, 3, 1, 4)
    q, k, v = qkv.unbind(0)

    x = scaled_dot_product_attention(
        q,
        k,
        v,
        attn_mask=mask[:, None, None, :] if mask is not None else None,
    )

    x = x.transpose(1, 2).reshape(B, N, C)
    x, _ = self.proj(x)
    return x

DashengAudioTransformer

Bases: Module

Source code in vllm/model_executor/models/midashenglm.py
class DashengAudioTransformer(nn.Module):

    def __init__(
        self,
        config: DashengConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()

        self.target_length = config.target_length
        self.hop_length = config.hop_length

        self.front_end = DashengFrontend(config)

        self.init_bn = nn.BatchNorm2d(config.n_mels, momentum=0.01)

        self.patch_embed = AudioPatchEmbed(
            input_size=(config.n_mels, config.target_length),
            embed_dim=config.embed_dim,
            in_chans=config.input_channels,
            patch_size=config.patch_size,
            flatten=False,
            patch_stride=config.patch_stride,
        )

        self.time_pos_embed = nn.Parameter(
            torch.empty(1, config.embed_dim, 1, self.patch_embed.grid_size[1]))
        self.freq_pos_embed = nn.Parameter(
            torch.empty(1, config.embed_dim, self.patch_embed.grid_size[0], 1))
        self.blocks = nn.ModuleList(
            DashengBlock(
                dim=config.embed_dim,
                num_heads=config.num_heads,
                mlp_ratio=config.mlp_ratio,
                qkv_bias=config.qkv_bias,
                init_values=config.init_values,
                quant_config=quant_config,
                prefix=f"{prefix}.blocks.{i}",
            ) for i in range(config.depth))
        self.norm = nn.LayerNorm(config.embed_dim, eps=1e-6)

    def forward_features(
        self,
        x: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        t = x.shape[-1]
        x = x + self.time_pos_embed[:, :, :, :t]
        x = (x + self.freq_pos_embed[:, :, :, :]
             )  # Just to support __getitem__ in posembed
        x = torch.permute(torch.flatten(x, 2, 3),
                          (0, 2, 1))  # rearrange(x, "b c f t -> b (f t) c")
        for block in self.blocks:
            x = block(x, mask)
        x = self.norm(x)
        return x

    def _to_mask(self, lengths: torch.Tensor, max_length: int) -> torch.Tensor:
        batch_size = len(lengths)
        idx = torch.arange(max_length, device=lengths.device)
        idx = idx.repeat(batch_size).view(batch_size, max_length)
        mask = (idx < lengths.unsqueeze(-1)).bool()
        return mask

    def forward(
        self,
        x: torch.Tensor,
        x_length: Optional[torch.Tensor] = None,
    ) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
        x = self.front_end(x)
        x = x.to(self.time_pos_embed.dtype)
        target_length_in_patches = self.target_length // 4
        x = x.unsqueeze(1)
        x = torch.permute(x, (0, 2, 1, 3))
        x = self.init_bn(x)
        x = torch.permute(x, (0, 2, 1, 3))

        x = self.patch_embed(x)
        t = x.shape[-1]

        input_splits = x.split(target_length_in_patches, dim=-1)

        if x_length is not None:
            assert len(x_length) == len(x), (
                "batchsizes of input x and x_length need to be same")
            assert x_length.ndim == 1, "Lengths are of size (B,)"
            scaled_lengths = (x_length / (self.hop_length * 4)).long()
            mask = self._to_mask(max_length=t, lengths=scaled_lengths)
            split_masks = mask.split(target_length_in_patches, dim=-1)
        else:
            mask = None
            split_masks = [None] * len(input_splits)

        outputs = []

        for split_x, split_mask in zip(input_splits, split_masks):
            forward_kwargs = {}
            forward_kwargs["mask"] = split_mask
            split_x = self.forward_features(split_x, **forward_kwargs)
            outputs.append(split_x)
        x = torch.cat(outputs, dim=1)
        return x, mask

blocks instance-attribute

blocks = ModuleList(
    (
        DashengBlock(
            dim=embed_dim,
            num_heads=num_heads,
            mlp_ratio=mlp_ratio,
            qkv_bias=qkv_bias,
            init_values=init_values,
            quant_config=quant_config,
            prefix=f"{prefix}.blocks.{i}",
        )
    )
    for i in (range(depth))
)

freq_pos_embed instance-attribute

freq_pos_embed = Parameter(
    empty(1, embed_dim, grid_size[0], 1)
)

front_end instance-attribute

front_end = DashengFrontend(config)

hop_length instance-attribute

hop_length = hop_length

init_bn instance-attribute

init_bn = BatchNorm2d(n_mels, momentum=0.01)

norm instance-attribute

norm = LayerNorm(embed_dim, eps=1e-06)

patch_embed instance-attribute

patch_embed = AudioPatchEmbed(
    input_size=(n_mels, target_length),
    embed_dim=embed_dim,
    in_chans=input_channels,
    patch_size=patch_size,
    flatten=False,
    patch_stride=patch_stride,
)

target_length instance-attribute

target_length = target_length

time_pos_embed instance-attribute

time_pos_embed = Parameter(
    empty(1, embed_dim, 1, grid_size[1])
)

