Skip to content

vllm.model_executor.models.deepseek_v2

Inference-only DeepseekV2/DeepseekV3 model.

logger module-attribute

logger = init_logger(__name__)

DeepseekV2Attention

Bases: Module

Source code in vllm/model_executor/models/deepseek_v2.py
class DeepseekV2Attention(nn.Module):

    def __init__(
        self,
        vllm_config: VllmConfig,
        config: Union[DeepseekV2Config, DeepseekV3Config],
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        topk_indices_buffer: Optional[torch.Tensor] = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
        self.num_heads = num_heads
        tp_size = get_tensor_model_parallel_world_size()
        assert num_heads % tp_size == 0
        self.num_local_heads = num_heads // tp_size
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings
        assert topk_indices_buffer is None, "topk_indices_buffer is not \
        supported for DeepseekV2Attention"

        if self.q_lora_rank is not None:
            self.q_a_proj = ReplicatedLinear(self.hidden_size,
                                             self.q_lora_rank,
                                             bias=False,
                                             quant_config=quant_config,
                                             prefix=f"{prefix}.q_a_proj")
            self.q_a_layernorm = RMSNorm(self.q_lora_rank,
                                         eps=config.rms_norm_eps)
            self.q_b_proj = ColumnParallelLinear(q_lora_rank,
                                                 self.num_heads *
                                                 self.qk_head_dim,
                                                 bias=False,
                                                 quant_config=quant_config,
                                                 prefix=f"{prefix}.q_b_proj")
        else:
            self.q_proj = ColumnParallelLinear(self.hidden_size,
                                               self.num_heads *
                                               self.qk_head_dim,
                                               bias=False,
                                               quant_config=quant_config,
                                               prefix=f"{prefix}.q_proj")

        self.kv_a_proj_with_mqa = ReplicatedLinear(
            self.hidden_size,
            self.kv_lora_rank + self.qk_rope_head_dim,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.kv_a_proj_with_mqa")
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank,
                                      eps=config.rms_norm_eps)
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.kv_b_proj")
        # O projection.
        self.o_proj = RowParallelLinear(self.num_heads * self.v_head_dim,
                                        self.hidden_size,
                                        bias=False,
                                        quant_config=quant_config,
                                        prefix=f"{prefix}.o_proj")
        if rope_scaling:
            rope_scaling["rope_type"] = 'deepseek_yarn'

        self.rotary_emb = get_rope(qk_rope_head_dim,
                                   rotary_dim=qk_rope_head_dim,
                                   max_position=max_position_embeddings,
                                   base=rope_theta,
                                   rope_scaling=rope_scaling,
                                   is_neox_style=False)

        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale

        self.attn = Attention(self.num_local_heads,
                              self.qk_head_dim,
                              self.scaling,
                              num_kv_heads=self.num_local_heads,
                              cache_config=cache_config,
                              quant_config=quant_config,
                              prefix=f"{prefix}.attn")

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        if self.q_lora_rank is not None:
            q = self.q_a_proj(hidden_states)[0]
            q = self.q_a_layernorm(q)
            q = self.q_b_proj(q)[0].view(-1, self.num_local_heads,
                                         self.qk_head_dim)
        else:
            q = self.q_proj(hidden_states)[0].view(-1, self.num_local_heads,
                                                   self.qk_head_dim)
        q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim],
                               dim=-1)
        latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
        kv_a, _ = latent_cache.split(
            [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        latent_cache = latent_cache.unsqueeze(1)
        kv_a = self.kv_a_layernorm(kv_a)
        kv = self.kv_b_proj(kv_a)[0]
        kv = kv.view(-1, self.num_local_heads,
                     self.qk_nope_head_dim + self.v_head_dim)
        k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
        k_pe = latent_cache[:, :, self.kv_lora_rank:]

        q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)

        q[..., self.qk_nope_head_dim:] = q_pe
        k = torch.empty_like(q)
        k[..., :self.qk_nope_head_dim] = k_nope
        k[..., self.qk_nope_head_dim:] = k_pe
        # padding value to qk_head_dim for alignment
        v = torch.nn.functional.pad(
            v, [0, self.qk_head_dim - self.v_head_dim],
            value=0).view(-1, self.num_local_heads * self.qk_head_dim)
        attn_output = self.attn(q, k, v)
        attn_output = attn_output.view(
            -1, self.num_local_heads,
            self.qk_head_dim)[..., :self.v_head_dim].reshape(
                -1, self.num_local_heads * self.v_head_dim)
        output, _ = self.o_proj(attn_output)
        return output

attn instance-attribute

attn = Attention(
    num_local_heads,
    qk_head_dim,
    scaling,
    num_kv_heads=num_local_heads,
    cache_config=cache_config,
    quant_config=quant_config,
    prefix=f"{prefix}.attn",
)

hidden_size instance-attribute

hidden_size = hidden_size

kv_a_layernorm instance-attribute

kv_a_layernorm = RMSNorm(kv_lora_rank, eps=rms_norm_eps)

kv_a_proj_with_mqa instance-attribute

kv_a_proj_with_mqa = ReplicatedLinear(
    hidden_size,
    kv_lora_rank + qk_rope_head_dim,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.kv_a_proj_with_mqa",
)

kv_b_proj instance-attribute

kv_b_proj = ColumnParallelLinear(
    kv_lora_rank,
    num_heads * (qk_nope_head_dim + v_head_dim),
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.kv_b_proj",
)

kv_lora_rank instance-attribute

kv_lora_rank = kv_lora_rank

max_position_embeddings instance-attribute

max_position_embeddings = max_position_embeddings

num_heads instance-attribute

num_heads = num_heads

num_local_heads instance-attribute

num_local_heads = num_heads // tp_size

o_proj instance-attribute

o_proj = RowParallelLinear(
    num_heads * v_head_dim,
    hidden_size,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.o_proj",
)

q_a_layernorm instance-attribute

q_a_layernorm = RMSNorm(q_lora_rank, eps=rms_norm_eps)

q_a_proj instance-attribute

q_a_proj = ReplicatedLinear(
    hidden_size,
    q_lora_rank,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.q_a_proj",
)

q_b_proj instance-attribute

q_b_proj = ColumnParallelLinear(
    q_lora_rank,
    num_heads * qk_head_dim,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.q_b_proj",
)

q_lora_rank instance-attribute

q_lora_rank = q_lora_rank

q_proj instance-attribute

q_proj = ColumnParallelLinear(
    hidden_size,
    num_heads * qk_head_dim,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.q_proj",
)

qk_head_dim instance-attribute

qk_head_dim = qk_nope_head_dim + qk_rope_head_dim

qk_nope_head_dim instance-attribute

qk_nope_head_dim = qk_nope_head_dim

qk_rope_head_dim instance-attribute

qk_rope_head_dim = qk_rope_head_dim

rope_theta instance-attribute

rope_theta = rope_theta

rotary_emb instance-attribute

rotary_emb = get_rope(
    qk_rope_head_dim,
    rotary_dim=qk_rope_head_dim,
    max_position=max_position_embeddings,
    base=rope_theta,
    rope_scaling=rope_scaling,
    is_neox_style=False,
)

