Skip to content

vllm.model_executor.models.hyperclovax_vision

EOT module-attribute

EOT = '<|endofturn|>'

HCXVisionMultimodalInputs module-attribute

HCXVisionMultimodalInputs = Union[
    HCXVisionMultimodalPixelInputs
]

IMAGE_TOKEN module-attribute

IMAGE_TOKEN: str = '<|dummy3|>'

Unpack module-attribute

Unpack = Unpack

VIDEO_TOKEN module-attribute

VIDEO_TOKEN: str = '<|_unuse_missing_100270|>'

HCXVisionCAbstractor

Bases: Module

This module is based on C-Abstractor, whose license is under apache-2.0. You can check the original code at https://github.com/khanrc/honeybee/blob/main/honeybee/projectors/projectors.py and we made necessary modifications.

Source code in vllm/model_executor/models/hyperclovax_vision.py
class HCXVisionCAbstractor(nn.Module):
    """
    This module is based on C-Abstractor, whose license is under apache-2.0.
    You can check the original code at 
    https://github.com/khanrc/honeybee/blob/main/honeybee/projectors/projectors.py
    and we made necessary modifications.
    """

    def __init__(
        self,
        num_queries: int,
        num_input_tokens: int,
        encoder_hidden_size: int,
        hidden_size: int,
        output_hidden_size: int,
        pos_emb: bool = True,
        prenorm: bool = False,
    ):
        super().__init__()
        self.num_input_tokens = num_input_tokens
        self.output_hidden_size = output_hidden_size

        # Positional embedding
        if pos_emb:
            self.pos_emb = torch.nn.Parameter(
                torch.zeros(1, num_input_tokens, encoder_hidden_size))
            self.pos_emb.data.normal_(mean=0.0, std=0.02)
        else:
            self.pos_emb = None

        # (Optional) Pre-normalization layer
        if prenorm:
            self.prenorm = LayerNorm(encoder_hidden_size)
        else:
            self.prenorm = None

        self.build_net(num_queries, encoder_hidden_size, hidden_size,
                       output_hidden_size)
        self.dtype = next(self.parameters()).dtype

    def forward(
        self,
        x: torch.Tensor,
        num_queries_vis_abstractors: Optional[list[list[int]]] = None,
        num_grids: Optional[list[int]] = None,
    ) -> torch.Tensor:
        if self.prenorm is not None:
            x = self.prenorm(x)

        if self.pos_emb is not None:
            x = x + self.pos_emb

        x = self._forward(
            x,
            num_queries_vis_abstractors=num_queries_vis_abstractors,
            num_grids=num_grids,
        )  # (B, L, output_hidden_size)

        return x

    def _forward(
        self,
        x: torch.Tensor,
        num_queries_vis_abstractors: Optional[list[list[int]]] = None,
        num_grids: Optional[list[int]] = None,
    ) -> torch.Tensor:
        # x: [B, L, dim]
        B, L, dim = x.shape
        hw = int(L**0.5)
        x = rearrange(x, "b (h w) d -> b d h w", h=hw, w=hw)

        if num_queries_vis_abstractors is not None:
            assert num_grids is not None
            return self._forward_adaptive_num_query(
                x, num_queries_vis_abstractors, num_grids)

        x = self.net(x)
        x = rearrange(x, "b d h w -> b (h w) d")
        x = self.readout(x)
        return x

    def _forward_adaptive_num_query(
        self,
        x: torch.Tensor,
        num_queries_vis_abstractors: Optional[list[list[int]]] = None,
        num_grids: Optional[list[int]] = None,
    ) -> list[torch.Tensor]:
        # self.net is consisted by 3 layers (s1, sampler, s2)
        assert len(self.net) == 3

        x = self.net[0](x)  # s1
        new_x = []
        for i, num_queries in enumerate(num_queries_vis_abstractors):
            hw = int(num_queries**0.5)
            sampler = nn.AdaptiveAvgPool2d((hw, hw))
            out = sampler(x[num_grids[i]:num_grids[i + 1], :])
            out = self.net[2](out)  # s2

            out = rearrange(out, "b d h w -> b (h w) d")
            out = self.readout(out)

            new_x.append(out)
        return new_x

    def build_net(
        self,
        n_queries: int,
        encoder_hidden_size: int,
        hidden_size: int,
        output_hidden_size: int,
        depth: int = 3,
        mlp_depth: int = 2,
    ):
        assert (n_queries**0.5).is_integer(
        ), f"n_queries must be square number. n_queries: {n_queries}"
        hw = int(n_queries**0.5)

        # RegBlock = ResBlock + SE
        RegBlock = partial(
            RegStage,
            stride=1,
            dilation=1,
            act_layer=nn.SiLU,
            norm_layer=LayerNorm2d,
        )

        s1 = RegBlock(
            depth,
            encoder_hidden_size,
            hidden_size,
        )
        sampler = nn.AdaptiveAvgPool2d((hw, hw))
        s2 = RegBlock(
            depth,
            hidden_size,
            hidden_size,
        )

        self.net = nn.Sequential(s1, sampler, s2)
        self.readout = self.build_mlp(mlp_depth, hidden_size,
                                      output_hidden_size)

    def build_mlp(
        self,
        depth: int,
        hidden_size: int,
        output_hidden_size: int,
    ):
        layers = [nn.Linear(hidden_size, output_hidden_size)]
        for _ in range(1, depth):
            layers.append(nn.SiLU())
            layers.append(nn.Linear(output_hidden_size, output_hidden_size))
        return nn.Sequential(*layers)

dtype instance-attribute

dtype = dtype

num_input_tokens instance-attribute

num_input_tokens = num_input_tokens

output_hidden_size instance-attribute

output_hidden_size = output_hidden_size

pos_emb instance-attribute

pos_emb = Parameter(
    zeros(1, num_input_tokens, encoder_hidden_size)
)

prenorm instance-attribute

prenorm = LayerNorm(encoder_hidden_size)

__init__

__init__(
    num_queries: int,
    num_input_tokens: int,
    encoder_hidden_size: int,
    hidden_size: int,
    output_hidden_size: int,
    pos_emb: bool = True,
    prenorm: bool = False,
)
Source code in vllm/model_executor/models/hyperclovax_vision.py
def __init__(
    self,
    num_queries: int,
    num_input_tokens: int,
    encoder_hidden_size: int,
    hidden_size: int,
    output_hidden_size: int,
    pos_emb: bool = True,
    prenorm: bool = False,
):
    super().__init__()
    self.num_input_tokens = num_input_tokens
    self.output_hidden_size = output_hidden_size

    # Positional embedding
    if pos_emb:
        self.pos_emb = torch.nn.Parameter(
            torch.zeros(1, num_input_tokens, encoder_hidden_size))
        self.pos_emb.data.normal_(mean=0.0, std=0.02)
    else:
        self.pos_emb = None

    # (Optional) Pre-normalization layer
    if prenorm:
        self.prenorm = LayerNorm(encoder_hidden_size)
    else:
        self.prenorm = None

    self.build_net(num_queries, encoder_hidden_size, hidden_size,
                   output_hidden_size)
    self.dtype = next(self.parameters()).dtype

_forward

_forward(
    x: Tensor,
    num_queries_vis_abstractors: Optional[
        list[list[int]]
    ] = None,
    num_grids: Optional[list[int]] = None,
) -> Tensor
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _forward(
    self,
    x: torch.Tensor,
    num_queries_vis_abstractors: Optional[list[list[int]]] = None,
    num_grids: Optional[list[int]] = None,
) -> torch.Tensor:
    # x: [B, L, dim]
    B, L, dim = x.shape
    hw = int(L**0.5)
    x = rearrange(x, "b (h w) d -> b d h w", h=hw, w=hw)

    if num_queries_vis_abstractors is not None:
        assert num_grids is not None
        return self._forward_adaptive_num_query(
            x, num_queries_vis_abstractors, num_grids)

    x = self.net(x)
    x = rearrange(x, "b d h w -> b (h w) d")
    x = self.readout(x)
    return x