__init__

__init__(
    config: DashengConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/midashenglm.py
def __init__(
    self,
    config: DashengConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
):
    super().__init__()

    self.target_length = config.target_length
    self.hop_length = config.hop_length

    self.front_end = DashengFrontend(config)

    self.init_bn = nn.BatchNorm2d(config.n_mels, momentum=0.01)

    self.patch_embed = AudioPatchEmbed(
        input_size=(config.n_mels, config.target_length),
        embed_dim=config.embed_dim,
        in_chans=config.input_channels,
        patch_size=config.patch_size,
        flatten=False,
        patch_stride=config.patch_stride,
    )

    self.time_pos_embed = nn.Parameter(
        torch.empty(1, config.embed_dim, 1, self.patch_embed.grid_size[1]))
    self.freq_pos_embed = nn.Parameter(
        torch.empty(1, config.embed_dim, self.patch_embed.grid_size[0], 1))
    self.blocks = nn.ModuleList(
        DashengBlock(
            dim=config.embed_dim,
            num_heads=config.num_heads,
            mlp_ratio=config.mlp_ratio,
            qkv_bias=config.qkv_bias,
            init_values=config.init_values,
            quant_config=quant_config,
            prefix=f"{prefix}.blocks.{i}",
        ) for i in range(config.depth))
    self.norm = nn.LayerNorm(config.embed_dim, eps=1e-6)

_to_mask

_to_mask(lengths: Tensor, max_length: int) -> Tensor
Source code in vllm/model_executor/models/midashenglm.py
def _to_mask(self, lengths: torch.Tensor, max_length: int) -> torch.Tensor:
    batch_size = len(lengths)
    idx = torch.arange(max_length, device=lengths.device)
    idx = idx.repeat(batch_size).view(batch_size, max_length)
    mask = (idx < lengths.unsqueeze(-1)).bool()
    return mask

forward

forward(
    x: Tensor, x_length: Optional[Tensor] = None
) -> tuple[Tensor, Optional[Tensor]]
Source code in vllm/model_executor/models/midashenglm.py
def forward(
    self,
    x: torch.Tensor,
    x_length: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
    x = self.front_end(x)
    x = x.to(self.time_pos_embed.dtype)
    target_length_in_patches = self.target_length // 4
    x = x.unsqueeze(1)
    x = torch.permute(x, (0, 2, 1, 3))
    x = self.init_bn(x)
    x = torch.permute(x, (0, 2, 1, 3))

    x = self.patch_embed(x)
    t = x.shape[-1]

    input_splits = x.split(target_length_in_patches, dim=-1)

    if x_length is not None:
        assert len(x_length) == len(x), (
            "batchsizes of input x and x_length need to be same")
        assert x_length.ndim == 1, "Lengths are of size (B,)"
        scaled_lengths = (x_length / (self.hop_length * 4)).long()
        mask = self._to_mask(max_length=t, lengths=scaled_lengths)
        split_masks = mask.split(target_length_in_patches, dim=-1)
    else:
        mask = None
        split_masks = [None] * len(input_splits)

    outputs = []

    for split_x, split_mask in zip(input_splits, split_masks):
        forward_kwargs = {}
        forward_kwargs["mask"] = split_mask
        split_x = self.forward_features(split_x, **forward_kwargs)
        outputs.append(split_x)
    x = torch.cat(outputs, dim=1)
    return x, mask

forward_features

forward_features(
    x: Tensor, mask: Optional[Tensor] = None
) -> Tensor
Source code in vllm/model_executor/models/midashenglm.py
def forward_features(
    self,
    x: torch.Tensor,
    mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    t = x.shape[-1]
    x = x + self.time_pos_embed[:, :, :, :t]
    x = (x + self.freq_pos_embed[:, :, :, :]
         )  # Just to support __getitem__ in posembed
    x = torch.permute(torch.flatten(x, 2, 3),
                      (0, 2, 1))  # rearrange(x, "b c f t -> b (f t) c")
    for block in self.blocks:
        x = block(x, mask)
    x = self.norm(x)
    return x

DashengBlock

Bases: Module

Source code in vllm/model_executor/models/midashenglm.py
class DashengBlock(nn.Module):

    def __init__(
        self,
        dim: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = False,
        init_values: Optional[float] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()
        self.norm1 = nn.LayerNorm(dim, eps=1e-6)
        self.attn = DashengAttention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            quant_config=quant_config,
            prefix=f"{prefix}.attn",
        )
        self.ls1 = (LayerScale(dim, init_values=init_values)
                    if init_values else nn.Identity())

        self.norm2 = nn.LayerNorm(dim, eps=1e-6)
        self.mlp = DashengMlp(
            in_features=dim,
            hidden_features=int(dim * mlp_ratio),
            quant_config=quant_config,
            prefix=f"{prefix}.mlp",
        )
        self.ls2 = (LayerScale(dim, init_values=init_values)
                    if init_values else nn.Identity())

    # Kwargs usually has a mask parameter that is passed to Attention
    def forward(
        self,
        x: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        x = x + self.ls1(self.attn(self.norm1(x), mask))
        x = x + self.ls2(self.mlp(self.norm2(x)))
        return x

attn instance-attribute

attn = DashengAttention(
    dim,
    num_heads=num_heads,
    qkv_bias=qkv_bias,
    quant_config=quant_config,
    prefix=f"{prefix}.attn",
)

ls1 instance-attribute

ls1 = (
    LayerScale(dim, init_values=init_values)
    if init_values
    else Identity()
)

ls2 instance-attribute

ls2 = (
    LayerScale(dim, init_values=init_values)
    if init_values
    else Identity()
)

mlp instance-attribute

mlp = DashengMlp(
    in_features=dim,
    hidden_features=int(dim * mlp_ratio),
    quant_config=quant_config,
    prefix=f"{prefix}.mlp",
)

norm1 instance-attribute

norm1 = LayerNorm(dim, eps=1e-06)

norm2 instance-attribute

norm2 = LayerNorm(dim, eps=1e-06)