scaling instance-attribute

scaling = qk_head_dim ** -0.5

v_head_dim instance-attribute

v_head_dim = v_head_dim

__init__

__init__(
    vllm_config: VllmConfig,
    config: Union[DeepseekV2Config, DeepseekV3Config],
    hidden_size: int,
    num_heads: int,
    qk_nope_head_dim: int,
    qk_rope_head_dim: int,
    v_head_dim: int,
    q_lora_rank: int,
    kv_lora_rank: int,
    rope_theta: float = 10000,
    rope_scaling: Optional[dict[str, Any]] = None,
    max_position_embeddings: int = 8192,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    topk_indices_buffer: Optional[Tensor] = None,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/deepseek_v2.py
def __init__(
    self,
    vllm_config: VllmConfig,
    config: Union[DeepseekV2Config, DeepseekV3Config],
    hidden_size: int,
    num_heads: int,
    qk_nope_head_dim: int,
    qk_rope_head_dim: int,
    v_head_dim: int,
    q_lora_rank: int,
    kv_lora_rank: int,
    rope_theta: float = 10000,
    rope_scaling: Optional[dict[str, Any]] = None,
    max_position_embeddings: int = 8192,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    topk_indices_buffer: Optional[torch.Tensor] = None,
    prefix: str = "",
) -> None:
    super().__init__()
    self.hidden_size = hidden_size
    self.qk_nope_head_dim = qk_nope_head_dim
    self.qk_rope_head_dim = qk_rope_head_dim
    self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
    self.v_head_dim = v_head_dim
    self.q_lora_rank = q_lora_rank
    self.kv_lora_rank = kv_lora_rank
    self.num_heads = num_heads
    tp_size = get_tensor_model_parallel_world_size()
    assert num_heads % tp_size == 0
    self.num_local_heads = num_heads // tp_size
    self.scaling = self.qk_head_dim**-0.5
    self.rope_theta = rope_theta
    self.max_position_embeddings = max_position_embeddings
    assert topk_indices_buffer is None, "topk_indices_buffer is not \
    supported for DeepseekV2Attention"

    if self.q_lora_rank is not None:
        self.q_a_proj = ReplicatedLinear(self.hidden_size,
                                         self.q_lora_rank,
                                         bias=False,
                                         quant_config=quant_config,
                                         prefix=f"{prefix}.q_a_proj")
        self.q_a_layernorm = RMSNorm(self.q_lora_rank,
                                     eps=config.rms_norm_eps)
        self.q_b_proj = ColumnParallelLinear(q_lora_rank,
                                             self.num_heads *
                                             self.qk_head_dim,
                                             bias=False,
                                             quant_config=quant_config,
                                             prefix=f"{prefix}.q_b_proj")
    else:
        self.q_proj = ColumnParallelLinear(self.hidden_size,
                                           self.num_heads *
                                           self.qk_head_dim,
                                           bias=False,
                                           quant_config=quant_config,
                                           prefix=f"{prefix}.q_proj")

    self.kv_a_proj_with_mqa = ReplicatedLinear(
        self.hidden_size,
        self.kv_lora_rank + self.qk_rope_head_dim,
        bias=False,
        quant_config=quant_config,
        prefix=f"{prefix}.kv_a_proj_with_mqa")
    self.kv_a_layernorm = RMSNorm(self.kv_lora_rank,
                                  eps=config.rms_norm_eps)
    self.kv_b_proj = ColumnParallelLinear(
        self.kv_lora_rank,
        self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
        bias=False,
        quant_config=quant_config,
        prefix=f"{prefix}.kv_b_proj")
    # O projection.
    self.o_proj = RowParallelLinear(self.num_heads * self.v_head_dim,
                                    self.hidden_size,
                                    bias=False,
                                    quant_config=quant_config,
                                    prefix=f"{prefix}.o_proj")
    if rope_scaling:
        rope_scaling["rope_type"] = 'deepseek_yarn'

    self.rotary_emb = get_rope(qk_rope_head_dim,
                               rotary_dim=qk_rope_head_dim,
                               max_position=max_position_embeddings,
                               base=rope_theta,
                               rope_scaling=rope_scaling,
                               is_neox_style=False)

    if rope_scaling:
        mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
        scaling_factor = rope_scaling["factor"]
        mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
        self.scaling = self.scaling * mscale * mscale

    self.attn = Attention(self.num_local_heads,
                          self.qk_head_dim,
                          self.scaling,
                          num_kv_heads=self.num_local_heads,
                          cache_config=cache_config,
                          quant_config=quant_config,
                          prefix=f"{prefix}.attn")

forward

forward(positions: Tensor, hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/deepseek_v2.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    if self.q_lora_rank is not None:
        q = self.q_a_proj(hidden_states)[0]
        q = self.q_a_layernorm(q)
        q = self.q_b_proj(q)[0].view(-1, self.num_local_heads,
                                     self.qk_head_dim)
    else:
        q = self.q_proj(hidden_states)[0].view(-1, self.num_local_heads,
                                               self.qk_head_dim)
    q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim],
                           dim=-1)
    latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
    kv_a, _ = latent_cache.split(
        [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
    latent_cache = latent_cache.unsqueeze(1)
    kv_a = self.kv_a_layernorm(kv_a)
    kv = self.kv_b_proj(kv_a)[0]
    kv = kv.view(-1, self.num_local_heads,
                 self.qk_nope_head_dim + self.v_head_dim)
    k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
    k_pe = latent_cache[:, :, self.kv_lora_rank:]

    q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)

    q[..., self.qk_nope_head_dim:] = q_pe
    k = torch.empty_like(q)
    k[..., :self.qk_nope_head_dim] = k_nope
    k[..., self.qk_nope_head_dim:] = k_pe
    # padding value to qk_head_dim for alignment
    v = torch.nn.functional.pad(
        v, [0, self.qk_head_dim - self.v_head_dim],
        value=0).view(-1, self.num_local_heads * self.qk_head_dim)
    attn_output = self.attn(q, k, v)
    attn_output = attn_output.view(
        -1, self.num_local_heads,
        self.qk_head_dim)[..., :self.v_head_dim].reshape(
            -1, self.num_local_heads * self.v_head_dim)
    output, _ = self.o_proj(attn_output)
    return output

DeepseekV2DecoderLayer

Bases: Module

Source code in vllm/model_executor/models/deepseek_v2.py
class DeepseekV2DecoderLayer(nn.Module):

    def __init__(self,
                 vllm_config: VllmConfig,
                 prefix: str,
                 topk_indices_buffer: Optional[torch.Tensor] = None) -> None:
        super().__init__()

        config = vllm_config.model_config.hf_config
        model_config = vllm_config.model_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config
        parallel_config = vllm_config.parallel_config

        self.hidden_size = config.hidden_size
        rope_theta = getattr(config, "rope_theta", 10000)
        rope_scaling = getattr(config, "rope_scaling", None)
        max_position_embeddings = getattr(config, "max_position_embeddings",
                                          8192)
        # DecoderLayers are created with `make_layers` which passes the prefix
        # with the layer's index.
        layer_idx = int(prefix.split(sep='.')[-1])
        self.layer_idx = layer_idx
        if model_config.use_mla:
            attn_cls = DeepseekV2MLAAttention
        else:
            attn_cls = DeepseekV2Attention
        self.self_attn = attn_cls(
            vllm_config=vllm_config,
            config=config,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            qk_nope_head_dim=config.qk_nope_head_dim,
            qk_rope_head_dim=config.qk_rope_head_dim,
            v_head_dim=config.v_head_dim,
            q_lora_rank=config.q_lora_rank
            if hasattr(config, "q_lora_rank") else None,
            kv_lora_rank=config.kv_lora_rank,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            max_position_embeddings=max_position_embeddings,
            cache_config=cache_config,
            quant_config=quant_config,
            prefix=f"{prefix}.self_attn",
            topk_indices_buffer=topk_indices_buffer,
        )

        if (config.n_routed_experts is not None
                and layer_idx >= config.first_k_dense_replace
                and layer_idx % config.moe_layer_freq == 0):
            self.mlp = DeepseekV2MoE(
                config=config,
                parallel_config=parallel_config,
                quant_config=quant_config,
                prefix=f"{prefix}.mlp",
            )
        else:
            self.mlp = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                prefix=f"{prefix}.mlp",
            )
        self.input_layernorm = RMSNorm(config.hidden_size,
                                       eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                                eps=config.rms_norm_eps)
        self.routed_scaling_factor = config.routed_scaling_factor