_forward_adaptive_num_query

_forward_adaptive_num_query(
    x: Tensor,
    num_queries_vis_abstractors: Optional[
        list[list[int]]
    ] = None,
    num_grids: Optional[list[int]] = None,
) -> list[Tensor]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _forward_adaptive_num_query(
    self,
    x: torch.Tensor,
    num_queries_vis_abstractors: Optional[list[list[int]]] = None,
    num_grids: Optional[list[int]] = None,
) -> list[torch.Tensor]:
    # self.net is consisted by 3 layers (s1, sampler, s2)
    assert len(self.net) == 3

    x = self.net[0](x)  # s1
    new_x = []
    for i, num_queries in enumerate(num_queries_vis_abstractors):
        hw = int(num_queries**0.5)
        sampler = nn.AdaptiveAvgPool2d((hw, hw))
        out = sampler(x[num_grids[i]:num_grids[i + 1], :])
        out = self.net[2](out)  # s2

        out = rearrange(out, "b d h w -> b (h w) d")
        out = self.readout(out)

        new_x.append(out)
    return new_x

build_mlp

build_mlp(
    depth: int, hidden_size: int, output_hidden_size: int
)
Source code in vllm/model_executor/models/hyperclovax_vision.py
def build_mlp(
    self,
    depth: int,
    hidden_size: int,
    output_hidden_size: int,
):
    layers = [nn.Linear(hidden_size, output_hidden_size)]
    for _ in range(1, depth):
        layers.append(nn.SiLU())
        layers.append(nn.Linear(output_hidden_size, output_hidden_size))
    return nn.Sequential(*layers)

build_net

build_net(
    n_queries: int,
    encoder_hidden_size: int,
    hidden_size: int,
    output_hidden_size: int,
    depth: int = 3,
    mlp_depth: int = 2,
)
Source code in vllm/model_executor/models/hyperclovax_vision.py
def build_net(
    self,
    n_queries: int,
    encoder_hidden_size: int,
    hidden_size: int,
    output_hidden_size: int,
    depth: int = 3,
    mlp_depth: int = 2,
):
    assert (n_queries**0.5).is_integer(
    ), f"n_queries must be square number. n_queries: {n_queries}"
    hw = int(n_queries**0.5)

    # RegBlock = ResBlock + SE
    RegBlock = partial(
        RegStage,
        stride=1,
        dilation=1,
        act_layer=nn.SiLU,
        norm_layer=LayerNorm2d,
    )

    s1 = RegBlock(
        depth,
        encoder_hidden_size,
        hidden_size,
    )
    sampler = nn.AdaptiveAvgPool2d((hw, hw))
    s2 = RegBlock(
        depth,
        hidden_size,
        hidden_size,
    )

    self.net = nn.Sequential(s1, sampler, s2)
    self.readout = self.build_mlp(mlp_depth, hidden_size,
                                  output_hidden_size)

forward

forward(
    x: Tensor,
    num_queries_vis_abstractors: Optional[
        list[list[int]]
    ] = None,
    num_grids: Optional[list[int]] = None,
) -> Tensor
Source code in vllm/model_executor/models/hyperclovax_vision.py
def forward(
    self,
    x: torch.Tensor,
    num_queries_vis_abstractors: Optional[list[list[int]]] = None,
    num_grids: Optional[list[int]] = None,
) -> torch.Tensor:
    if self.prenorm is not None:
        x = self.prenorm(x)

    if self.pos_emb is not None:
        x = x + self.pos_emb

    x = self._forward(
        x,
        num_queries_vis_abstractors=num_queries_vis_abstractors,
        num_grids=num_grids,
    )  # (B, L, output_hidden_size)

    return x

HCXVisionDummyInputsBuilder

Bases: BaseDummyInputsBuilder[HCXVisionProcessingInfo]

Source code in vllm/model_executor/models/hyperclovax_vision.py
class HCXVisionDummyInputsBuilder(
        BaseDummyInputsBuilder[HCXVisionProcessingInfo]):

    def get_dummy_text(
        self,
        mm_counts: Mapping[str, int],
    ) -> str:
        dummy_text = IMAGE_TOKEN * mm_counts.get(
            "image", 0) + VIDEO_TOKEN * mm_counts.get("video", 0)
        return dummy_text

    def get_dummy_mm_data(
        self,
        seq_len: int,
        mm_counts: Mapping[str, int],
    ) -> MultiModalDataDict:
        num_images = mm_counts.get("image", 0)
        num_videos = mm_counts.get("video", 0)

        target_width, target_height = \
            self.info.get_image_size_with_most_features()
        target_num_frames = 32
        return {
            "image":
            self._get_dummy_images(
                width=target_width,
                height=target_height,
                num_images=num_images,
            ),
            "video":
            self._get_dummy_videos(
                width=target_width - 1,
                height=target_height - 1,
                num_frames=target_num_frames,
                num_videos=num_videos,
            )
        }

get_dummy_mm_data

get_dummy_mm_data(
    seq_len: int, mm_counts: Mapping[str, int]
) -> MultiModalDataDict
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_dummy_mm_data(
    self,
    seq_len: int,
    mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
    num_images = mm_counts.get("image", 0)
    num_videos = mm_counts.get("video", 0)

    target_width, target_height = \
        self.info.get_image_size_with_most_features()
    target_num_frames = 32
    return {
        "image":
        self._get_dummy_images(
            width=target_width,
            height=target_height,
            num_images=num_images,
        ),
        "video":
        self._get_dummy_videos(
            width=target_width - 1,
            height=target_height - 1,
            num_frames=target_num_frames,
            num_videos=num_videos,
        )
    }

get_dummy_text

get_dummy_text(mm_counts: Mapping[str, int]) -> str
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_dummy_text(
    self,
    mm_counts: Mapping[str, int],
) -> str:
    dummy_text = IMAGE_TOKEN * mm_counts.get(
        "image", 0) + VIDEO_TOKEN * mm_counts.get("video", 0)
    return dummy_text

HCXVisionForCausalLM

Bases: Module, SupportsMultiModal, SupportsPP

Source code in vllm/model_executor/models/hyperclovax_vision.py
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
@MULTIMODAL_REGISTRY.register_processor(
    _build_hcxvision_hf_processor,
    info=_build_hcxvision_hf_info,
    dummy_inputs=HCXVisionDummyInputsBuilder)
class HCXVisionForCausalLM(nn.Module, SupportsMultiModal, SupportsPP):

    packed_modules_mapping = {
        "qkv_proj": ["q_proj", "k_proj", "v_proj"],
        "gate_up_proj": ["gate_proj", "up_proj"]
    }

    def __init__(
        self,
        *,
        vllm_config: VllmConfig,
        prefix: str = "",
        **kwargs: Optional[Any],
    ) -> None:
        super().__init__()

        # init configs
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        # text_config
        text_config = config.text_config
        if text_config.model_type in ["gpt2", "hyperclovax", "llama"]:
            text_config._attn_implementation = "sdpa"
        if text_config.model_type != "hyperclovax":
            text_config.logits_scaling = 1.0
        # vision_config
        vision_config = config.vision_config
        vision_config.auto_map = {}
        vision_config.anyres = config.anyres
        vision_config.max_num_grids = config.max_num_grids
        self.dtype = vllm_config.model_config.dtype

        ## possible_resolution should be matched with preprocessor_config.json
        config.possible_resolutions = self._init_possible_resolutions(
            config, vision_config)

        # init models & parameters
        with no_init_weights():  # weight will be loaded in from_pretrained
            self.vision_model = init_vision_tower_for_hcxvision(
                vision_config,
                quant_config,
                use_nth_layer=getattr(config, "use_nth_layer", -1),
                require_post_norm=False,
                prefix=maybe_prefix(prefix, "vision_model"),
            )
        self.mm_projector = self._init_mm_projector(config, text_config,
                                                    vision_config)

        self.lm_head_vocab_size = getattr(text_config, "padded_vocab_size",
                                          text_config.vocab_size)
        self.language_model = init_vllm_registered_model(
            vllm_config=vllm_config,
            hf_config=text_config,
            prefix=maybe_prefix(prefix, "language_model"),
        )

        if config.anyres:
            self.image_newline = nn.Parameter(
                torch.empty(text_config.hidden_size, dtype=self.dtype))

        self.config = config
        self.vision_config = vision_config
        self.text_config = text_config

        # use_sum_loss = bool(kwargs.pop("use_sum_loss", False))
        # self.reduction = self._init_reduction_type(use_sum_loss)

    @classmethod
    def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
        if modality.startswith("image"):
            return IMAGE_TOKEN
        if modality.startswith("video"):
            return VIDEO_TOKEN

        raise ValueError("Only image or video modality is supported")

    def get_language_model(self) -> torch.nn.Module:
        return self.language_model

    def get_multimodal_embeddings(
        self,
        **kwargs: Unpack[HCXVisionMultimodalInputs],
    ) -> MultiModalEmbeddings:

        multimodal_embeddings = list()
        if kwargs.get("pixel_values_images") is not None:
            for _pixel_values_images, _image_sizes_images in zip(
                    kwargs["pixel_values_images"],
                    kwargs["image_sizes_images"]):
                _pixel_values_images = _pixel_values_images.unsqueeze(dim=0)
                _image_sizes_images = _image_sizes_images.unsqueeze(dim=0)
                _len_pixel_values_images = [
                    len(pixel_value) for pixel_value in _pixel_values_images
                ]
                if isinstance(_image_sizes_images, torch.Tensor):
                    _image_sizes_images = _image_sizes_images.detach().cpu(
                    ).tolist()
                _multimodal_embeddings_images = self.forward_images(
                    pixel_values_images=_pixel_values_images,
                    image_sizes_images=_image_sizes_images,
                    len_pixel_values_images=_len_pixel_values_images,
                )
                _multimodal_embeddings_images = torch.cat(
                    _multimodal_embeddings_images, dim=0)
                multimodal_embeddings.append(_multimodal_embeddings_images)

        if kwargs.get("pixel_values_videos") is not None:
            for _pixel_values_videos, _vision_query_lengths_videos in zip(
                    kwargs["pixel_values_videos"],
                    kwargs["vision_query_lengths_videos"]):
                _len_pixel_values_videos = [
                    len(_vision_query_lengths)
                    for _vision_query_lengths in _vision_query_lengths_videos
                ]
                _c, _w, _h = _pixel_values_videos.shape[-3:]
                _pixel_values_videos = _pixel_values_videos.reshape(
                    sum(_len_pixel_values_videos), -1, _c, _w,
                    _h).unsqueeze(dim=0)
                _multimodal_embeddings_videos = self.forward_videos(
                    pixel_values_videos=_pixel_values_videos,
                    len_pixel_values_videos=_len_pixel_values_videos,
                )
                _multimodal_embeddings_videos = torch.cat(
                    _multimodal_embeddings_videos, dim=0)
                multimodal_embeddings.append(_multimodal_embeddings_videos)
        return multimodal_embeddings