__init__

__init__(
    dim: int,
    num_heads: int,
    mlp_ratio: float = 4.0,
    qkv_bias: bool = False,
    init_values: Optional[float] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/midashenglm.py
def __init__(
    self,
    dim: int,
    num_heads: int,
    mlp_ratio: float = 4.0,
    qkv_bias: bool = False,
    init_values: Optional[float] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
):
    super().__init__()
    self.norm1 = nn.LayerNorm(dim, eps=1e-6)
    self.attn = DashengAttention(
        dim,
        num_heads=num_heads,
        qkv_bias=qkv_bias,
        quant_config=quant_config,
        prefix=f"{prefix}.attn",
    )
    self.ls1 = (LayerScale(dim, init_values=init_values)
                if init_values else nn.Identity())

    self.norm2 = nn.LayerNorm(dim, eps=1e-6)
    self.mlp = DashengMlp(
        in_features=dim,
        hidden_features=int(dim * mlp_ratio),
        quant_config=quant_config,
        prefix=f"{prefix}.mlp",
    )
    self.ls2 = (LayerScale(dim, init_values=init_values)
                if init_values else nn.Identity())

forward

forward(x: Tensor, mask: Optional[Tensor] = None) -> Tensor
Source code in vllm/model_executor/models/midashenglm.py
def forward(
    self,
    x: torch.Tensor,
    mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    x = x + self.ls1(self.attn(self.norm1(x), mask))
    x = x + self.ls2(self.mlp(self.norm2(x)))
    return x

DashengFrontend

Bases: Module

Source code in vllm/model_executor/models/midashenglm.py
class DashengFrontend(nn.Module):

    def __init__(self, config: DashengConfig):
        super().__init__()
        self.config = config

        spectrogram_window = torch.hann_window(self.config.win_length)
        self.register_buffer(
            "spectrogram_window",
            spectrogram_window,
            persistent=False,
        )
        self.spectrogram_window: torch.Tensor

        melscale_fbanks = F.melscale_fbanks(
            n_freqs=self.config.n_fft // 2 + 1,
            f_min=self.config.f_min,
            f_max=self.config.f_max,
            n_mels=self.config.n_mels,
            sample_rate=self.config.sample_rate,
        )
        self.register_buffer("melscale_fbanks",
                             melscale_fbanks,
                             persistent=False)
        self.melscale_fbanks: torch.Tensor

    def forward(self, waveform: torch.Tensor) -> torch.Tensor:
        spectrogram = F.spectrogram(
            waveform=waveform.to(torch.float32),
            pad=0,
            window=self.spectrogram_window,
            n_fft=self.config.n_fft,
            hop_length=self.config.hop_length,
            win_length=self.config.win_length,
            power=2,
            normalized=False,
            center=self.config.center,
        )
        mel_spectrogram = (
            spectrogram.mT @ self.melscale_fbanks.to(torch.float32)).mT
        # x has shape [batch, freq, time].
        # F.amplitude_to_DB accepts inputs shaped as:
        #   - [freq, time]
        #   - [channel, freq, time]
        #   - [..., channel, freq, time]
        # Here we insert a channel dimension of size 1 before calling it,
        # then remove that extra dimension afterward.
        log_mel_spectrogram = F.amplitude_to_DB(
            mel_spectrogram.unsqueeze(1),
            multiplier=10,
            amin=1e-10,
            db_multiplier=0,
            top_db=120,
        ).squeeze(1)
        return log_mel_spectrogram.to(waveform.dtype)

config instance-attribute

config = config

melscale_fbanks instance-attribute

melscale_fbanks: Tensor

spectrogram_window instance-attribute

spectrogram_window: Tensor

__init__

__init__(config: DashengConfig)
Source code in vllm/model_executor/models/midashenglm.py
def __init__(self, config: DashengConfig):
    super().__init__()
    self.config = config

    spectrogram_window = torch.hann_window(self.config.win_length)
    self.register_buffer(
        "spectrogram_window",
        spectrogram_window,
        persistent=False,
    )
    self.spectrogram_window: torch.Tensor

    melscale_fbanks = F.melscale_fbanks(
        n_freqs=self.config.n_fft // 2 + 1,
        f_min=self.config.f_min,
        f_max=self.config.f_max,
        n_mels=self.config.n_mels,
        sample_rate=self.config.sample_rate,
    )
    self.register_buffer("melscale_fbanks",
                         melscale_fbanks,
                         persistent=False)
    self.melscale_fbanks: torch.Tensor

forward

forward(waveform: Tensor) -> Tensor
Source code in vllm/model_executor/models/midashenglm.py
def forward(self, waveform: torch.Tensor) -> torch.Tensor:
    spectrogram = F.spectrogram(
        waveform=waveform.to(torch.float32),
        pad=0,
        window=self.spectrogram_window,
        n_fft=self.config.n_fft,
        hop_length=self.config.hop_length,
        win_length=self.config.win_length,
        power=2,
        normalized=False,
        center=self.config.center,
    )
    mel_spectrogram = (
        spectrogram.mT @ self.melscale_fbanks.to(torch.float32)).mT
    # x has shape [batch, freq, time].
    # F.amplitude_to_DB accepts inputs shaped as:
    #   - [freq, time]
    #   - [channel, freq, time]
    #   - [..., channel, freq, time]
    # Here we insert a channel dimension of size 1 before calling it,
    # then remove that extra dimension afterward.
    log_mel_spectrogram = F.amplitude_to_DB(
        mel_spectrogram.unsqueeze(1),
        multiplier=10,
        amin=1e-10,
        db_multiplier=0,
        top_db=120,
    ).squeeze(1)
    return log_mel_spectrogram.to(waveform.dtype)