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        residual: Optional[torch.Tensor],
    ) -> torch.Tensor:
        # Self Attention
        if residual is None:
            residual = hidden_states.clone()
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(
                hidden_states, residual)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
        )

        if hidden_states.dtype == torch.float16:
            # Fix FP16 overflow
            # We scale both hidden_states and residual before
            # rmsnorm, and rmsnorm result would not affect by scale.
            hidden_states *= 1. / self.routed_scaling_factor
            if self.layer_idx == 0:
                # The residual is shared by all layers, we only scale it on
                # first layer.
                residual *= 1. / self.routed_scaling_factor

        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(
            hidden_states, residual)
        hidden_states = self.mlp(hidden_states)

        if isinstance(self.mlp,
                      DeepseekV2MLP) and hidden_states.dtype == torch.float16:
            # Fix FP16 overflow
            # Scaling the DeepseekV2MLP output, it is the input of
            # input_layernorm of next decoder layer.
            # The scaling of DeepseekV2MOE output would be done in the forward
            # of DeepseekV2MOE
            hidden_states *= 1. / self.routed_scaling_factor

        return hidden_states, residual

hidden_size instance-attribute

hidden_size = hidden_size

input_layernorm instance-attribute

input_layernorm = RMSNorm(hidden_size, eps=rms_norm_eps)

layer_idx instance-attribute

layer_idx = layer_idx

mlp instance-attribute

mlp = DeepseekV2MoE(
    config=config,
    parallel_config=parallel_config,
    quant_config=quant_config,
    prefix=f"{prefix}.mlp",
)

post_attention_layernorm instance-attribute

post_attention_layernorm = RMSNorm(
    hidden_size, eps=rms_norm_eps
)

routed_scaling_factor instance-attribute

routed_scaling_factor = routed_scaling_factor

self_attn instance-attribute

self_attn = attn_cls(
    vllm_config=vllm_config,
    config=config,
    hidden_size=hidden_size,
    num_heads=num_attention_heads,
    qk_nope_head_dim=qk_nope_head_dim,
    qk_rope_head_dim=qk_rope_head_dim,
    v_head_dim=v_head_dim,
    q_lora_rank=q_lora_rank
    if hasattr(config, "q_lora_rank")
    else None,
    kv_lora_rank=kv_lora_rank,
    rope_theta=rope_theta,
    rope_scaling=rope_scaling,
    max_position_embeddings=max_position_embeddings,
    cache_config=cache_config,
    quant_config=quant_config,
    prefix=f"{prefix}.self_attn",
    topk_indices_buffer=topk_indices_buffer,
)

__init__

__init__(
    vllm_config: VllmConfig,
    prefix: str,
    topk_indices_buffer: Optional[Tensor] = None,
) -> None
Source code in vllm/model_executor/models/deepseek_v2.py
def __init__(self,
             vllm_config: VllmConfig,
             prefix: str,
             topk_indices_buffer: Optional[torch.Tensor] = None) -> None:
    super().__init__()

    config = vllm_config.model_config.hf_config
    model_config = vllm_config.model_config
    cache_config = vllm_config.cache_config
    quant_config = vllm_config.quant_config
    parallel_config = vllm_config.parallel_config

    self.hidden_size = config.hidden_size
    rope_theta = getattr(config, "rope_theta", 10000)
    rope_scaling = getattr(config, "rope_scaling", None)
    max_position_embeddings = getattr(config, "max_position_embeddings",
                                      8192)
    # DecoderLayers are created with `make_layers` which passes the prefix
    # with the layer's index.
    layer_idx = int(prefix.split(sep='.')[-1])
    self.layer_idx = layer_idx
    if model_config.use_mla:
        attn_cls = DeepseekV2MLAAttention
    else:
        attn_cls = DeepseekV2Attention
    self.self_attn = attn_cls(
        vllm_config=vllm_config,
        config=config,
        hidden_size=self.hidden_size,
        num_heads=config.num_attention_heads,
        qk_nope_head_dim=config.qk_nope_head_dim,
        qk_rope_head_dim=config.qk_rope_head_dim,
        v_head_dim=config.v_head_dim,
        q_lora_rank=config.q_lora_rank
        if hasattr(config, "q_lora_rank") else None,
        kv_lora_rank=config.kv_lora_rank,
        rope_theta=rope_theta,
        rope_scaling=rope_scaling,
        max_position_embeddings=max_position_embeddings,
        cache_config=cache_config,
        quant_config=quant_config,
        prefix=f"{prefix}.self_attn",
        topk_indices_buffer=topk_indices_buffer,
    )

    if (config.n_routed_experts is not None
            and layer_idx >= config.first_k_dense_replace
            and layer_idx % config.moe_layer_freq == 0):
        self.mlp = DeepseekV2MoE(
            config=config,
            parallel_config=parallel_config,
            quant_config=quant_config,
            prefix=f"{prefix}.mlp",
        )
    else:
        self.mlp = DeepseekV2MLP(
            hidden_size=config.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
            quant_config=quant_config,
            prefix=f"{prefix}.mlp",
        )
    self.input_layernorm = RMSNorm(config.hidden_size,
                                   eps=config.rms_norm_eps)
    self.post_attention_layernorm = RMSNorm(config.hidden_size,
                                            eps=config.rms_norm_eps)
    self.routed_scaling_factor = config.routed_scaling_factor

forward

forward(
    positions: Tensor,
    hidden_states: Tensor,
    residual: Optional[Tensor],
) -> Tensor
Source code in vllm/model_executor/models/deepseek_v2.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
    residual: Optional[torch.Tensor],
) -> torch.Tensor:
    # Self Attention
    if residual is None:
        residual = hidden_states.clone()
        hidden_states = self.input_layernorm(hidden_states)
    else:
        hidden_states, residual = self.input_layernorm(
            hidden_states, residual)
    hidden_states = self.self_attn(
        positions=positions,
        hidden_states=hidden_states,
    )

    if hidden_states.dtype == torch.float16:
        # Fix FP16 overflow
        # We scale both hidden_states and residual before
        # rmsnorm, and rmsnorm result would not affect by scale.
        hidden_states *= 1. / self.routed_scaling_factor
        if self.layer_idx == 0:
            # The residual is shared by all layers, we only scale it on
            # first layer.
            residual *= 1. / self.routed_scaling_factor

    # Fully Connected
    hidden_states, residual = self.post_attention_layernorm(
        hidden_states, residual)
    hidden_states = self.mlp(hidden_states)

    if isinstance(self.mlp,
                  DeepseekV2MLP) and hidden_states.dtype == torch.float16:
        # Fix FP16 overflow
        # Scaling the DeepseekV2MLP output, it is the input of
        # input_layernorm of next decoder layer.
        # The scaling of DeepseekV2MOE output would be done in the forward
        # of DeepseekV2MOE
        hidden_states *= 1. / self.routed_scaling_factor

    return hidden_states, residual

DeepseekV2ForCausalLM

Bases: Module, SupportsPP, MixtureOfExperts, SupportsLoRA

Source code in vllm/model_executor/models/deepseek_v2.py
class DeepseekV2ForCausalLM(nn.Module, SupportsPP, MixtureOfExperts,
                            SupportsLoRA):
    packed_modules_mapping = {
        "gate_up_proj": ["gate_proj", "up_proj"],
    }

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        self.config = config
        self.quant_config = quant_config

        # `packed_modules_mapping` needs to be modified before
        # initializing DeepseekV2Model, as it is passed inplace to
        # quantization config init and may be used to select the
        # quant_method for relevant layers during initialization.
        self.fuse_qkv_a_proj = hasattr(
            config, "q_lora_rank") and config.q_lora_rank is not None
        if self.fuse_qkv_a_proj:
            self.packed_modules_mapping["fused_qkv_a_proj"] = [
                "q_a_proj",
                "kv_a_proj_with_mqa",
            ]

        self.model = DeepseekV2Model(vllm_config=vllm_config,
                                     prefix=maybe_prefix(prefix, "model"))
        if get_pp_group().is_last_rank:
            self.lm_head = ParallelLMHead(
                config.vocab_size,
                config.hidden_size,
                quant_config=quant_config,
                prefix=maybe_prefix(prefix, "lm_head"),
            )
        else:
            self.lm_head = PPMissingLayer()
        self.logits_processor = LogitsProcessor(config.vocab_size)
        self.make_empty_intermediate_tensors = (
            self.model.make_empty_intermediate_tensors)
        self.expert_weights = []