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        **kwargs: object,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        if intermediate_tensors is not None:
            inputs_embeds = None

        hidden_states = self.language_model.model(input_ids,
                                                  positions,
                                                  intermediate_tensors,
                                                  inputs_embeds=inputs_embeds)
        return hidden_states

    def forward_images(
        self,
        pixel_values_images: list[list[torch.FloatTensor]],
        image_sizes_images: list[list[tuple[int, int]]],
        len_pixel_values_images: list[int],
    ) -> list[list[torch.Tensor]]:
        if sum(len_pixel_values_images) == 0:
            return None

        concat_pixel_values_images = torch.cat(list(
            chain(*pixel_values_images)),
                                               dim=0)

        visual_token_idx = 0 if "siglip" in self.vision_config.model_type else 1
        image_forward_outs = self.vision_model(
            concat_pixel_values_images)[:, visual_token_idx:]

        image_forward_outs = image_forward_outs.to(
            dtype=self.mm_projector.dtype)
        image_forward_outs = self.mm_projector(image_forward_outs)  # b (h w) d

        split_sizes = [
            pixel_value.shape[0] for pixel_value in chain(*pixel_values_images)
        ]
        image_forward_outs = torch.split(image_forward_outs,
                                         split_sizes,
                                         dim=0)

        # newline for anyres postprocessing
        image_features = anyres_postprocessing(
            image_forward_outs=image_forward_outs,
            image_sizes=[
                image_size for image_sizes in image_sizes_images
                for image_size in image_sizes
            ],
            num_queries_vis_abstractor=self.config.
            num_queries_vis_abstractor_image,
            unpad=self.config.unpad,
            patch_size=self.vision_config.patch_size,
            grid_size=self.vision_config.image_size,
            image_newline=self.image_newline,
            possible_resolutions=self.config.possible_resolutions,
        )
        return image_features

    def forward_videos(
        self,
        pixel_values_videos: list[list[torch.FloatTensor]],
        len_pixel_values_videos: list[int],
    ) -> list[torch.Tensor]:

        len_video_grids = sum(len_pixel_values_videos)
        if len_video_grids == 0:
            return None

        # Run Vision Model
        concat_pixel_values_videos = torch.cat(list(
            chain(*pixel_values_videos)),
                                               dim=0)

        visual_token_idx = 0 if "siglip" in self.vision_config.model_type else 1
        video_forward_outs = self.vision_model(
            concat_pixel_values_videos)[:, visual_token_idx:]

        video_forward_outs = video_forward_outs.to(
            dtype=self.mm_projector.dtype)

        # Run MM-Projector
        # len(num_grids) == len(num_queries_vis_abstractors) + 1
        grid_idx = 0
        num_grids = [
            grid_idx
        ]  # e.g. [0, 9, 18, 19, 27, 28, 36, 37, 45, 46, 54, 55, 56]
        num_queries_vis_abstractors = [
        ]  # e.g. [81, 81, 81, 9, 81, 9, 81, 9, 81, 9, 81, 9]
        len_total_frames = video_forward_outs.shape[0]

        if self.config.first_last_frames_slow:
            # slowfast (first_last_frames_slow)
            assert len_total_frames != 0
            if len_total_frames <= 2:
                num_queries_vis_abstractors.append(
                    self.config.num_queries_vis_abstractor_video_slow)
                grid_idx += len_total_frames
                num_grids.append(grid_idx)
            else:
                num_queries_vis_abstractors.append(
                    self.config.num_queries_vis_abstractor_video_slow)
                grid_idx += 1
                num_grids.append(grid_idx)

                num_queries_vis_abstractors.append(
                    self.config.num_queries_vis_abstractor_video_fast)
                grid_idx += len_total_frames - 2
                num_grids.append(grid_idx)

                num_queries_vis_abstractors.append(
                    self.config.num_queries_vis_abstractor_video_slow)
                grid_idx += 1
                num_grids.append(grid_idx)
        else:
            # slowfast
            for pixel_values_frames in pixel_values_videos:
                for pixel_values_frame in pixel_values_frames:
                    if len(pixel_values_frame) > 0:
                        num_queries_vis_abstractors.append(
                            self.config.num_queries_vis_abstractor_video_slow)
                        grid_idx += 1
                        num_grids.append(grid_idx)
                        num_queries_vis_abstractors.append(
                            self.config.num_queries_vis_abstractor_video_fast)
                        grid_idx = grid_idx + len(pixel_values_frame) - 1
                        num_grids.append(grid_idx)

        video_forward_outs = self.mm_projector(video_forward_outs,
                                               num_queries_vis_abstractors,
                                               num_grids)

        video_features = []  # what we want to return
        target_features = []
        target_group_size = 0
        group_counter = 0
        video_groups = [
            len(frame) for frames in pixel_values_videos for frame in frames
        ]  # for concat video features after projector

        for forward_out in video_forward_outs:
            target_group_size += len(forward_out)
            target_features.append(forward_out.flatten(0, 1))

            video_group_size = video_groups[group_counter]
            if video_group_size == target_group_size:
                video_features.append(torch.cat(target_features, dim=0))
                target_features = []
                group_counter += 1
                target_group_size = 0

            elif video_group_size < target_group_size:
                raise RuntimeError(
                    f"{video_group_size=} < {target_group_size=}")

        assert len(target_features
                   ) == 0, f"target_features is not empty!! {target_features}"
        assert len(video_groups) == len(video_features)

        return video_features

    def _prepare_multimodal_kwargs(self, **kwargs: object):
        output = defaultdict(list)
        for k, v in kwargs.items():
            if len(v) < 1 or len(v[0]) < 1:
                continue  # if empty batch of empty sample

            new_k, is_video = k, False
            if (not k.endswith("_images") and not k.endswith("_videos")):
                pass
            else:
                new_k, is_video = k.split("_")[:-1], k.split("_")[-1]
                new_k = "_".join(new_k)
                is_video = is_video == "videos"

            for _sample_idx, _v in enumerate(v):  # batch -> sample
                if new_k not in ["pixel_values"]:
                    if len(output[new_k]) < _sample_idx + 1:
                        output[new_k].append(list())
                    _v = _v.detach().cpu().numpy().tolist()
                    output[new_k][_sample_idx] += _v
                elif isinstance(_v, torch.Tensor):
                    if len(output[new_k]) < _sample_idx + 1:
                        output[new_k].append(list())
                        output["is_videos"].append(list())
                    _v = list(torch.unbind(_v, dim=0))
                    output[new_k][_sample_idx] += _v
                    output["is_videos"][_sample_idx] += [
                        is_video,
                    ] * len(_v)
        return dict(output)