DashengMlp

Bases: Module

Source code in vllm/model_executor/models/midashenglm.py
class DashengMlp(nn.Module):

    def __init__(
        self,
        in_features: int,
        hidden_features: Optional[int] = None,
        out_features: Optional[int] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = ColumnParallelLinear(
            input_size=in_features,
            output_size=hidden_features,
            quant_config=quant_config,
            prefix=f"{prefix}.fc1",
        )
        self.act = get_act_fn("gelu")
        self.fc2 = RowParallelLinear(
            input_size=hidden_features,
            output_size=out_features,
            quant_config=quant_config,
            prefix=f"{prefix}.fc2",
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x, _ = self.fc1(x)
        x = self.act(x)
        x, _ = self.fc2(x)
        return x

act instance-attribute

act = get_act_fn('gelu')

fc1 instance-attribute

fc1 = ColumnParallelLinear(
    input_size=in_features,
    output_size=hidden_features,
    quant_config=quant_config,
    prefix=f"{prefix}.fc1",
)

fc2 instance-attribute

fc2 = RowParallelLinear(
    input_size=hidden_features,
    output_size=out_features,
    quant_config=quant_config,
    prefix=f"{prefix}.fc2",
)

__init__

__init__(
    in_features: int,
    hidden_features: Optional[int] = None,
    out_features: Optional[int] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/midashenglm.py
def __init__(
    self,
    in_features: int,
    hidden_features: Optional[int] = None,
    out_features: Optional[int] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
):
    super().__init__()
    out_features = out_features or in_features
    hidden_features = hidden_features or in_features
    self.fc1 = ColumnParallelLinear(
        input_size=in_features,
        output_size=hidden_features,
        quant_config=quant_config,
        prefix=f"{prefix}.fc1",
    )
    self.act = get_act_fn("gelu")
    self.fc2 = RowParallelLinear(
        input_size=hidden_features,
        output_size=out_features,
        quant_config=quant_config,
        prefix=f"{prefix}.fc2",
    )

forward

forward(x: Tensor) -> Tensor
Source code in vllm/model_executor/models/midashenglm.py
def forward(self, x: torch.Tensor) -> torch.Tensor:
    x, _ = self.fc1(x)
    x = self.act(x)
    x, _ = self.fc2(x)
    return x

LayerScale

Bases: Module

Source code in vllm/model_executor/models/midashenglm.py
class LayerScale(nn.Module):

    def __init__(self, dim, init_values=1e-5, inplace=False):
        super().__init__()
        self.inplace = inplace
        self.gamma = nn.Parameter(init_values * torch.ones(dim))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return x.mul_(self.gamma) if self.inplace else x * self.gamma

gamma instance-attribute

gamma = Parameter(init_values * ones(dim))

inplace instance-attribute

inplace = inplace

__init__

__init__(dim, init_values=1e-05, inplace=False)
Source code in vllm/model_executor/models/midashenglm.py
def __init__(self, dim, init_values=1e-5, inplace=False):
    super().__init__()
    self.inplace = inplace
    self.gamma = nn.Parameter(init_values * torch.ones(dim))

forward

forward(x: Tensor) -> Tensor
Source code in vllm/model_executor/models/midashenglm.py
def forward(self, x: torch.Tensor) -> torch.Tensor:
    return x.mul_(self.gamma) if self.inplace else x * self.gamma

MiDashengLMAudioInputs

Bases: TypedDict

Source code in vllm/model_executor/models/midashenglm.py
class MiDashengLMAudioInputs(TypedDict):
    input_values: torch.Tensor
    """Shape: `(num_audios, num_sampling_points)`"""
    audio_length: torch.Tensor
    """Shape: `(num_audios, 1)`"""

audio_length instance-attribute

audio_length: Tensor

Shape: (num_audios, 1)

input_values instance-attribute

input_values: Tensor

Shape: (num_audios, num_sampling_points)

MiDashengLMDummyInputsBuilder

Bases: BaseDummyInputsBuilder[MiDashengLMProcessingInfo]

Source code in vllm/model_executor/models/midashenglm.py
class MiDashengLMDummyInputsBuilder(
        BaseDummyInputsBuilder[MiDashengLMProcessingInfo]):

    def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
        num_audios = mm_counts.get("audio", 0)

        hf_processor = self.info.get_hf_processor()
        audio_token = hf_processor.audio_token
        audio_bos_token = hf_processor.audio_bos_token
        audio_eos_token = hf_processor.audio_eos_token

        single_audio_text = f"{audio_bos_token}{audio_token}{audio_eos_token}"
        return single_audio_text * num_audios

    def get_dummy_mm_data(
        self,
        seq_len: int,
        mm_counts: Mapping[str, int],
    ) -> MultiModalDataDict:
        num_audios = mm_counts.get("audio", 0)

        return {
            "audio":
            self._get_dummy_audios(length=self.info.get_max_audio_len(),
                                   num_audios=num_audios)
        }

get_dummy_mm_data

get_dummy_mm_data(
    seq_len: int, mm_counts: Mapping[str, int]
) -> MultiModalDataDict
Source code in vllm/model_executor/models/midashenglm.py
def get_dummy_mm_data(
    self,
    seq_len: int,
    mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
    num_audios = mm_counts.get("audio", 0)

    return {
        "audio":
        self._get_dummy_audios(length=self.info.get_max_audio_len(),
                               num_audios=num_audios)
    }

get_dummy_text

get_dummy_text(mm_counts: Mapping[str, int]) -> str
Source code in vllm/model_executor/models/midashenglm.py
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
    num_audios = mm_counts.get("audio", 0)

    hf_processor = self.info.get_hf_processor()
    audio_token = hf_processor.audio_token
    audio_bos_token = hf_processor.audio_bos_token
    audio_eos_token = hf_processor.audio_eos_token

    single_audio_text = f"{audio_bos_token}{audio_token}{audio_eos_token}"
    return single_audio_text * num_audios