        # Set MoE hyperparameters
        self.num_moe_layers = (config.num_hidden_layers -
                               config.first_k_dense_replace)
        self.num_expert_groups = config.n_group

        self.moe_layers: list[FusedMoE] = []
        example_moe = None
        for layer in self.model.layers:
            if isinstance(layer, PPMissingLayer):
                continue

            assert isinstance(layer, DeepseekV2DecoderLayer)
            if isinstance(layer.mlp, DeepseekV2MoE):
                # Pick last one layer since the first ones may be dense layers.
                example_moe = layer.mlp
                self.moe_layers.append(layer.mlp.experts)

        if example_moe is None:
            raise RuntimeError("No DeepseekV2MoE layer found in model.layers.")

        self.num_logical_experts = example_moe.n_logical_experts
        self.num_physical_experts = example_moe.n_physical_experts
        self.num_local_physical_experts = example_moe.n_local_physical_experts
        self.num_routed_experts = example_moe.n_routed_experts
        self.num_shared_experts = example_moe.n_shared_experts
        self.num_redundant_experts = example_moe.n_redundant_experts

    def set_eplb_state(
        self,
        expert_load_view: torch.Tensor,
        logical_to_physical_map: torch.Tensor,
        logical_replica_count: torch.Tensor,
    ) -> None:
        for layer_idx, layer in enumerate(self.moe_layers):
            # Register the expert weights.
            self.expert_weights.append(layer.get_expert_weights())
            layer.set_eplb_state(
                moe_layer_idx=layer_idx,
                expert_load_view=expert_load_view,
                logical_to_physical_map=logical_to_physical_map,
                logical_replica_count=logical_replica_count,
            )

    def update_physical_experts_metadata(
        self,
        num_physical_experts: int,
        num_local_physical_experts: int,
    ) -> None:
        assert self.num_local_physical_experts == num_local_physical_experts
        self.num_physical_experts = num_physical_experts
        self.num_local_physical_experts = num_local_physical_experts
        self.num_redundant_experts = (num_physical_experts -
                                      self.num_logical_experts)
        for layer in self.model.layers:
            if isinstance(layer.mlp, DeepseekV2MoE):
                moe = layer.mlp
                moe.n_local_physical_experts = num_local_physical_experts
                moe.n_physical_experts = num_physical_experts
                moe.n_redundant_experts = self.num_redundant_experts
                moe.experts.update_expert_map()

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.get_input_embeddings(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        hidden_states = self.model(input_ids, positions, intermediate_tensors,
                                   inputs_embeds)
        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
    ) -> Optional[torch.Tensor]:
        logits = self.logits_processor(self.lm_head, hidden_states)
        return logits

    def load_weights(self, weights: Iterable[tuple[str,
                                                   torch.Tensor]]) -> set[str]:
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            ("gate_up_proj", "gate_proj", 0),
            ("gate_up_proj", "up_proj", 1),
            ("fused_qkv_a_proj", "q_a_proj", 0),
            ("fused_qkv_a_proj", "kv_a_proj_with_mqa", 1),
        ]

        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
        expert_params_mapping = FusedMoE.make_expert_params_mapping(
            ckpt_gate_proj_name="gate_proj",
            ckpt_down_proj_name="down_proj",
            ckpt_up_proj_name="up_proj",
            num_experts=self.config.n_routed_experts,
            num_redundant_experts=self.num_redundant_experts)

        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()
        for name, loaded_weight in weights:
            if "rotary_emb.inv_freq" in name:
                continue

            spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
            if spec_layer is not None:
                continue  # skip spec decode layers for main model

            for (param_name, weight_name, shard_id) in stacked_params_mapping:
                # Skip non-stacked layers and experts (experts handled below).
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if (("mlp.experts." in name) and name not in params_dict):
                    continue
                name_mapped = name.replace(weight_name, param_name)

                # QKV fusion is optional, fall back to normal
                # weight loading if it's not enabled
                # if go with fusion option, then update name
                if ((param_name == "fused_qkv_a_proj")
                        and name_mapped not in params_dict):
                    continue
                else:
                    name = name_mapped
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue

                if is_pp_missing_parameter(name, self):
                    continue

                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                is_expert_weight = False
                for mapping in expert_params_mapping:
                    param_name, weight_name, expert_id, shard_id = mapping
                    if weight_name not in name:
                        continue

                    # Anyway, this is an expert weight and should not be
                    # attempted to load as other weights later
                    is_expert_weight = True

                    # Do not modify `name` since the loop may continue here
                    # Instead, create a new variable
                    name_mapped = name.replace(weight_name, param_name)

                    if is_pp_missing_parameter(name_mapped, self):
                        continue

                    param = params_dict[name_mapped]
                    # We should ask the weight loader to return success or not
                    # here since otherwise we may skip experts with other
                    # available replicas.
                    weight_loader = typing.cast(Callable[..., bool],
                                                param.weight_loader)
                    success = weight_loader(param,
                                            loaded_weight,
                                            name_mapped,
                                            shard_id=shard_id,
                                            expert_id=expert_id,
                                            return_success=True)
                    if success:
                        name = name_mapped
                        break
                else:
                    if is_expert_weight:
                        # We've checked that this is an expert weight
                        # However it's not mapped locally to this rank
                        # So we simply skip it
                        continue

                    # Skip loading extra bias for GPTQ models.
                    if name.endswith(".bias") and name not in params_dict:
                        continue

                    # Remapping the name of FP8 kv-scale.
                    name = maybe_remap_kv_scale_name(name, params_dict)
                    if name is None:
                        continue

                    if is_pp_missing_parameter(name, self):
                        continue

                    param = params_dict[name]
                    weight_loader = getattr(param, "weight_loader",
                                            default_weight_loader)
                    weight_loader(param, loaded_weight)
            loaded_params.add(name)

        return loaded_params

config instance-attribute

config = config

expert_weights instance-attribute

expert_weights = []

fuse_qkv_a_proj instance-attribute

fuse_qkv_a_proj = (
    hasattr(config, "q_lora_rank")
    and q_lora_rank is not None
)

lm_head instance-attribute

lm_head = ParallelLMHead(
    vocab_size,
    hidden_size,
    quant_config=quant_config,
    prefix=maybe_prefix(prefix, "lm_head"),
)

logits_processor instance-attribute

logits_processor = LogitsProcessor(vocab_size)

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors
)

model instance-attribute

model = DeepseekV2Model(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "model"),
)

moe_layers instance-attribute

moe_layers: list[FusedMoE] = []

num_expert_groups instance-attribute

num_expert_groups = n_group

num_local_physical_experts instance-attribute

num_local_physical_experts = n_local_physical_experts

num_logical_experts instance-attribute

num_logical_experts = n_logical_experts

num_moe_layers instance-attribute

num_moe_layers = num_hidden_layers - first_k_dense_replace

num_physical_experts instance-attribute

num_physical_experts = n_physical_experts

num_redundant_experts instance-attribute

num_redundant_experts = n_redundant_experts

num_routed_experts instance-attribute

num_routed_experts = n_routed_experts

num_shared_experts instance-attribute

num_shared_experts = n_shared_experts

packed_modules_mapping class-attribute instance-attribute

packed_modules_mapping = {
    "gate_up_proj": ["gate_proj", "up_proj"]
}

quant_config instance-attribute

quant_config = quant_config

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/deepseek_v2.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    self.config = config
    self.quant_config = quant_config