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
    ) -> Optional[torch.Tensor]:
        return self.language_model.compute_logits(hidden_states)

    def load_weights(
        self,
        weights: Iterable[tuple[str, torch.Tensor]],
    ) -> set[str]:
        loader = AutoWeightsLoader(self)
        return loader.load_weights(weights)

    def _init_possible_resolutions(
        self,
        config,
        vision_config,
    ):
        if not getattr(config, "possible_resolutions", []):
            possible_resolutions = []
            if config.anyres:
                assert config.max_num_grids > 0
                for i in range(1, config.max_num_grids + 1):
                    for j in range(1, config.max_num_grids + 1):
                        if i == 1 and j == 1 and not config.use_1x1_grid:
                            continue
                        if i * j <= config.max_num_grids:
                            possible_resolutions.append([i, j])

                possible_resolutions = [[
                    ys * vision_config.image_size,
                    xs * vision_config.image_size
                ] for ys, xs in possible_resolutions]
            return possible_resolutions
        else:
            return config.possible_resolutions

    def _init_mm_projector(
        self,
        config,
        text_config,
        vision_config,
    ):
        input_hidden_size = vision_config.hidden_size
        if config.mm_projector_type == "linear":
            mm_projector = nn.Linear(input_hidden_size,
                                     text_config.hidden_size)
            mm_projector.dtype = next(mm_projector.parameters()).dtype
        elif config.mm_projector_type == "cabstractor":
            mm_projector = HCXVisionCAbstractor(
                num_queries=config.num_queries_vis_abstractor_image,
                num_input_tokens=(vision_config.image_size //
                                  vision_config.patch_size)**2,
                encoder_hidden_size=input_hidden_size,
                hidden_size=input_hidden_size,
                output_hidden_size=text_config.hidden_size,
                pos_emb=config.proj_pos_emb,
                prenorm=config.proj_prenorm,
            )
        else:
            mm_projector = HCXVisionMlp(
                config.mm_projector_type,
                input_hidden_size,
                hidden_features=input_hidden_size,
                out_features=self.text_config.hidden_size,
            )
        return mm_projector

config instance-attribute

config = config

dtype instance-attribute

dtype = dtype

image_newline instance-attribute

image_newline = Parameter(empty(hidden_size, dtype=dtype))

language_model instance-attribute

language_model = init_vllm_registered_model(
    vllm_config=vllm_config,
    hf_config=text_config,
    prefix=maybe_prefix(prefix, "language_model"),
)

lm_head_vocab_size instance-attribute

lm_head_vocab_size = getattr(
    text_config, "padded_vocab_size", vocab_size
)

mm_projector instance-attribute

mm_projector = _init_mm_projector(
    config, text_config, vision_config
)

packed_modules_mapping class-attribute instance-attribute

packed_modules_mapping = {
    "qkv_proj": ["q_proj", "k_proj", "v_proj"],
    "gate_up_proj": ["gate_proj", "up_proj"],
}

text_config instance-attribute

text_config = text_config

vision_config instance-attribute

vision_config = vision_config

vision_model instance-attribute

vision_model = init_vision_tower_for_hcxvision(
    vision_config,
    quant_config,
    use_nth_layer=getattr(config, "use_nth_layer", -1),
    require_post_norm=False,
    prefix=maybe_prefix(prefix, "vision_model"),
)

__init__

__init__(
    *,
    vllm_config: VllmConfig,
    prefix: str = "",
    **kwargs: Optional[Any],
) -> None
Source code in vllm/model_executor/models/hyperclovax_vision.py
def __init__(
    self,
    *,
    vllm_config: VllmConfig,
    prefix: str = "",
    **kwargs: Optional[Any],
) -> None:
    super().__init__()

    # init configs
    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    # text_config
    text_config = config.text_config
    if text_config.model_type in ["gpt2", "hyperclovax", "llama"]:
        text_config._attn_implementation = "sdpa"
    if text_config.model_type != "hyperclovax":
        text_config.logits_scaling = 1.0
    # vision_config
    vision_config = config.vision_config
    vision_config.auto_map = {}
    vision_config.anyres = config.anyres
    vision_config.max_num_grids = config.max_num_grids
    self.dtype = vllm_config.model_config.dtype

    ## possible_resolution should be matched with preprocessor_config.json
    config.possible_resolutions = self._init_possible_resolutions(
        config, vision_config)

    # init models & parameters
    with no_init_weights():  # weight will be loaded in from_pretrained
        self.vision_model = init_vision_tower_for_hcxvision(
            vision_config,
            quant_config,
            use_nth_layer=getattr(config, "use_nth_layer", -1),
            require_post_norm=False,
            prefix=maybe_prefix(prefix, "vision_model"),
        )
    self.mm_projector = self._init_mm_projector(config, text_config,
                                                vision_config)

    self.lm_head_vocab_size = getattr(text_config, "padded_vocab_size",
                                      text_config.vocab_size)
    self.language_model = init_vllm_registered_model(
        vllm_config=vllm_config,
        hf_config=text_config,
        prefix=maybe_prefix(prefix, "language_model"),
    )

    if config.anyres:
        self.image_newline = nn.Parameter(
            torch.empty(text_config.hidden_size, dtype=self.dtype))

    self.config = config
    self.vision_config = vision_config
    self.text_config = text_config

_init_mm_projector

_init_mm_projector(config, text_config, vision_config)
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _init_mm_projector(
    self,
    config,
    text_config,
    vision_config,
):
    input_hidden_size = vision_config.hidden_size
    if config.mm_projector_type == "linear":
        mm_projector = nn.Linear(input_hidden_size,
                                 text_config.hidden_size)
        mm_projector.dtype = next(mm_projector.parameters()).dtype
    elif config.mm_projector_type == "cabstractor":
        mm_projector = HCXVisionCAbstractor(
            num_queries=config.num_queries_vis_abstractor_image,
            num_input_tokens=(vision_config.image_size //
                              vision_config.patch_size)**2,
            encoder_hidden_size=input_hidden_size,
            hidden_size=input_hidden_size,
            output_hidden_size=text_config.hidden_size,
            pos_emb=config.proj_pos_emb,
            prenorm=config.proj_prenorm,
        )
    else:
        mm_projector = HCXVisionMlp(
            config.mm_projector_type,
            input_hidden_size,
            hidden_features=input_hidden_size,
            out_features=self.text_config.hidden_size,
        )
    return mm_projector

_init_possible_resolutions

_init_possible_resolutions(config, vision_config)
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _init_possible_resolutions(
    self,
    config,
    vision_config,
):
    if not getattr(config, "possible_resolutions", []):
        possible_resolutions = []
        if config.anyres:
            assert config.max_num_grids > 0
            for i in range(1, config.max_num_grids + 1):
                for j in range(1, config.max_num_grids + 1):
                    if i == 1 and j == 1 and not config.use_1x1_grid:
                        continue
                    if i * j <= config.max_num_grids:
                        possible_resolutions.append([i, j])

            possible_resolutions = [[
                ys * vision_config.image_size,
                xs * vision_config.image_size
            ] for ys, xs in possible_resolutions]
        return possible_resolutions
    else:
        return config.possible_resolutions

_prepare_multimodal_kwargs

_prepare_multimodal_kwargs(**kwargs: object)
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _prepare_multimodal_kwargs(self, **kwargs: object):
    output = defaultdict(list)
    for k, v in kwargs.items():
        if len(v) < 1 or len(v[0]) < 1:
            continue  # if empty batch of empty sample

        new_k, is_video = k, False
        if (not k.endswith("_images") and not k.endswith("_videos")):
            pass
        else:
            new_k, is_video = k.split("_")[:-1], k.split("_")[-1]
            new_k = "_".join(new_k)
            is_video = is_video == "videos"

        for _sample_idx, _v in enumerate(v):  # batch -> sample
            if new_k not in ["pixel_values"]:
                if len(output[new_k]) < _sample_idx + 1:
                    output[new_k].append(list())
                _v = _v.detach().cpu().numpy().tolist()
                output[new_k][_sample_idx] += _v
            elif isinstance(_v, torch.Tensor):
                if len(output[new_k]) < _sample_idx + 1:
                    output[new_k].append(list())
                    output["is_videos"].append(list())
                _v = list(torch.unbind(_v, dim=0))
                output[new_k][_sample_idx] += _v
                output["is_videos"][_sample_idx] += [
                    is_video,
                ] * len(_v)
    return dict(output)

compute_logits

compute_logits(hidden_states: Tensor) -> Optional[Tensor]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
) -> Optional[torch.Tensor]:
    return self.language_model.compute_logits(hidden_states)

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
    **kwargs: object,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
    **kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
    if intermediate_tensors is not None:
        inputs_embeds = None

    hidden_states = self.language_model.model(input_ids,
                                              positions,
                                              intermediate_tensors,
                                              inputs_embeds=inputs_embeds)
    return hidden_states

forward_images

forward_images(
    pixel_values_images: list[list[FloatTensor]],
    image_sizes_images: list[list[tuple[int, int]]],
    len_pixel_values_images: list[int],
) -> list[list[Tensor]]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def forward_images(
    self,
    pixel_values_images: list[list[torch.FloatTensor]],
    image_sizes_images: list[list[tuple[int, int]]],
    len_pixel_values_images: list[int],
) -> list[list[torch.Tensor]]:
    if sum(len_pixel_values_images) == 0:
        return None

    concat_pixel_values_images = torch.cat(list(
        chain(*pixel_values_images)),
                                           dim=0)

    visual_token_idx = 0 if "siglip" in self.vision_config.model_type else 1
    image_forward_outs = self.vision_model(
        concat_pixel_values_images)[:, visual_token_idx:]

    image_forward_outs = image_forward_outs.to(
        dtype=self.mm_projector.dtype)
    image_forward_outs = self.mm_projector(image_forward_outs)  # b (h w) d

    split_sizes = [
        pixel_value.shape[0] for pixel_value in chain(*pixel_values_images)
    ]
    image_forward_outs = torch.split(image_forward_outs,
                                     split_sizes,
                                     dim=0)