MiDashengLMModel

Bases: Module, SupportsMultiModal, SupportsPP

Source code in vllm/model_executor/models/midashenglm.py
@MULTIMODAL_REGISTRY.register_processor(
    MiDashengLMMultiModalProcessor,
    info=MiDashengLMProcessingInfo,
    dummy_inputs=MiDashengLMDummyInputsBuilder,
)
class MiDashengLMModel(nn.Module, SupportsMultiModal, SupportsPP):
    packed_modules_mapping = {
        "qkv_proj": [
            "q_proj",
            "k_proj",
            "v_proj",
        ],
        "gate_up_proj": [
            "gate_proj",
            "up_proj",
        ],
    }

    @classmethod
    def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
        if modality.startswith("audio"):
            return "<|audio_bos|><|AUDIO|><|audio_eos|>"

        raise ValueError("Only audio modality is supported")

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        self.config = config

        # Initialize audio components
        self.audio_encoder = DashengAudioTransformer(
            config.audio_encoder_config,
            quant_config=quant_config,
            prefix=maybe_prefix(prefix, "audio_encoder"),
        )
        self.audio_projector = AudioProjectorSubsample(
            in_dim=config.audio_encoder_config.embed_dim,
            out_dim=config.text_config.hidden_size,
            downsample_rate=config.subsample_factor,
            quant_config=quant_config,
            prefix=maybe_prefix(prefix, "audio_projector"),
        )

        # Initialize language model (decoder)
        self.decoder = init_vllm_registered_model(
            vllm_config=vllm_config,
            hf_config=config.text_config,
            prefix=maybe_prefix(prefix, "decoder"),
            architectures=["Qwen2ForCausalLM"],
        )

        self.quant_config = quant_config
        self.make_empty_intermediate_tensors = (
            self.decoder.make_empty_intermediate_tensors)

    def _validate_and_reshape_mm_tensor(self, mm_input: object,
                                        name: str) -> torch.Tensor:
        if not isinstance(mm_input, (torch.Tensor, list)):
            raise ValueError(
                f"Incorrect type of {name}. Got type: {type(mm_input)}")
        if isinstance(mm_input, torch.Tensor):
            return mm_input.reshape(-1, *mm_input.shape[2:])

        if name == "input_values":
            max_length = max(tensor.shape[1] for tensor in mm_input)
            padded_mm_input = [
                torch.nn.functional.pad(tensor,
                                        (0, max_length - tensor.shape[1]))
                if tensor.shape[1] < max_length else tensor
                for tensor in mm_input
            ]
            return torch.concat(padded_mm_input)

        return torch.concat(mm_input)

    def _parse_and_validate_audio_input(
            self, **kwargs: object) -> Optional[MiDashengLMAudioInputs]:
        input_values = kwargs.pop("input_values", None)
        audio_length = kwargs.pop("audio_length", None)

        if input_values is None:
            return None
        input_values = self._validate_and_reshape_mm_tensor(
            input_values, "input_values")
        audio_length = self._validate_and_reshape_mm_tensor(
            audio_length, "audio_length")
        if not isinstance(input_values, (torch.Tensor, list)):
            raise ValueError("Incorrect type of audio input features. "
                             f"Got type: {type(input_values)}")

        return MiDashengLMAudioInputs(
            input_values=input_values,
            audio_length=audio_length,
        )

    def _process_audio_input(
            self, audio_input: MiDashengLMAudioInputs) -> torch.Tensor:
        # Process audio through encoder and projector
        input_values = audio_input["input_values"]
        audio_length = audio_input["audio_length"]

        encoder_out, encoder_atts = self.audio_encoder(input_values,
                                                       audio_length)
        audio_embeddings, _ = self.audio_projector(encoder_out, encoder_atts)
        audio_embeddings = audio_embeddings.to(
            audio_input["input_values"].dtype)
        batch_size, max_audio_tokens, embed_dim = audio_embeddings.shape

        audio_length_np = (audio_length.cpu().numpy() if isinstance(
            audio_length, torch.Tensor) else audio_length)
        audio_output_lengths = [
            max(1, calculate_mel_frames_dasheng(
                int(length)))  # at least one frame
            for length in audio_length_np
        ]
        audio_output_lengths = torch.tensor(audio_output_lengths).to(
            audio_embeddings.device)

        audio_feature_mask = torch.arange(
            max_audio_tokens,
            device=audio_embeddings.device).unsqueeze(0).expand(
                batch_size,
                max_audio_tokens) < audio_output_lengths.unsqueeze(1)

        masked_audio_features = audio_embeddings[audio_feature_mask].view(
            -1, embed_dim)

        return torch.split(masked_audio_features,
                           audio_output_lengths.tolist())

    def get_language_model(self) -> torch.nn.Module:
        return self.decoder

    def get_multimodal_embeddings(self,
                                  **kwargs: object) -> MultiModalEmbeddings:
        audio_input = self._parse_and_validate_audio_input(**kwargs)

        if audio_input is None:
            return []
        return self._process_audio_input(audio_input)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        **kwargs: object,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        if intermediate_tensors is not None:
            inputs_embeds = None
        elif inputs_embeds is None:
            multimodal_embeddings = self.get_multimodal_embeddings(**kwargs)
            inputs_embeds = self.get_input_embeddings(
                input_ids,
                multimodal_embeddings,
                is_multimodal=input_ids == self.config.audio_token_id,
            )
            input_ids = None

        return self.decoder.model(
            input_ids,
            positions,
            intermediate_tensors,
            inputs_embeds=inputs_embeds,
        )