    # `packed_modules_mapping` needs to be modified before
    # initializing DeepseekV2Model, as it is passed inplace to
    # quantization config init and may be used to select the
    # quant_method for relevant layers during initialization.
    self.fuse_qkv_a_proj = hasattr(
        config, "q_lora_rank") and config.q_lora_rank is not None
    if self.fuse_qkv_a_proj:
        self.packed_modules_mapping["fused_qkv_a_proj"] = [
            "q_a_proj",
            "kv_a_proj_with_mqa",
        ]

    self.model = DeepseekV2Model(vllm_config=vllm_config,
                                 prefix=maybe_prefix(prefix, "model"))
    if get_pp_group().is_last_rank:
        self.lm_head = ParallelLMHead(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
            prefix=maybe_prefix(prefix, "lm_head"),
        )
    else:
        self.lm_head = PPMissingLayer()
    self.logits_processor = LogitsProcessor(config.vocab_size)
    self.make_empty_intermediate_tensors = (
        self.model.make_empty_intermediate_tensors)
    self.expert_weights = []

    # Set MoE hyperparameters
    self.num_moe_layers = (config.num_hidden_layers -
                           config.first_k_dense_replace)
    self.num_expert_groups = config.n_group

    self.moe_layers: list[FusedMoE] = []
    example_moe = None
    for layer in self.model.layers:
        if isinstance(layer, PPMissingLayer):
            continue

        assert isinstance(layer, DeepseekV2DecoderLayer)
        if isinstance(layer.mlp, DeepseekV2MoE):
            # Pick last one layer since the first ones may be dense layers.
            example_moe = layer.mlp
            self.moe_layers.append(layer.mlp.experts)

    if example_moe is None:
        raise RuntimeError("No DeepseekV2MoE layer found in model.layers.")

    self.num_logical_experts = example_moe.n_logical_experts
    self.num_physical_experts = example_moe.n_physical_experts
    self.num_local_physical_experts = example_moe.n_local_physical_experts
    self.num_routed_experts = example_moe.n_routed_experts
    self.num_shared_experts = example_moe.n_shared_experts
    self.num_redundant_experts = example_moe.n_redundant_experts

compute_logits

compute_logits(hidden_states: Tensor) -> Optional[Tensor]
Source code in vllm/model_executor/models/deepseek_v2.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
) -> Optional[torch.Tensor]:
    logits = self.logits_processor(self.lm_head, hidden_states)
    return logits

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/deepseek_v2.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors] = None,
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    hidden_states = self.model(input_ids, positions, intermediate_tensors,
                               inputs_embeds)
    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/deepseek_v2.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.model.get_input_embeddings(input_ids)

load_weights

load_weights(
    weights: Iterable[tuple[str, Tensor]],
) -> set[str]
Source code in vllm/model_executor/models/deepseek_v2.py
def load_weights(self, weights: Iterable[tuple[str,
                                               torch.Tensor]]) -> set[str]:
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        ("gate_up_proj", "gate_proj", 0),
        ("gate_up_proj", "up_proj", 1),
        ("fused_qkv_a_proj", "q_a_proj", 0),
        ("fused_qkv_a_proj", "kv_a_proj_with_mqa", 1),
    ]

    # Params for weights, fp8 weight scales, fp8 activation scales
    # (param_name, weight_name, expert_id, shard_id)
    expert_params_mapping = FusedMoE.make_expert_params_mapping(
        ckpt_gate_proj_name="gate_proj",
        ckpt_down_proj_name="down_proj",
        ckpt_up_proj_name="up_proj",
        num_experts=self.config.n_routed_experts,
        num_redundant_experts=self.num_redundant_experts)

    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()
    for name, loaded_weight in weights:
        if "rotary_emb.inv_freq" in name:
            continue

        spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
        if spec_layer is not None:
            continue  # skip spec decode layers for main model

        for (param_name, weight_name, shard_id) in stacked_params_mapping:
            # Skip non-stacked layers and experts (experts handled below).
            if weight_name not in name:
                continue
            # We have mlp.experts[0].gate_proj in the checkpoint.
            # Since we handle the experts below in expert_params_mapping,
            # we need to skip here BEFORE we update the name, otherwise
            # name will be updated to mlp.experts[0].gate_up_proj, which
            # will then be updated below in expert_params_mapping
            # for mlp.experts[0].gate_gate_up_proj, which breaks load.
            if (("mlp.experts." in name) and name not in params_dict):
                continue
            name_mapped = name.replace(weight_name, param_name)

            # QKV fusion is optional, fall back to normal
            # weight loading if it's not enabled
            # if go with fusion option, then update name
            if ((param_name == "fused_qkv_a_proj")
                    and name_mapped not in params_dict):
                continue
            else:
                name = name_mapped
            # Skip loading extra bias for GPTQ models.
            if name.endswith(".bias") and name not in params_dict:
                continue

            if is_pp_missing_parameter(name, self):
                continue

            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            is_expert_weight = False
            for mapping in expert_params_mapping:
                param_name, weight_name, expert_id, shard_id = mapping
                if weight_name not in name:
                    continue

                # Anyway, this is an expert weight and should not be
                # attempted to load as other weights later
                is_expert_weight = True

                # Do not modify `name` since the loop may continue here
                # Instead, create a new variable
                name_mapped = name.replace(weight_name, param_name)

                if is_pp_missing_parameter(name_mapped, self):
                    continue

                param = params_dict[name_mapped]
                # We should ask the weight loader to return success or not
                # here since otherwise we may skip experts with other
                # available replicas.
                weight_loader = typing.cast(Callable[..., bool],
                                            param.weight_loader)
                success = weight_loader(param,
                                        loaded_weight,
                                        name_mapped,
                                        shard_id=shard_id,
                                        expert_id=expert_id,
                                        return_success=True)
                if success:
                    name = name_mapped
                    break
            else:
                if is_expert_weight:
                    # We've checked that this is an expert weight
                    # However it's not mapped locally to this rank
                    # So we simply skip it
                    continue

                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue

                # Remapping the name of FP8 kv-scale.
                name = maybe_remap_kv_scale_name(name, params_dict)
                if name is None:
                    continue

                if is_pp_missing_parameter(name, self):
                    continue

                param = params_dict[name]
                weight_loader = getattr(param, "weight_loader",
                                        default_weight_loader)
                weight_loader(param, loaded_weight)
        loaded_params.add(name)

    return loaded_params

set_eplb_state

set_eplb_state(
    expert_load_view: Tensor,
    logical_to_physical_map: Tensor,
    logical_replica_count: Tensor,
) -> None
Source code in vllm/model_executor/models/deepseek_v2.py
def set_eplb_state(
    self,
    expert_load_view: torch.Tensor,
    logical_to_physical_map: torch.Tensor,
    logical_replica_count: torch.Tensor,
) -> None:
    for layer_idx, layer in enumerate(self.moe_layers):
        # Register the expert weights.
        self.expert_weights.append(layer.get_expert_weights())
        layer.set_eplb_state(
            moe_layer_idx=layer_idx,
            expert_load_view=expert_load_view,
            logical_to_physical_map=logical_to_physical_map,
            logical_replica_count=logical_replica_count,
        )

update_physical_experts_metadata

update_physical_experts_metadata(
    num_physical_experts: int,
    num_local_physical_experts: int,
) -> None
Source code in vllm/model_executor/models/deepseek_v2.py
def update_physical_experts_metadata(
    self,
    num_physical_experts: int,
    num_local_physical_experts: int,
) -> None:
    assert self.num_local_physical_experts == num_local_physical_experts
    self.num_physical_experts = num_physical_experts
    self.num_local_physical_experts = num_local_physical_experts
    self.num_redundant_experts = (num_physical_experts -
                                  self.num_logical_experts)
    for layer in self.model.layers:
        if isinstance(layer.mlp, DeepseekV2MoE):
            moe = layer.mlp
            moe.n_local_physical_experts = num_local_physical_experts
            moe.n_physical_experts = num_physical_experts
            moe.n_redundant_experts = self.num_redundant_experts
            moe.experts.update_expert_map()

DeepseekV2MLAAttention

Bases: Module

Main reference: DeepseekV2 paper, and FlashInfer Implementation (https://arxiv.org/abs/2405.04434 and https://github.com/flashinfer-ai/flashinfer/pull/551).