    # newline for anyres postprocessing
    image_features = anyres_postprocessing(
        image_forward_outs=image_forward_outs,
        image_sizes=[
            image_size for image_sizes in image_sizes_images
            for image_size in image_sizes
        ],
        num_queries_vis_abstractor=self.config.
        num_queries_vis_abstractor_image,
        unpad=self.config.unpad,
        patch_size=self.vision_config.patch_size,
        grid_size=self.vision_config.image_size,
        image_newline=self.image_newline,
        possible_resolutions=self.config.possible_resolutions,
    )
    return image_features

forward_videos

forward_videos(
    pixel_values_videos: list[list[FloatTensor]],
    len_pixel_values_videos: list[int],
) -> list[Tensor]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def forward_videos(
    self,
    pixel_values_videos: list[list[torch.FloatTensor]],
    len_pixel_values_videos: list[int],
) -> list[torch.Tensor]:

    len_video_grids = sum(len_pixel_values_videos)
    if len_video_grids == 0:
        return None

    # Run Vision Model
    concat_pixel_values_videos = torch.cat(list(
        chain(*pixel_values_videos)),
                                           dim=0)

    visual_token_idx = 0 if "siglip" in self.vision_config.model_type else 1
    video_forward_outs = self.vision_model(
        concat_pixel_values_videos)[:, visual_token_idx:]

    video_forward_outs = video_forward_outs.to(
        dtype=self.mm_projector.dtype)

    # Run MM-Projector
    # len(num_grids) == len(num_queries_vis_abstractors) + 1
    grid_idx = 0
    num_grids = [
        grid_idx
    ]  # e.g. [0, 9, 18, 19, 27, 28, 36, 37, 45, 46, 54, 55, 56]
    num_queries_vis_abstractors = [
    ]  # e.g. [81, 81, 81, 9, 81, 9, 81, 9, 81, 9, 81, 9]
    len_total_frames = video_forward_outs.shape[0]

    if self.config.first_last_frames_slow:
        # slowfast (first_last_frames_slow)
        assert len_total_frames != 0
        if len_total_frames <= 2:
            num_queries_vis_abstractors.append(
                self.config.num_queries_vis_abstractor_video_slow)
            grid_idx += len_total_frames
            num_grids.append(grid_idx)
        else:
            num_queries_vis_abstractors.append(
                self.config.num_queries_vis_abstractor_video_slow)
            grid_idx += 1
            num_grids.append(grid_idx)

            num_queries_vis_abstractors.append(
                self.config.num_queries_vis_abstractor_video_fast)
            grid_idx += len_total_frames - 2
            num_grids.append(grid_idx)

            num_queries_vis_abstractors.append(
                self.config.num_queries_vis_abstractor_video_slow)
            grid_idx += 1
            num_grids.append(grid_idx)
    else:
        # slowfast
        for pixel_values_frames in pixel_values_videos:
            for pixel_values_frame in pixel_values_frames:
                if len(pixel_values_frame) > 0:
                    num_queries_vis_abstractors.append(
                        self.config.num_queries_vis_abstractor_video_slow)
                    grid_idx += 1
                    num_grids.append(grid_idx)
                    num_queries_vis_abstractors.append(
                        self.config.num_queries_vis_abstractor_video_fast)
                    grid_idx = grid_idx + len(pixel_values_frame) - 1
                    num_grids.append(grid_idx)

    video_forward_outs = self.mm_projector(video_forward_outs,
                                           num_queries_vis_abstractors,
                                           num_grids)

    video_features = []  # what we want to return
    target_features = []
    target_group_size = 0
    group_counter = 0
    video_groups = [
        len(frame) for frames in pixel_values_videos for frame in frames
    ]  # for concat video features after projector

    for forward_out in video_forward_outs:
        target_group_size += len(forward_out)
        target_features.append(forward_out.flatten(0, 1))

        video_group_size = video_groups[group_counter]
        if video_group_size == target_group_size:
            video_features.append(torch.cat(target_features, dim=0))
            target_features = []
            group_counter += 1
            target_group_size = 0

        elif video_group_size < target_group_size:
            raise RuntimeError(
                f"{video_group_size=} < {target_group_size=}")

    assert len(target_features
               ) == 0, f"target_features is not empty!! {target_features}"
    assert len(video_groups) == len(video_features)

    return video_features

get_language_model

get_language_model() -> Module
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_language_model(self) -> torch.nn.Module:
    return self.language_model

get_multimodal_embeddings

get_multimodal_embeddings(
    **kwargs: Unpack[HCXVisionMultimodalInputs],
) -> MultiModalEmbeddings
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_multimodal_embeddings(
    self,
    **kwargs: Unpack[HCXVisionMultimodalInputs],
) -> MultiModalEmbeddings:

    multimodal_embeddings = list()
    if kwargs.get("pixel_values_images") is not None:
        for _pixel_values_images, _image_sizes_images in zip(
                kwargs["pixel_values_images"],
                kwargs["image_sizes_images"]):
            _pixel_values_images = _pixel_values_images.unsqueeze(dim=0)
            _image_sizes_images = _image_sizes_images.unsqueeze(dim=0)
            _len_pixel_values_images = [
                len(pixel_value) for pixel_value in _pixel_values_images
            ]
            if isinstance(_image_sizes_images, torch.Tensor):
                _image_sizes_images = _image_sizes_images.detach().cpu(
                ).tolist()
            _multimodal_embeddings_images = self.forward_images(
                pixel_values_images=_pixel_values_images,
                image_sizes_images=_image_sizes_images,
                len_pixel_values_images=_len_pixel_values_images,
            )
            _multimodal_embeddings_images = torch.cat(
                _multimodal_embeddings_images, dim=0)
            multimodal_embeddings.append(_multimodal_embeddings_images)

    if kwargs.get("pixel_values_videos") is not None:
        for _pixel_values_videos, _vision_query_lengths_videos in zip(
                kwargs["pixel_values_videos"],
                kwargs["vision_query_lengths_videos"]):
            _len_pixel_values_videos = [
                len(_vision_query_lengths)
                for _vision_query_lengths in _vision_query_lengths_videos
            ]
            _c, _w, _h = _pixel_values_videos.shape[-3:]
            _pixel_values_videos = _pixel_values_videos.reshape(
                sum(_len_pixel_values_videos), -1, _c, _w,
                _h).unsqueeze(dim=0)
            _multimodal_embeddings_videos = self.forward_videos(
                pixel_values_videos=_pixel_values_videos,
                len_pixel_values_videos=_len_pixel_values_videos,
            )
            _multimodal_embeddings_videos = torch.cat(
                _multimodal_embeddings_videos, dim=0)
            multimodal_embeddings.append(_multimodal_embeddings_videos)
    return multimodal_embeddings

get_placeholder_str classmethod

get_placeholder_str(modality: str, i: int) -> Optional[str]
Source code in vllm/model_executor/models/hyperclovax_vision.py
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]:
    if modality.startswith("image"):
        return IMAGE_TOKEN
    if modality.startswith("video"):
        return VIDEO_TOKEN

    raise ValueError("Only image or video modality is supported")

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def load_weights(
    self,
    weights: Iterable[tuple[str, torch.Tensor]],
) -> set[str]:
    loader = AutoWeightsLoader(self)
    return loader.load_weights(weights)

HCXVisionMlp

Bases: Module

Source code in vllm/model_executor/models/hyperclovax_vision.py
class HCXVisionMlp(nn.Module):

    def __init__(
        self,
        mm_projector_type,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.mm_projector_type = mm_projector_type
        if self.mm_projector_type == "mlp":
            self.fc1 = nn.Linear(in_features, hidden_features)
            self.act = act_layer()
            self.fc2 = nn.Linear(hidden_features, out_features)
        elif self.mm_projector_type == "inverted_mlp":
            self.fc1 = nn.Linear(in_features, 2 * hidden_features)
            self.act = act_layer()
            self.fc2 = nn.Linear(2 * hidden_features, out_features)
        else:
            raise NotImplementedError("{} is not implemented".format(
                self.mm_projector_type))

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.fc2(x)
        return x

act instance-attribute

act = act_layer()

fc1 instance-attribute

fc1 = Linear(in_features, hidden_features)

fc2 instance-attribute

fc2 = Linear(hidden_features, out_features)

mm_projector_type instance-attribute

mm_projector_type = mm_projector_type

__init__

__init__(
    mm_projector_type,
    in_features,
    hidden_features=None,
    out_features=None,
    act_layer=GELU,
)
Source code in vllm/model_executor/models/hyperclovax_vision.py
def __init__(
    self,
    mm_projector_type,
    in_features,
    hidden_features=None,
    out_features=None,
    act_layer=nn.GELU,
):
    super().__init__()
    out_features = out_features or in_features
    hidden_features = hidden_features or in_features
    self.mm_projector_type = mm_projector_type
    if self.mm_projector_type == "mlp":
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
    elif self.mm_projector_type == "inverted_mlp":
        self.fc1 = nn.Linear(in_features, 2 * hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(2 * hidden_features, out_features)
    else:
        raise NotImplementedError("{} is not implemented".format(
            self.mm_projector_type))

forward

forward(x)
Source code in vllm/model_executor/models/hyperclovax_vision.py
def forward(self, x):
    x = self.fc1(x)
    x = self.act(x)
    x = self.fc2(x)
    return x