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
    ) -> Optional[torch.Tensor]:
        return self.decoder.compute_logits(hidden_states)

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights)

audio_encoder instance-attribute

audio_encoder = DashengAudioTransformer(
    audio_encoder_config,
    quant_config=quant_config,
    prefix=maybe_prefix(prefix, "audio_encoder"),
)

audio_projector instance-attribute

audio_projector = AudioProjectorSubsample(
    in_dim=embed_dim,
    out_dim=hidden_size,
    downsample_rate=subsample_factor,
    quant_config=quant_config,
    prefix=maybe_prefix(prefix, "audio_projector"),
)

config instance-attribute

config = config

decoder instance-attribute

decoder = init_vllm_registered_model(
    vllm_config=vllm_config,
    hf_config=text_config,
    prefix=maybe_prefix(prefix, "decoder"),
    architectures=["Qwen2ForCausalLM"],
)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

packed_modules_mapping class-attribute instance-attribute

packed_modules_mapping = {
    "qkv_proj": ["q_proj", "k_proj", "v_proj"],
    "gate_up_proj": ["gate_proj", "up_proj"],
}

quant_config instance-attribute

quant_config = quant_config

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/midashenglm.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    self.config = config

    # Initialize audio components
    self.audio_encoder = DashengAudioTransformer(
        config.audio_encoder_config,
        quant_config=quant_config,
        prefix=maybe_prefix(prefix, "audio_encoder"),
    )
    self.audio_projector = AudioProjectorSubsample(
        in_dim=config.audio_encoder_config.embed_dim,
        out_dim=config.text_config.hidden_size,
        downsample_rate=config.subsample_factor,
        quant_config=quant_config,
        prefix=maybe_prefix(prefix, "audio_projector"),
    )

    # Initialize language model (decoder)
    self.decoder = init_vllm_registered_model(
        vllm_config=vllm_config,
        hf_config=config.text_config,
        prefix=maybe_prefix(prefix, "decoder"),
        architectures=["Qwen2ForCausalLM"],
    )

    self.quant_config = quant_config
    self.make_empty_intermediate_tensors = (
        self.decoder.make_empty_intermediate_tensors)

_parse_and_validate_audio_input

_parse_and_validate_audio_input(
    **kwargs: object,
) -> Optional[MiDashengLMAudioInputs]
Source code in vllm/model_executor/models/midashenglm.py
def _parse_and_validate_audio_input(
        self, **kwargs: object) -> Optional[MiDashengLMAudioInputs]:
    input_values = kwargs.pop("input_values", None)
    audio_length = kwargs.pop("audio_length", None)

    if input_values is None:
        return None
    input_values = self._validate_and_reshape_mm_tensor(
        input_values, "input_values")
    audio_length = self._validate_and_reshape_mm_tensor(
        audio_length, "audio_length")
    if not isinstance(input_values, (torch.Tensor, list)):
        raise ValueError("Incorrect type of audio input features. "
                         f"Got type: {type(input_values)}")

    return MiDashengLMAudioInputs(
        input_values=input_values,
        audio_length=audio_length,
    )

_process_audio_input

_process_audio_input(
    audio_input: MiDashengLMAudioInputs,
) -> Tensor
Source code in vllm/model_executor/models/midashenglm.py
def _process_audio_input(
        self, audio_input: MiDashengLMAudioInputs) -> torch.Tensor:
    # Process audio through encoder and projector
    input_values = audio_input["input_values"]
    audio_length = audio_input["audio_length"]

    encoder_out, encoder_atts = self.audio_encoder(input_values,
                                                   audio_length)
    audio_embeddings, _ = self.audio_projector(encoder_out, encoder_atts)
    audio_embeddings = audio_embeddings.to(
        audio_input["input_values"].dtype)
    batch_size, max_audio_tokens, embed_dim = audio_embeddings.shape

    audio_length_np = (audio_length.cpu().numpy() if isinstance(
        audio_length, torch.Tensor) else audio_length)
    audio_output_lengths = [
        max(1, calculate_mel_frames_dasheng(
            int(length)))  # at least one frame
        for length in audio_length_np
    ]
    audio_output_lengths = torch.tensor(audio_output_lengths).to(
        audio_embeddings.device)

    audio_feature_mask = torch.arange(
        max_audio_tokens,
        device=audio_embeddings.device).unsqueeze(0).expand(
            batch_size,
            max_audio_tokens) < audio_output_lengths.unsqueeze(1)

    masked_audio_features = audio_embeddings[audio_feature_mask].view(
        -1, embed_dim)

    return torch.split(masked_audio_features,
                       audio_output_lengths.tolist())

_validate_and_reshape_mm_tensor

_validate_and_reshape_mm_tensor(
    mm_input: object, name: str
) -> Tensor
Source code in vllm/model_executor/models/midashenglm.py
def _validate_and_reshape_mm_tensor(self, mm_input: object,
                                    name: str) -> torch.Tensor:
    if not isinstance(mm_input, (torch.Tensor, list)):
        raise ValueError(
            f"Incorrect type of {name}. Got type: {type(mm_input)}")
    if isinstance(mm_input, torch.Tensor):
        return mm_input.reshape(-1, *mm_input.shape[2:])

    if name == "input_values":
        max_length = max(tensor.shape[1] for tensor in mm_input)
        padded_mm_input = [
            torch.nn.functional.pad(tensor,
                                    (0, max_length - tensor.shape[1]))
            if tensor.shape[1] < max_length else tensor
            for tensor in mm_input
        ]
        return torch.concat(padded_mm_input)

    return torch.concat(mm_input)

compute_logits

compute_logits(hidden_states: Tensor) -> Optional[Tensor]
Source code in vllm/model_executor/models/midashenglm.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
) -> Optional[torch.Tensor]:
    return self.decoder.compute_logits(hidden_states)