For more info see MLACommonImpl in:
vllm/v1/attention/backends/mla/utils.py
Source code in vllm/model_executor/models/deepseek_v2.py
class DeepseekV2MLAAttention(nn.Module):
    """
    Main reference: DeepseekV2 paper, and FlashInfer Implementation
    (https://arxiv.org/abs/2405.04434 and https://github.com/flashinfer-ai/flashinfer/pull/551).

        For more info see MLACommonImpl in:
        vllm/v1/attention/backends/mla/utils.py
    """

    def __init__(
        self,
        vllm_config: VllmConfig,
        config: Union[DeepseekV2Config, DeepseekV3Config],
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: Optional[int],
        kv_lora_rank: int,
        rope_theta: float = 10000,
        rope_scaling: Optional[dict[str, Any]] = None,
        max_position_embeddings: int = 8192,
        cache_config: Optional[CacheConfig] = None,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
        topk_indices_buffer: Optional[torch.Tensor] = None,
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim

        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank

        self.num_heads = num_heads
        tp_size = get_tensor_model_parallel_world_size()
        assert num_heads % tp_size == 0
        self.num_local_heads = num_heads // tp_size

        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.max_position_embeddings = max_position_embeddings

        if self.q_lora_rank is not None:
            self.fused_qkv_a_proj = MergedColumnParallelLinear(
                self.hidden_size,
                [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim],
                bias=False,
                quant_config=quant_config,
                prefix=f"{prefix}.fused_qkv_a_proj",
                disable_tp=True)
        else:
            self.kv_a_proj_with_mqa = ReplicatedLinear(
                self.hidden_size,
                self.kv_lora_rank + self.qk_rope_head_dim,
                bias=False,
                quant_config=quant_config,
                prefix=f"{prefix}.kv_a_proj_with_mqa")

        if self.q_lora_rank is not None:
            self.q_a_layernorm = RMSNorm(self.q_lora_rank,
                                         eps=config.rms_norm_eps)
            self.q_b_proj = ColumnParallelLinear(self.q_lora_rank,
                                                 self.num_heads *
                                                 self.qk_head_dim,
                                                 bias=False,
                                                 quant_config=quant_config,
                                                 prefix=f"{prefix}.q_b_proj")
        else:
            self.q_proj = ColumnParallelLinear(self.hidden_size,
                                               self.num_heads *
                                               self.qk_head_dim,
                                               bias=False,
                                               quant_config=quant_config,
                                               prefix=f"{prefix}.q_proj")
        self.kv_a_layernorm = RMSNorm(self.kv_lora_rank,
                                      eps=config.rms_norm_eps)
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.kv_b_proj")
        self.o_proj = RowParallelLinear(self.num_heads * self.v_head_dim,
                                        self.hidden_size,
                                        bias=False,
                                        quant_config=quant_config,
                                        prefix=f"{prefix}.o_proj")

        if rope_scaling:
            rope_scaling["rope_type"] = 'deepseek_yarn'
        self.rotary_emb = get_rope(qk_rope_head_dim,
                                   rotary_dim=qk_rope_head_dim,
                                   max_position=max_position_embeddings,
                                   base=rope_theta,
                                   rope_scaling=rope_scaling,
                                   is_neox_style=False)
        if rope_scaling:
            mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
            scaling_factor = rope_scaling["factor"]
            mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
            self.scaling = self.scaling * mscale * mscale

        self.is_v32 = hasattr(config, "index_topk")

        if self.is_v32:
            self.indexer = Indexer(vllm_config, config, hidden_size,
                                   q_lora_rank, quant_config, cache_config,
                                   topk_indices_buffer, f"{prefix}.indexer")
        else:
            self.indexer = None

        mla_modules = MLAModules(
            kv_a_layernorm=self.kv_a_layernorm,
            kv_b_proj=self.kv_b_proj,
            rotary_emb=self.rotary_emb,
            o_proj=self.o_proj,
            fused_qkv_a_proj=self.fused_qkv_a_proj
            if self.q_lora_rank is not None else None,
            kv_a_proj_with_mqa=self.kv_a_proj_with_mqa
            if self.q_lora_rank is None else None,
            q_a_layernorm=self.q_a_layernorm
            if self.q_lora_rank is not None else None,
            q_b_proj=self.q_b_proj if self.q_lora_rank is not None else None,
            q_proj=self.q_proj if self.q_lora_rank is None else None,
            indexer=self.indexer,
            is_sparse=self.is_v32,
            topk_indices_buffer=topk_indices_buffer,
        )

        self.mla_attn = MultiHeadLatentAttention(
            self.hidden_size,
            self.num_local_heads,
            self.scaling,
            self.qk_nope_head_dim,
            self.qk_rope_head_dim,
            self.v_head_dim,
            self.q_lora_rank,
            self.kv_lora_rank,
            mla_modules,
            cache_config,
            quant_config,
            prefix,
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor:
        return self.mla_attn(positions, hidden_states)

fused_qkv_a_proj instance-attribute

fused_qkv_a_proj = MergedColumnParallelLinear(
    hidden_size,
    [q_lora_rank, kv_lora_rank + qk_rope_head_dim],
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.fused_qkv_a_proj",
    disable_tp=True,
)

hidden_size instance-attribute

hidden_size = hidden_size

indexer instance-attribute

indexer = Indexer(
    vllm_config,
    config,
    hidden_size,
    q_lora_rank,
    quant_config,
    cache_config,
    topk_indices_buffer,
    f"{prefix}.indexer",
)

is_v32 instance-attribute

is_v32 = hasattr(config, 'index_topk')

kv_a_layernorm instance-attribute

kv_a_layernorm = RMSNorm(kv_lora_rank, eps=rms_norm_eps)

kv_a_proj_with_mqa instance-attribute

kv_a_proj_with_mqa = ReplicatedLinear(
    hidden_size,
    kv_lora_rank + qk_rope_head_dim,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.kv_a_proj_with_mqa",
)

kv_b_proj instance-attribute

kv_b_proj = ColumnParallelLinear(
    kv_lora_rank,
    num_heads * (qk_nope_head_dim + v_head_dim),
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.kv_b_proj",
)

kv_lora_rank instance-attribute

kv_lora_rank = kv_lora_rank

max_position_embeddings instance-attribute

max_position_embeddings = max_position_embeddings

mla_attn instance-attribute

mla_attn = MultiHeadLatentAttention(
    hidden_size,
    num_local_heads,
    scaling,
    qk_nope_head_dim,
    qk_rope_head_dim,
    v_head_dim,
    q_lora_rank,
    kv_lora_rank,
    mla_modules,
    cache_config,
    quant_config,
    prefix,
)

num_heads instance-attribute

num_heads = num_heads

num_local_heads instance-attribute

num_local_heads = num_heads // tp_size

o_proj instance-attribute

o_proj = RowParallelLinear(
    num_heads * v_head_dim,
    hidden_size,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.o_proj",
)

q_a_layernorm instance-attribute

q_a_layernorm = RMSNorm(q_lora_rank, eps=rms_norm_eps)

q_b_proj instance-attribute

q_b_proj = ColumnParallelLinear(
    q_lora_rank,
    num_heads * qk_head_dim,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.q_b_proj",
)

q_lora_rank instance-attribute

q_lora_rank = q_lora_rank

q_proj instance-attribute

q_proj = ColumnParallelLinear(
    hidden_size,
    num_heads * qk_head_dim,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.q_proj",
)