HCXVisionMultiModalProcessor

Bases: BaseMultiModalProcessor[HCXVisionProcessingInfo]

Source code in vllm/model_executor/models/hyperclovax_vision.py
class HCXVisionMultiModalProcessor(
        BaseMultiModalProcessor[HCXVisionProcessingInfo]):

    def _call_hf_processor(
        self,
        prompt: str,
        mm_data: Mapping[str, object],
        mm_kwargs: Mapping[str, object],
        tok_kwargs: Mapping[str, object],
    ) -> BatchFeature:

        def replace_multimodal_token(
            token_ids: torch.Tensor,
            target_token: int,
            repeats: list[int],
        ):
            output = list[int]()
            _repeats_idx = 0
            for token_id in token_ids:
                if token_id == target_token:
                    output += [token_id.item()] * repeats[_repeats_idx]
                    _repeats_idx += 1
                else:
                    output += [token_id.item()]

            return torch.tensor(output, device=token_ids.device)

        for video_idx, video_arr in enumerate(mm_data.get("videos", [])):
            if video_arr.dtype == np.uint8:
                continue
            mm_data["videos"][video_idx] = video_arr.astype(np.uint8)

        processed_outputs = self.info.ctx.call_hf_processor(
            hf_processor=self.info.get_hf_processor(**mm_kwargs),
            data=dict(
                text=prompt,
                images=None,
                videos=None,
            ),
        )  # text-only

        if len(mm_data) > 0:
            # batchify input as a single item
            images = mm_data.get("images", None)
            batched_images = None if images is None else [images]

            # list of video in single conversation
            videos = mm_data.get("videos", None)
            batched_videos = None if videos is None else [videos]

            _processed_outputs = self.info.ctx.call_hf_processor(
                hf_processor=self.info.get_hf_processor(**mm_kwargs),
                data=dict(
                    text=None,
                    images=batched_images,
                    videos=batched_videos,
                ),
            )  # mm-only

            for k, v in _processed_outputs.items():
                if isinstance(v, list) and len(v) > 0:
                    assert len(v) == 1
                    _processed_outputs[k] = v[0]

            if images:
                tokenizer = self.info.get_tokenizer()
                image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
                processed_outputs["input_ids"] = torch.stack([
                    replace_multimodal_token(
                        token_ids=_input_ids,
                        target_token=image_token_id,
                        repeats=_processed_outputs[
                            "vision_query_lengths_images"],
                    ) for _input_ids in processed_outputs["input_ids"]
                ],
                                                             dim=0)

            if videos:
                _num_per_videos = [
                    get_num_combined_frames(len(video)) for video in videos
                ]
                _processed_outputs["pixel_values_videos"] = [
                    _processed_outputs["pixel_values_videos"]
                    [sum(_num_per_videos[:_i]):sum(_num_per_videos[:_i + 1])]
                    for _i in range(len(videos))
                ]
                _processed_outputs["vision_query_lengths_videos"] = [
                    _processed_outputs["vision_query_lengths_videos"]
                    [sum(_num_per_videos[:_i]):sum(_num_per_videos[:_i + 1])]
                    for _i in range(len(videos))
                ]

                tokenizer = self.info.get_tokenizer()
                video_token_id = tokenizer.convert_tokens_to_ids(VIDEO_TOKEN)
                processed_outputs["input_ids"] = torch.stack([
                    replace_multimodal_token(
                        token_ids=_input_ids,
                        target_token=video_token_id,
                        repeats=[
                            sum(lens) for lens in
                            _processed_outputs["vision_query_lengths_videos"]
                        ],
                    ) for _input_ids in processed_outputs["input_ids"]
                ],
                                                             dim=0)

            processed_outputs.update(_processed_outputs)

        return processed_outputs

    def _get_prompt_updates(
        self,
        mm_items: MultiModalDataItems,
        hf_processor_mm_kwargs: Mapping[str, object],
        out_mm_kwargs: MultiModalKwargsItems,
    ) -> Sequence[PromptUpdate]:
        hf_config = self.info.get_hf_config()
        placeholder = {
            "image": hf_config.image_token_id,
            "video": hf_config.video_token_id,
        }

        def get_replacement_hyperclovax(
            item_idx: int,
            modality: str,
            out_mm_kwargs: MultiModalKwargsItems,
        ):
            out_item = out_mm_kwargs[modality][item_idx]

            if modality == "image":
                lens = out_item["vision_query_lengths_images"].data
                num_tokens = self.info.get_num_image_tokens(
                    vision_query_length=lens)
            elif modality == "video":
                lens = out_item["vision_query_lengths_videos"].data
                num_tokens = self.info.get_num_video_tokens(
                    vision_query_length=lens)
            else:
                raise NotImplementedError(modality)

            return [placeholder[modality]] * num_tokens

        return [
            PromptReplacement(
                modality=modality,
                target=[
                    placeholder[modality],
                ],
                replacement=partial(
                    get_replacement_hyperclovax,
                    modality=modality,
                    out_mm_kwargs=out_mm_kwargs,
                ),
            ) for modality in ("image", "video")
        ]

    def _get_mm_fields_config(
        self,
        hf_inputs: BatchFeature,
        hf_processor_mm_kwargs: Mapping[str, object],
    ) -> Mapping[str, MultiModalFieldConfig]:
        return dict(
            # image
            pixel_values_images=MultiModalFieldConfig.batched("image"),
            image_sizes_images=MultiModalFieldConfig.batched("image"),
            vision_query_lengths_images=MultiModalFieldConfig.batched("image"),
            num_queries_vis_abstractors_images=MultiModalFieldConfig.batched(
                "image"),
            num_queries_vis_abstractors_slow_images=MultiModalFieldConfig.
            batched("image"),
            first_last_frames_slows_images=MultiModalFieldConfig.batched(
                "image"),
            # video
            pixel_values_videos=MultiModalFieldConfig.batched("video"),
            image_sizes_videos=MultiModalFieldConfig.batched("video"),
            vision_query_lengths_videos=MultiModalFieldConfig.batched("video"),
            num_queries_vis_abstractors_videos=MultiModalFieldConfig.batched(
                "video"),
            num_queries_vis_abstractors_slow_videos=MultiModalFieldConfig.
            batched("video"),
            first_last_frames_slows_videos=MultiModalFieldConfig.batched(
                "video"),
        )

_call_hf_processor

_call_hf_processor(
    prompt: str,
    mm_data: Mapping[str, object],
    mm_kwargs: Mapping[str, object],
    tok_kwargs: Mapping[str, object],
) -> BatchFeature
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _call_hf_processor(
    self,
    prompt: str,
    mm_data: Mapping[str, object],
    mm_kwargs: Mapping[str, object],
    tok_kwargs: Mapping[str, object],
) -> BatchFeature:

    def replace_multimodal_token(
        token_ids: torch.Tensor,
        target_token: int,
        repeats: list[int],
    ):
        output = list[int]()
        _repeats_idx = 0
        for token_id in token_ids:
            if token_id == target_token:
                output += [token_id.item()] * repeats[_repeats_idx]
                _repeats_idx += 1
            else:
                output += [token_id.item()]

        return torch.tensor(output, device=token_ids.device)

    for video_idx, video_arr in enumerate(mm_data.get("videos", [])):
        if video_arr.dtype == np.uint8:
            continue
        mm_data["videos"][video_idx] = video_arr.astype(np.uint8)

    processed_outputs = self.info.ctx.call_hf_processor(
        hf_processor=self.info.get_hf_processor(**mm_kwargs),
        data=dict(
            text=prompt,
            images=None,
            videos=None,
        ),
    )  # text-only

    if len(mm_data) > 0:
        # batchify input as a single item
        images = mm_data.get("images", None)
        batched_images = None if images is None else [images]

        # list of video in single conversation
        videos = mm_data.get("videos", None)
        batched_videos = None if videos is None else [videos]