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
    **kwargs: object,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/midashenglm.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
    **kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
    if intermediate_tensors is not None:
        inputs_embeds = None
    elif inputs_embeds is None:
        multimodal_embeddings = self.get_multimodal_embeddings(**kwargs)
        inputs_embeds = self.get_input_embeddings(
            input_ids,
            multimodal_embeddings,
            is_multimodal=input_ids == self.config.audio_token_id,
        )
        input_ids = None

    return self.decoder.model(
        input_ids,
        positions,
        intermediate_tensors,
        inputs_embeds=inputs_embeds,
    )

get_language_model

get_language_model() -> Module
Source code in vllm/model_executor/models/midashenglm.py
def get_language_model(self) -> torch.nn.Module:
    return self.decoder

get_multimodal_embeddings

get_multimodal_embeddings(
    **kwargs: object,
) -> MultiModalEmbeddings
Source code in vllm/model_executor/models/midashenglm.py
def get_multimodal_embeddings(self,
                              **kwargs: object) -> MultiModalEmbeddings:
    audio_input = self._parse_and_validate_audio_input(**kwargs)

    if audio_input is None:
        return []
    return self._process_audio_input(audio_input)

get_placeholder_str classmethod

get_placeholder_str(modality: str, i: int) -> Optional[str]
Source code in vllm/model_executor/models/midashenglm.py
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
    if modality.startswith("audio"):
        return "<|audio_bos|><|AUDIO|><|audio_eos|>"

    raise ValueError("Only audio modality is supported")

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/midashenglm.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    loader = AutoWeightsLoader(self)
    return loader.load_weights(weights)

MiDashengLMMultiModalProcessor

Bases: BaseMultiModalProcessor[MiDashengLMProcessingInfo]

Source code in vllm/model_executor/models/midashenglm.py
class MiDashengLMMultiModalProcessor(
        BaseMultiModalProcessor[MiDashengLMProcessingInfo]):

    def _get_data_parser(self) -> MultiModalDataParser:
        feature_extractor = self.info.get_feature_extractor()
        return MultiModalDataParser(target_sr=feature_extractor.sampling_rate)

    def _call_hf_processor(
        self,
        prompt: str,
        mm_data: Mapping[str, object],
        mm_kwargs: Mapping[str, Any],
        tok_kwargs: Mapping[str, object],
    ) -> BatchFeature:
        audios = mm_data.pop("audios", [])

        # + Padding
        min_audio_len = self.info.get_min_audio_len()
        processed_audios = [
            np.pad(
                audio,
                (0, min_audio_len - audio.shape[-1]),
                mode="constant",
                constant_values=0,
            ) if isinstance(audio, np.ndarray)
            and audio.shape[-1] < min_audio_len else audio for audio in audios
        ]

        if processed_audios:
            mm_data["audio"] = processed_audios

        if not mm_data.get("audio", []):
            prompt_ids = self.info.get_tokenizer().encode(prompt)
            prompt_ids = self._apply_hf_processor_tokens_only(prompt_ids)
            return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")

        mm_kwargs = dict(**mm_kwargs, )

        return super()._call_hf_processor(
            prompt=prompt,
            mm_data=mm_data,
            mm_kwargs=mm_kwargs,
            tok_kwargs=tok_kwargs,
        )

    def _get_mm_fields_config(
        self,
        hf_inputs: BatchFeature,
        hf_processor_mm_kwargs: Mapping[str, object],
    ) -> Mapping[str, MultiModalFieldConfig]:
        return dict(
            input_values=MultiModalFieldConfig.batched("audio"),
            audio_length=MultiModalFieldConfig.batched("audio"),
        )

    def _get_prompt_updates(
        self,
        mm_items: MultiModalDataItems,
        hf_processor_mm_kwargs: Mapping[str, object],
        out_mm_kwargs: MultiModalKwargsItems,
    ) -> Sequence[PromptUpdate]:
        processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
        tokenizer = self.info.get_tokenizer()
        vocab = tokenizer.get_vocab()

        audio_token = getattr(processor, "audio_token", "<|AUDIO|>")
        audio_token_id = vocab[audio_token]

        out_mm_data = out_mm_kwargs.get_data()
        audio_length = out_mm_data.get("audio_length")
        if audio_length is None:
            audio_output_lengths = []
        else:
            audio_length_np = (audio_length.cpu().numpy() if isinstance(
                audio_length, torch.Tensor) else audio_length)
            audio_output_lengths = [
                max(1, calculate_mel_frames_dasheng(
                    int(length)))  # at least one frame
                for length in audio_length_np
            ]

        def get_replacement_midashenglm(item_idx: int):
            num_features = audio_output_lengths[item_idx]
            audio_tokens = [audio_token_id] * num_features

            return PromptUpdateDetails.select_token_id(
                audio_tokens,
                embed_token_id=audio_token_id,
            )

        return [
            PromptReplacement(
                modality="audio",
                target=audio_token,
                replacement=get_replacement_midashenglm,
            )
        ]

_call_hf_processor

_call_hf_processor(
    prompt: str,
    mm_data: Mapping[str, object],
    mm_kwargs: Mapping[str, Any],
    tok_kwargs: Mapping[str, object],
) -> BatchFeature
Source code in vllm/model_executor/models/midashenglm.py
def _call_hf_processor(
    self,
    prompt: str,
    mm_data: Mapping[str, object],
    mm_kwargs: Mapping[str, Any],
    tok_kwargs: Mapping[str, object],
) -> BatchFeature:
    audios = mm_data.pop("audios", [])

