vllm.model_executor.models.jina_vl ¶
JinaVLForSequenceClassification ¶
Bases: Qwen2VLForConditionalGeneration
, SupportsCrossEncoding
, SupportsMultiModal
, SupportsScoreTemplate
Source code in vllm/model_executor/models/jina_vl.py
pooler instance-attribute
¶
pooler = DispatchPooler(
{
"encode": for_encode(pooler_config),
"classify": for_classify(
pooler_config, classifier=score
),
"score": for_classify(
pooler_config, classifier=score
),
}
)
weight_mapper class-attribute
instance-attribute
¶
weight_mapper = WeightsMapper(
orig_to_new_prefix={
"score.0.": "score.dense.",
"score.2.": "score.out_proj.",
"model.language_model.": "language_model.model.",
"visual.": "visual.",
"lm_head.": "language_model.lm_head.",
"model.": "language_model.model.",
}
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/jina_vl.py
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
**kwargs: object,
) -> Tensor
Source code in vllm/model_executor/models/jina_vl.py
get_placeholder_str classmethod
¶
get_score_template classmethod
¶
load_weights ¶
post_process_tokens classmethod
¶
post_process_tokens(prompt: TokensPrompt) -> None
JinaVLMultiModalProcessor ¶
Bases: Qwen2VLMultiModalProcessor
Source code in vllm/model_executor/models/jina_vl.py
_call_hf_processor ¶
_call_hf_processor(
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
tok_kwargs: Mapping[str, object],
) -> BatchFeature
Source code in vllm/model_executor/models/jina_vl.py
JinaVLScorer ¶
Bases: Module
Source code in vllm/model_executor/models/jina_vl.py
dense instance-attribute
¶
dense = ColumnParallelLinear(
hidden_size,
hidden_size,
params_dtype=head_dtype,
bias=True,
)
out_proj instance-attribute
¶
out_proj = RowParallelLinear(
hidden_size,
num_labels,
params_dtype=head_dtype,
bias=True,
)
__init__ ¶
__init__(model_config: ModelConfig)