        _processed_outputs = self.info.ctx.call_hf_processor(
            hf_processor=self.info.get_hf_processor(**mm_kwargs),
            data=dict(
                text=None,
                images=batched_images,
                videos=batched_videos,
            ),
        )  # mm-only

        for k, v in _processed_outputs.items():
            if isinstance(v, list) and len(v) > 0:
                assert len(v) == 1
                _processed_outputs[k] = v[0]

        if images:
            tokenizer = self.info.get_tokenizer()
            image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
            processed_outputs["input_ids"] = torch.stack([
                replace_multimodal_token(
                    token_ids=_input_ids,
                    target_token=image_token_id,
                    repeats=_processed_outputs[
                        "vision_query_lengths_images"],
                ) for _input_ids in processed_outputs["input_ids"]
            ],
                                                         dim=0)

        if videos:
            _num_per_videos = [
                get_num_combined_frames(len(video)) for video in videos
            ]
            _processed_outputs["pixel_values_videos"] = [
                _processed_outputs["pixel_values_videos"]
                [sum(_num_per_videos[:_i]):sum(_num_per_videos[:_i + 1])]
                for _i in range(len(videos))
            ]
            _processed_outputs["vision_query_lengths_videos"] = [
                _processed_outputs["vision_query_lengths_videos"]
                [sum(_num_per_videos[:_i]):sum(_num_per_videos[:_i + 1])]
                for _i in range(len(videos))
            ]

            tokenizer = self.info.get_tokenizer()
            video_token_id = tokenizer.convert_tokens_to_ids(VIDEO_TOKEN)
            processed_outputs["input_ids"] = torch.stack([
                replace_multimodal_token(
                    token_ids=_input_ids,
                    target_token=video_token_id,
                    repeats=[
                        sum(lens) for lens in
                        _processed_outputs["vision_query_lengths_videos"]
                    ],
                ) for _input_ids in processed_outputs["input_ids"]
            ],
                                                         dim=0)

        processed_outputs.update(_processed_outputs)

    return processed_outputs

_get_mm_fields_config

_get_mm_fields_config(
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    return dict(
        # image
        pixel_values_images=MultiModalFieldConfig.batched("image"),
        image_sizes_images=MultiModalFieldConfig.batched("image"),
        vision_query_lengths_images=MultiModalFieldConfig.batched("image"),
        num_queries_vis_abstractors_images=MultiModalFieldConfig.batched(
            "image"),
        num_queries_vis_abstractors_slow_images=MultiModalFieldConfig.
        batched("image"),
        first_last_frames_slows_images=MultiModalFieldConfig.batched(
            "image"),
        # video
        pixel_values_videos=MultiModalFieldConfig.batched("video"),
        image_sizes_videos=MultiModalFieldConfig.batched("video"),
        vision_query_lengths_videos=MultiModalFieldConfig.batched("video"),
        num_queries_vis_abstractors_videos=MultiModalFieldConfig.batched(
            "video"),
        num_queries_vis_abstractors_slow_videos=MultiModalFieldConfig.
        batched("video"),
        first_last_frames_slows_videos=MultiModalFieldConfig.batched(
            "video"),
    )

_get_prompt_updates

_get_prompt_updates(
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _get_prompt_updates(
    self,
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]:
    hf_config = self.info.get_hf_config()
    placeholder = {
        "image": hf_config.image_token_id,
        "video": hf_config.video_token_id,
    }

    def get_replacement_hyperclovax(
        item_idx: int,
        modality: str,
        out_mm_kwargs: MultiModalKwargsItems,
    ):
        out_item = out_mm_kwargs[modality][item_idx]

        if modality == "image":
            lens = out_item["vision_query_lengths_images"].data
            num_tokens = self.info.get_num_image_tokens(
                vision_query_length=lens)
        elif modality == "video":
            lens = out_item["vision_query_lengths_videos"].data
            num_tokens = self.info.get_num_video_tokens(
                vision_query_length=lens)
        else:
            raise NotImplementedError(modality)

        return [placeholder[modality]] * num_tokens

    return [
        PromptReplacement(
            modality=modality,
            target=[
                placeholder[modality],
            ],
            replacement=partial(
                get_replacement_hyperclovax,
                modality=modality,
                out_mm_kwargs=out_mm_kwargs,
            ),
        ) for modality in ("image", "video")
    ]

HCXVisionMultimodalPixelInputs

Bases: TypedDict

Source code in vllm/model_executor/models/hyperclovax_vision.py
class HCXVisionMultimodalPixelInputs(TypedDict):
    type: Literal["pixel_values"]
    pixel_values_images: list[torch.Tensor]
    """
    Shape: `[(num_grids, num_channels, height, width), ...]` if anyres

    Note that `height` or `width` may be different per batch and image,
    in which case the data is passed as a list instead of a batched tensor.
    """
    image_sizes_images: list[tuple[Union[int, float]]]
    """
    Shape: `[(height, width), ...]`
    """
    vision_query_lengths_images: list[Union[int, float]]
    pixel_values_videos: list[tuple[Union[int, float]]]
    """
    Shape: `[(num_grids, num_channels, height, width), ...]` if anyres
    """
    vision_query_lengths_videos: list[Union[int, float]]

image_sizes_images instance-attribute

image_sizes_images: list[tuple[Union[int, float]]]

Shape: [(height, width), ...]

pixel_values_images instance-attribute

pixel_values_images: list[Tensor]

Shape: [(num_grids, num_channels, height, width), ...] if anyres

Note that height or width may be different per batch and image, in which case the data is passed as a list instead of a batched tensor.

pixel_values_videos instance-attribute

pixel_values_videos: list[tuple[Union[int, float]]]

Shape: [(num_grids, num_channels, height, width), ...] if anyres

type instance-attribute

type: Literal['pixel_values']

vision_query_lengths_images instance-attribute

vision_query_lengths_images: list[Union[int, float]]

vision_query_lengths_videos instance-attribute

vision_query_lengths_videos: list[Union[int, float]]

HCXVisionProcessingInfo

Bases: BaseProcessingInfo

Source code in vllm/model_executor/models/hyperclovax_vision.py
class HCXVisionProcessingInfo(BaseProcessingInfo):

    def get_vision_encoder_info(self):
        return get_vision_encoder_info(self.get_hf_config())

    def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
        return {"image": None, "video": None}

    def get_num_image_tokens(
        self,
        *,
        vision_query_length: Union[int, list[int]],
    ) -> int:
        if isinstance(vision_query_length, int):
            return vision_query_length
        else:
            return sum(vision_query_length)

    def get_num_video_tokens(
        self,
        *,
        vision_query_length: Union[int, list[int]],
    ) -> int:
        if isinstance(vision_query_length, int):
            return vision_query_length
        else:
            return sum(vision_query_length)

    def get_image_size_with_most_features(self) -> ImageSize:
        vision_encoder_info = self.get_vision_encoder_info()
        width = height = vision_encoder_info.get_image_size()
        return ImageSize(width=width, height=height)

    def get_max_image_tokens(self) -> int:
        target_width, target_height = self.get_image_size_with_most_features()

        return self.get_num_image_tokens(
            image_width=target_width,
            image_height=target_height,
        )

get_image_size_with_most_features

get_image_size_with_most_features() -> ImageSize
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_image_size_with_most_features(self) -> ImageSize:
    vision_encoder_info = self.get_vision_encoder_info()
    width = height = vision_encoder_info.get_image_size()
    return ImageSize(width=width, height=height)

get_max_image_tokens

get_max_image_tokens() -> int
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_max_image_tokens(self) -> int:
    target_width, target_height = self.get_image_size_with_most_features()

    return self.get_num_image_tokens(
        image_width=target_width,
        image_height=target_height,
    )

get_num_image_tokens

get_num_image_tokens(
    *, vision_query_length: Union[int, list[int]]
) -> int
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_num_image_tokens(
    self,
    *,
    vision_query_length: Union[int, list[int]],
) -> int:
    if isinstance(vision_query_length, int):
        return vision_query_length
    else:
        return sum(vision_query_length)

get_num_video_tokens

get_num_video_tokens(
    *, vision_query_length: Union[int, list[int]]
) -> int
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_num_video_tokens(
    self,
    *,
    vision_query_length: Union[int, list[int]],
) -> int:
    if isinstance(vision_query_length, int):
        return vision_query_length
    else:
        return sum(vision_query_length)

get_supported_mm_limits

get_supported_mm_limits() -> Mapping[str, Optional[int]]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
    return {"image": None, "video": None}

get_vision_encoder_info

get_vision_encoder_info()
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_vision_encoder_info(self):
    return get_vision_encoder_info(self.get_hf_config())

_build_hcxvision_hf_info

_build_hcxvision_hf_info(
    ctx: InputProcessingContext,
) -> HCXVisionProcessingInfo
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _build_hcxvision_hf_info(
    ctx: InputProcessingContext, ) -> HCXVisionProcessingInfo:
    return HCXVisionProcessingInfo(ctx)