    # + Padding
    min_audio_len = self.info.get_min_audio_len()
    processed_audios = [
        np.pad(
            audio,
            (0, min_audio_len - audio.shape[-1]),
            mode="constant",
            constant_values=0,
        ) if isinstance(audio, np.ndarray)
        and audio.shape[-1] < min_audio_len else audio for audio in audios
    ]

    if processed_audios:
        mm_data["audio"] = processed_audios

    if not mm_data.get("audio", []):
        prompt_ids = self.info.get_tokenizer().encode(prompt)
        prompt_ids = self._apply_hf_processor_tokens_only(prompt_ids)
        return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")

    mm_kwargs = dict(**mm_kwargs, )

    return super()._call_hf_processor(
        prompt=prompt,
        mm_data=mm_data,
        mm_kwargs=mm_kwargs,
        tok_kwargs=tok_kwargs,
    )

_get_data_parser

_get_data_parser() -> MultiModalDataParser
Source code in vllm/model_executor/models/midashenglm.py
def _get_data_parser(self) -> MultiModalDataParser:
    feature_extractor = self.info.get_feature_extractor()
    return MultiModalDataParser(target_sr=feature_extractor.sampling_rate)

_get_mm_fields_config

_get_mm_fields_config(
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]
Source code in vllm/model_executor/models/midashenglm.py
def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    return dict(
        input_values=MultiModalFieldConfig.batched("audio"),
        audio_length=MultiModalFieldConfig.batched("audio"),
    )

_get_prompt_updates

_get_prompt_updates(
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]
Source code in vllm/model_executor/models/midashenglm.py
def _get_prompt_updates(
    self,
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]:
    processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
    tokenizer = self.info.get_tokenizer()
    vocab = tokenizer.get_vocab()

    audio_token = getattr(processor, "audio_token", "<|AUDIO|>")
    audio_token_id = vocab[audio_token]

    out_mm_data = out_mm_kwargs.get_data()
    audio_length = out_mm_data.get("audio_length")
    if audio_length is None:
        audio_output_lengths = []
    else:
        audio_length_np = (audio_length.cpu().numpy() if isinstance(
            audio_length, torch.Tensor) else audio_length)
        audio_output_lengths = [
            max(1, calculate_mel_frames_dasheng(
                int(length)))  # at least one frame
            for length in audio_length_np
        ]

    def get_replacement_midashenglm(item_idx: int):
        num_features = audio_output_lengths[item_idx]
        audio_tokens = [audio_token_id] * num_features

        return PromptUpdateDetails.select_token_id(
            audio_tokens,
            embed_token_id=audio_token_id,
        )

    return [
        PromptReplacement(
            modality="audio",
            target=audio_token,
            replacement=get_replacement_midashenglm,
        )
    ]

MiDashengLMProcessingInfo

Bases: BaseProcessingInfo

Source code in vllm/model_executor/models/midashenglm.py
class MiDashengLMProcessingInfo(BaseProcessingInfo):

    def get_hf_config(self):
        return self.ctx.get_hf_config()

    def get_feature_extractor(self):
        hf_processor = self.get_hf_processor()
        feature_extractor = hf_processor.feature_extractor
        return feature_extractor

    def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
        return {"audio": None}

    def get_min_audio_len(self):
        return 3200

    def get_max_audio_len(self):
        return 160000

get_feature_extractor

get_feature_extractor()
Source code in vllm/model_executor/models/midashenglm.py
def get_feature_extractor(self):
    hf_processor = self.get_hf_processor()
    feature_extractor = hf_processor.feature_extractor
    return feature_extractor

get_hf_config

get_hf_config()
Source code in vllm/model_executor/models/midashenglm.py
def get_hf_config(self):
    return self.ctx.get_hf_config()

get_max_audio_len

get_max_audio_len()
Source code in vllm/model_executor/models/midashenglm.py
def get_max_audio_len(self):
    return 160000

get_min_audio_len

get_min_audio_len()
Source code in vllm/model_executor/models/midashenglm.py
def get_min_audio_len(self):
    return 3200

get_supported_mm_limits

get_supported_mm_limits() -> Mapping[str, Optional[int]]
Source code in vllm/model_executor/models/midashenglm.py
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
    return {"audio": None}

_resolve_tuple2

_resolve_tuple2(x: _Tuple2) -> tuple[int, int]
Source code in vllm/model_executor/models/midashenglm.py
def _resolve_tuple2(x: _Tuple2) -> tuple[int, int]:
    if isinstance(x, collections.abc.Sequence):
        assert len(x) == 2, (
            f"Expected a sequence of length 2, got {x} with length {len(x)}")
        return cast(tuple[int, int], tuple(x))
    return (x, x)

calculate_mel_frames_dasheng

calculate_mel_frames_dasheng(
    audio_length_samples: int,
    n_fft: int = 512,
    hop_size: int = 160,
    dasheng_subsampling: int = 4,
    center=True,
    model_subsampling: int = 5,
) -> int

Calculate the number of Mel-spectrogram frames.

Source code in vllm/model_executor/models/midashenglm.py
def calculate_mel_frames_dasheng(
    audio_length_samples: int,
    n_fft: int = 512,
    hop_size: int = 160,
    dasheng_subsampling: int = 4,
    center=True,
    model_subsampling: int = 5,
) -> int:
    """Calculate the number of Mel-spectrogram frames."""
    if center:
        audio_length_samples = audio_length_samples + n_fft

    return (int(1 + ((audio_length_samples - n_fft) / hop_size)) //
            dasheng_subsampling // model_subsampling)