qk_head_dim instance-attribute

qk_head_dim = qk_nope_head_dim + qk_rope_head_dim

qk_nope_head_dim instance-attribute

qk_nope_head_dim = qk_nope_head_dim

qk_rope_head_dim instance-attribute

qk_rope_head_dim = qk_rope_head_dim

rope_theta instance-attribute

rope_theta = rope_theta

rotary_emb instance-attribute

rotary_emb = get_rope(
    qk_rope_head_dim,
    rotary_dim=qk_rope_head_dim,
    max_position=max_position_embeddings,
    base=rope_theta,
    rope_scaling=rope_scaling,
    is_neox_style=False,
)

scaling instance-attribute

scaling = qk_head_dim ** -0.5

v_head_dim instance-attribute

v_head_dim = v_head_dim

__init__

__init__(
    vllm_config: VllmConfig,
    config: Union[DeepseekV2Config, DeepseekV3Config],
    hidden_size: int,
    num_heads: int,
    qk_nope_head_dim: int,
    qk_rope_head_dim: int,
    v_head_dim: int,
    q_lora_rank: Optional[int],
    kv_lora_rank: int,
    rope_theta: float = 10000,
    rope_scaling: Optional[dict[str, Any]] = None,
    max_position_embeddings: int = 8192,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
    topk_indices_buffer: Optional[Tensor] = None,
) -> None
Source code in vllm/model_executor/models/deepseek_v2.py
def __init__(
    self,
    vllm_config: VllmConfig,
    config: Union[DeepseekV2Config, DeepseekV3Config],
    hidden_size: int,
    num_heads: int,
    qk_nope_head_dim: int,
    qk_rope_head_dim: int,
    v_head_dim: int,
    q_lora_rank: Optional[int],
    kv_lora_rank: int,
    rope_theta: float = 10000,
    rope_scaling: Optional[dict[str, Any]] = None,
    max_position_embeddings: int = 8192,
    cache_config: Optional[CacheConfig] = None,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
    topk_indices_buffer: Optional[torch.Tensor] = None,
) -> None:
    super().__init__()
    self.hidden_size = hidden_size
    self.qk_nope_head_dim = qk_nope_head_dim
    self.qk_rope_head_dim = qk_rope_head_dim
    self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
    self.v_head_dim = v_head_dim

    self.q_lora_rank = q_lora_rank
    self.kv_lora_rank = kv_lora_rank

    self.num_heads = num_heads
    tp_size = get_tensor_model_parallel_world_size()
    assert num_heads % tp_size == 0
    self.num_local_heads = num_heads // tp_size

    self.scaling = self.qk_head_dim**-0.5
    self.rope_theta = rope_theta
    self.max_position_embeddings = max_position_embeddings

    if self.q_lora_rank is not None:
        self.fused_qkv_a_proj = MergedColumnParallelLinear(
            self.hidden_size,
            [self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim],
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.fused_qkv_a_proj",
            disable_tp=True)
    else:
        self.kv_a_proj_with_mqa = ReplicatedLinear(
            self.hidden_size,
            self.kv_lora_rank + self.qk_rope_head_dim,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.kv_a_proj_with_mqa")

    if self.q_lora_rank is not None:
        self.q_a_layernorm = RMSNorm(self.q_lora_rank,
                                     eps=config.rms_norm_eps)
        self.q_b_proj = ColumnParallelLinear(self.q_lora_rank,
                                             self.num_heads *
                                             self.qk_head_dim,
                                             bias=False,
                                             quant_config=quant_config,
                                             prefix=f"{prefix}.q_b_proj")
    else:
        self.q_proj = ColumnParallelLinear(self.hidden_size,
                                           self.num_heads *
                                           self.qk_head_dim,
                                           bias=False,
                                           quant_config=quant_config,
                                           prefix=f"{prefix}.q_proj")
    self.kv_a_layernorm = RMSNorm(self.kv_lora_rank,
                                  eps=config.rms_norm_eps)
    self.kv_b_proj = ColumnParallelLinear(
        self.kv_lora_rank,
        self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
        bias=False,
        quant_config=quant_config,
        prefix=f"{prefix}.kv_b_proj")
    self.o_proj = RowParallelLinear(self.num_heads * self.v_head_dim,
                                    self.hidden_size,
                                    bias=False,
                                    quant_config=quant_config,
                                    prefix=f"{prefix}.o_proj")

    if rope_scaling:
        rope_scaling["rope_type"] = 'deepseek_yarn'
    self.rotary_emb = get_rope(qk_rope_head_dim,
                               rotary_dim=qk_rope_head_dim,
                               max_position=max_position_embeddings,
                               base=rope_theta,
                               rope_scaling=rope_scaling,
                               is_neox_style=False)
    if rope_scaling:
        mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
        scaling_factor = rope_scaling["factor"]
        mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
        self.scaling = self.scaling * mscale * mscale

    self.is_v32 = hasattr(config, "index_topk")

    if self.is_v32:
        self.indexer = Indexer(vllm_config, config, hidden_size,
                               q_lora_rank, quant_config, cache_config,
                               topk_indices_buffer, f"{prefix}.indexer")
    else:
        self.indexer = None

    mla_modules = MLAModules(
        kv_a_layernorm=self.kv_a_layernorm,
        kv_b_proj=self.kv_b_proj,
        rotary_emb=self.rotary_emb,
        o_proj=self.o_proj,
        fused_qkv_a_proj=self.fused_qkv_a_proj
        if self.q_lora_rank is not None else None,
        kv_a_proj_with_mqa=self.kv_a_proj_with_mqa
        if self.q_lora_rank is None else None,
        q_a_layernorm=self.q_a_layernorm
        if self.q_lora_rank is not None else None,
        q_b_proj=self.q_b_proj if self.q_lora_rank is not None else None,
        q_proj=self.q_proj if self.q_lora_rank is None else None,
        indexer=self.indexer,
        is_sparse=self.is_v32,
        topk_indices_buffer=topk_indices_buffer,
    )

    self.mla_attn = MultiHeadLatentAttention(
        self.hidden_size,
        self.num_local_heads,
        self.scaling,
        self.qk_nope_head_dim,
        self.qk_rope_head_dim,
        self.v_head_dim,
        self.q_lora_rank,
        self.kv_lora_rank,
        mla_modules,
        cache_config,
        quant_config,
        prefix,
    )

forward

forward(positions: Tensor, hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/deepseek_v2.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
) -> torch.Tensor:
    return self.mla_attn(positions, hidden_states)

DeepseekV2MLP

Bases: Module

Source code in vllm/model_executor/models/deepseek_v2.py
class DeepseekV2MLP(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: Optional[QuantizationConfig] = None,
        reduce_results: bool = True,
        is_sequence_parallel=False,
        prefix: str = "",
    ) -> None:
        super().__init__()

        # If is_sequence_parallel, the input and output tensors are sharded
        # across the ranks within the tp_group. In this case the weights are
        # replicated and no collective ops are needed.
        # Otherwise we use standard TP with an allreduce at the end.
        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size, [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            disable_tp=is_sequence_parallel,
            prefix=f"{prefix}.gate_up_proj")
        self.down_proj = RowParallelLinear(intermediate_size,
                                           hidden_size,
                                           bias=False,
                                           quant_config=quant_config,
                                           reduce_results=reduce_results,
                                           disable_tp=is_sequence_parallel,
                                           prefix=f"{prefix}.down_proj")
        if hidden_act != "silu":
            raise ValueError(f"Unsupported activation: {hidden_act}. "
                             "Only silu is supported for now.")
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x

act_fn instance-attribute

act_fn = SiluAndMul()

down_proj instance-attribute

down_proj = RowParallelLinear(
    intermediate_size,
    hidden_size,
    bias=False,
    quant_config=quant_config,
    reduce_results=reduce_results,
    disable_tp=is_sequence_parallel,
    prefix=f"{prefix}.down_proj",
)

gate_up_proj instance-attribute

gate_up_proj = MergedColumnParallelLinear(
    hidden_size,
    [intermediate_size] * 2,
    bias=False,
    quant_config=quant_config,
    disable_tp=is_sequence_parallel,
    prefix=f"{prefix}.gate_up_proj",
)