_build_hcxvision_hf_processor

_build_hcxvision_hf_processor(
    info: HCXVisionProcessingInfo,
    dummy_inputs: BaseDummyInputsBuilder[
        HCXVisionProcessingInfo
    ],
    *,
    cache: Optional[BaseMultiModalProcessorCache] = None,
) -> BaseMultiModalProcessor
Source code in vllm/model_executor/models/hyperclovax_vision.py
def _build_hcxvision_hf_processor(
    info: HCXVisionProcessingInfo,
    dummy_inputs: BaseDummyInputsBuilder[HCXVisionProcessingInfo],
    *,
    cache: Optional[BaseMultiModalProcessorCache] = None,
) -> BaseMultiModalProcessor:
    if isinstance(info, HCXVisionProcessingInfo):
        return HCXVisionMultiModalProcessor(
            info,
            dummy_inputs,  # type: ignore
            cache=cache,
        )

    raise NotImplementedError(type(info))

anyres_postprocessing

anyres_postprocessing(
    image_forward_outs: list[FloatTensor],
    image_sizes: list[list[int]],
    possible_resolutions: list[tuple[int, int]],
    patch_size: int,
    grid_size: int,
    image_newline: FloatTensor,
    num_queries_vis_abstractor: int = -1,
    unpad: bool = False,
) -> list[FloatTensor]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def anyres_postprocessing(
    image_forward_outs: list[torch.FloatTensor],
    image_sizes: list[list[int]],
    possible_resolutions: list[tuple[int, int]],
    patch_size: int,
    grid_size: int,
    image_newline: torch.FloatTensor,
    num_queries_vis_abstractor: int = -1,
    unpad: bool = False,
) -> list[torch.FloatTensor]:
    height = width = grid_size // patch_size

    if num_queries_vis_abstractor > 0:
        assert (num_queries_vis_abstractor**0.5
                ).is_integer(), "n_queries must be square number"
        height = width = int(num_queries_vis_abstractor**0.5)

    # post-processing (unpad, add newline)
    new_image_features = []
    for image_idx, image_feature in enumerate(image_forward_outs):
        if image_feature.shape[0] > 1:
            image_feature = reshape_and_unpad_image_features(
                image_feature=image_feature,
                height=height,
                width=width,
                image_size=image_sizes[image_idx],
                possible_resolutions=possible_resolutions,
                grid_size=grid_size,  # Pass grid info if needed by helper
                unpad=unpad,
                image_newline=image_newline,
            )
        else:
            image_feature = image_feature[0]
            image_feature = torch.cat(
                (image_feature, image_newline[None].to(image_feature.device)),
                dim=0)
        new_image_features.append(image_feature)
    image_features = new_image_features
    return image_features

get_anyres_image_grid_shape

get_anyres_image_grid_shape(
    image_size: tuple[int, int],
    grid_pinpoints: Union[str, list[tuple[int, int]]],
    patch_size: int,
) -> tuple[int, int]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_anyres_image_grid_shape(
    image_size: tuple[int, int],
    grid_pinpoints: Union[str, list[tuple[int, int]]],
    patch_size: int,
) -> tuple[int, int]:
    possible_resolutions = grid_pinpoints if isinstance(
        grid_pinpoints, list) else ast.literal_eval(grid_pinpoints)

    original_width, original_height = image_size
    height, width = select_best_resolution((original_height, original_width),
                                           possible_resolutions)
    return width // patch_size, height // patch_size

get_num_combined_frames

get_num_combined_frames(
    num_frames: int,
    max_grid_shape: tuple[int, int] = (3, 3),
) -> int
Source code in vllm/model_executor/models/hyperclovax_vision.py
def get_num_combined_frames(
        num_frames: int,
        max_grid_shape: tuple[int, int] = (3, 3),
) -> int:
    max_num_grids = max_grid_shape[0] * max_grid_shape[1]

    # Calculate the number of canvases needed.
    num_canvases = num_frames // max_num_grids
    leftover_frames = num_frames % max_num_grids

    return num_canvases + (leftover_frames > 0)

init_vision_tower_for_hcxvision

init_vision_tower_for_hcxvision(
    vision_config,
    quant_config: Optional[QuantizationConfig],
    *,
    use_nth_layer: Optional[int] = None,
    require_post_norm: Optional[bool] = None,
    prefix: str = "",
) -> Union[CLIPVisionModel, SiglipVisionModel]
Source code in vllm/model_executor/models/hyperclovax_vision.py
def init_vision_tower_for_hcxvision(
    vision_config,
    quant_config: Optional[QuantizationConfig],
    *,
    use_nth_layer: Optional[int] = None,
    require_post_norm: Optional[bool] = None,
    prefix: str = "",
) -> Union[CLIPVisionModel, SiglipVisionModel]:
    num_hidden_layers = vision_config.num_hidden_layers
    if not isinstance(use_nth_layer, int):
        pass
    elif use_nth_layer >= 0:
        num_hidden_layers = use_nth_layer + 1
    else:
        num_hidden_layers = num_hidden_layers + use_nth_layer + 1

    if isinstance(vision_config, CLIPVisionConfig):
        return CLIPVisionModel(
            vision_config,
            quant_config=quant_config,
            num_hidden_layers_override=num_hidden_layers,
            require_post_norm=require_post_norm,
            prefix=prefix,
        )
    elif isinstance(vision_config, SiglipVisionConfig):
        return SiglipVisionModel(
            vision_config,
            quant_config=quant_config,
            num_hidden_layers_override=num_hidden_layers,
            require_post_norm=require_post_norm,
            prefix=prefix,
        )

    msg = f"Unsupported vision config: {type(vision_config)}"
    raise NotImplementedError(msg)

reshape_and_unpad_image_features

reshape_and_unpad_image_features(
    image_feature: Tensor,
    height: int,
    width: int,
    image_size: tuple[int, int],
    possible_resolutions: list[tuple[int, int]],
    grid_size: int,
    unpad: bool,
    image_newline: Tensor,
) -> Tensor
Source code in vllm/model_executor/models/hyperclovax_vision.py
def reshape_and_unpad_image_features(
    image_feature: torch.Tensor,
    height: int,
    width: int,
    image_size: tuple[int, int],
    possible_resolutions: list[tuple[int, int]],
    grid_size: int,
    unpad: bool,
    image_newline: torch.Tensor,
) -> torch.Tensor:
    base_image_feature = image_feature[0]
    image_feature = image_feature[1:]

    assert height * width == base_image_feature.shape[0], (
        f"{height=} * {width=} != {base_image_feature.shape[0]=}")

    num_patch_width, num_patch_height = get_anyres_image_grid_shape(
        image_size, possible_resolutions, grid_size)
    image_feature = image_feature.view(num_patch_height, num_patch_width,
                                       height, width, -1)

    if unpad:
        image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
        image_feature = image_feature.flatten(1, 2).flatten(2, 3)
        image_feature = unpad_image(image_feature, image_size)
        image_feature = torch.cat(
            (
                image_feature,
                image_newline[:, None, None].expand(
                    *image_feature.shape[:-1], 1).to(image_feature.device),
            ),
            dim=-1,
        )
        image_feature = image_feature.flatten(1, 2).transpose(0, 1)
    else:
        image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
        image_feature = image_feature.flatten(0, 3)
    image_feature = torch.cat((base_image_feature, image_feature), dim=0)

    return image_feature

resize_image

resize_image(
    image: Union[ndarray, Image], max_side: int = 378
) -> ndarray
Source code in vllm/model_executor/models/hyperclovax_vision.py
def resize_image(
    image: Union[np.ndarray, PIL.Image.Image],
    max_side: int = 378,
) -> np.ndarray:
    image_arr = image
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    width, height = image.size
    cur_max_size = max(width, height)
    if cur_max_size <= max_side:
        return image_arr

    scale = max_side / cur_max_size
    width = int(width * scale)
    height = int(height * scale)
    image = image.resize((width, height), Image.LANCZOS)
    image_arr = np.array(image)
    return image_arr

select_best_resolution

select_best_resolution(
    original_size: tuple, possible_resolutions: list
) -> tuple
Source code in vllm/model_executor/models/hyperclovax_vision.py
def select_best_resolution(original_size: tuple,
                           possible_resolutions: list) -> tuple:
    original_height, original_width = original_size
    best_fit = None
    max_effective_resolution = 0
    min_wasted_resolution = float("inf")

    for height, width in possible_resolutions:
        scale = min(width / original_width, height / original_height)
        downscaled_width, downscaled_height = int(original_width * scale), int(
            original_height * scale)
        effective_resolution = min(downscaled_width * downscaled_height,
                                   original_width * original_height)
        wasted_resolution = (width * height) - effective_resolution

        if effective_resolution > max_effective_resolution or (
                effective_resolution == max_effective_resolution
                and wasted_resolution < min_wasted_resolution):
            max_effective_resolution = effective_resolution
            min_wasted_resolution = wasted_resolution
            best_fit = (height, width)

    return best_fit

unpad_image

unpad_image(
    tensor: Tensor, original_size: tuple[int, int]
) -> Tensor
Source code in vllm/model_executor/models/hyperclovax_vision.py
def unpad_image(tensor: torch.Tensor,
                original_size: tuple[int, int]) -> torch.Tensor:
    original_width, original_height = original_size
    current_height, current_width = tensor.shape[1:]

    original_aspect_ratio = original_width / original_height
    current_aspect_ratio = current_width / current_height

    if original_aspect_ratio > current_aspect_ratio:
        scale_factor = current_width / original_width
        new_height = int(original_height * scale_factor)
        padding = (current_height - new_height) // 2
        unpadded_tensor = tensor[:, padding:current_height - padding, :]
    else:
        scale_factor = current_height / original_height
        new_width = int(original_width * scale_factor)
        padding = (current_width - new_width) // 2
        unpadded_tensor = tensor[:, :, padding:current_width - padding]

    return unpadded_tensor