__init__

__init__(
    hidden_size: int,
    intermediate_size: int,
    hidden_act: str,
    quant_config: Optional[QuantizationConfig] = None,
    reduce_results: bool = True,
    is_sequence_parallel=False,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/deepseek_v2.py
def __init__(
    self,
    hidden_size: int,
    intermediate_size: int,
    hidden_act: str,
    quant_config: Optional[QuantizationConfig] = None,
    reduce_results: bool = True,
    is_sequence_parallel=False,
    prefix: str = "",
) -> None:
    super().__init__()

    # If is_sequence_parallel, the input and output tensors are sharded
    # across the ranks within the tp_group. In this case the weights are
    # replicated and no collective ops are needed.
    # Otherwise we use standard TP with an allreduce at the end.
    self.gate_up_proj = MergedColumnParallelLinear(
        hidden_size, [intermediate_size] * 2,
        bias=False,
        quant_config=quant_config,
        disable_tp=is_sequence_parallel,
        prefix=f"{prefix}.gate_up_proj")
    self.down_proj = RowParallelLinear(intermediate_size,
                                       hidden_size,
                                       bias=False,
                                       quant_config=quant_config,
                                       reduce_results=reduce_results,
                                       disable_tp=is_sequence_parallel,
                                       prefix=f"{prefix}.down_proj")
    if hidden_act != "silu":
        raise ValueError(f"Unsupported activation: {hidden_act}. "
                         "Only silu is supported for now.")
    self.act_fn = SiluAndMul()

forward

forward(x)
Source code in vllm/model_executor/models/deepseek_v2.py
def forward(self, x):
    gate_up, _ = self.gate_up_proj(x)
    x = self.act_fn(gate_up)
    x, _ = self.down_proj(x)
    return x

DeepseekV2MoE

Bases: Module

Source code in vllm/model_executor/models/deepseek_v2.py
class DeepseekV2MoE(nn.Module):

    def __init__(
        self,
        config: Union[DeepseekV2Config, DeepseekV3Config],
        parallel_config: ParallelConfig,
        quant_config: Optional[QuantizationConfig] = None,
        prefix: str = "",
    ):
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.tp_rank = get_tensor_model_parallel_rank()

        self.routed_scaling_factor = config.routed_scaling_factor

        self.ep_group = get_ep_group().device_group
        self.ep_rank = self.ep_group.rank()
        self.ep_size = self.ep_group.size()
        self.n_routed_experts: int = config.n_routed_experts
        self.n_shared_experts: int = config.n_shared_experts

        self.is_sequence_parallel = parallel_config.use_sequence_parallel_moe

        if config.hidden_act != "silu":
            raise ValueError(f"Unsupported activation: {config.hidden_act}. "
                             "Only silu is supported for now.")

        self.gate = ReplicatedLinear(config.hidden_size,
                                     config.n_routed_experts,
                                     bias=False,
                                     quant_config=None,
                                     prefix=f"{prefix}.gate")
        if config.topk_method == "noaux_tc":
            self.gate.e_score_correction_bias = nn.Parameter(
                torch.empty(config.n_routed_experts, dtype=torch.float32))
        else:
            self.gate.e_score_correction_bias = None

        # Load balancing settings.
        eplb_config = parallel_config.eplb_config
        self.enable_eplb = parallel_config.enable_eplb

        self.n_redundant_experts = eplb_config.num_redundant_experts
        self.n_logical_experts = self.n_routed_experts
        self.n_physical_experts = (self.n_logical_experts +
                                   self.n_redundant_experts)
        self.n_local_physical_experts = self.n_physical_experts // self.ep_size

        self.physical_expert_start = (self.ep_rank *
                                      self.n_local_physical_experts)
        self.physical_expert_end = (self.physical_expert_start +
                                    self.n_local_physical_experts)

        if config.n_shared_experts is None:
            self.experts = FusedMoE(
                num_experts=config.n_routed_experts,
                top_k=config.num_experts_per_tok,
                hidden_size=config.hidden_size,
                intermediate_size=config.moe_intermediate_size,
                reduce_results=False,
                renormalize=config.norm_topk_prob,
                quant_config=quant_config,
                use_grouped_topk=True,
                num_expert_group=config.n_group,
                topk_group=config.topk_group,
                prefix=f"{prefix}.experts",
                scoring_func=config.scoring_func,
                # we do scaling outside, set factor to 1.0 to avoid double mul
                routed_scaling_factor=1.0,
                e_score_correction_bias=self.gate.e_score_correction_bias,
                enable_eplb=self.enable_eplb,
                num_redundant_experts=self.n_redundant_experts,
                is_sequence_parallel=self.is_sequence_parallel,
            )
            self.shared_experts = None
        else:
            intermediate_size = (config.moe_intermediate_size *
                                 config.n_shared_experts)

            self.shared_experts = DeepseekV2MLP(
                hidden_size=config.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                is_sequence_parallel=self.is_sequence_parallel,
                reduce_results=False,
                prefix=f"{prefix}.shared_experts",
            )

            self.experts = SharedFusedMoE(
                shared_experts=self.shared_experts,
                num_experts=config.n_routed_experts,
                top_k=config.num_experts_per_tok,
                hidden_size=config.hidden_size,
                intermediate_size=config.moe_intermediate_size,
                reduce_results=False,
                renormalize=config.norm_topk_prob,
                quant_config=quant_config,
                use_grouped_topk=True,
                num_expert_group=config.n_group,
                topk_group=config.topk_group,
                prefix=f"{prefix}.experts",
                scoring_func=config.scoring_func,
                # we do scaling outside, set factor to 1.0 to avoid double mul
                routed_scaling_factor=1.0,
                e_score_correction_bias=self.gate.e_score_correction_bias,
                enable_eplb=self.enable_eplb,
                num_redundant_experts=self.n_redundant_experts,
                is_sequence_parallel=self.is_sequence_parallel,
            )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        num_tokens, hidden_dim = hidden_states.shape
        hidden_states = hidden_states.view(-1, hidden_dim)

        # Chunk the hidden states so they aren't replicated across TP ranks.
        # This avoids duplicate computation in self.experts.
        # TODO: We can replace the all_reduce at the end of attn with a
        # reduce_scatter instead of chunking here.
        if self.is_sequence_parallel:
            hidden_states = sequence_parallel_chunk(hidden_states)

        # router_logits: (num_tokens, n_experts)
        router_logits, _ = self.gate(hidden_states)

        fused_moe_out = self.experts(hidden_states=hidden_states,
                                     router_logits=router_logits)

        if self.shared_experts is not None:
            shared_output, final_hidden_states = fused_moe_out
        else:
            shared_output = None
            final_hidden_states = fused_moe_out

        # Fix FP16 overflow
        # See DeepseekV2DecoderLayer for more details.
        if hidden_states.dtype != torch.float16:
            final_hidden_states *= self.routed_scaling_factor
        elif self.shared_experts is not None:
            assert shared_output is not None
            shared_output *= (1. / self.routed_scaling_factor)

        if self.shared_experts is not None:
            assert shared_output is not None
            final_hidden_states += shared_output

        if self.is_sequence_parallel:
            final_hidden_states = tensor_model_parallel_all_gather(
                final_hidden_states, 0)
            final_hidden_states = final_hidden_states[:num_tokens]
        elif self.tp_size > 1:
            final_hidden_states = (
                self.experts.maybe_all_reduce_tensor_model_parallel(
                    final_hidden_states))

        return final_hidden_states.view(num_tokens, hidden_dim)

enable_eplb instance-attribute

enable_eplb = enable_eplb

ep_group instance-attribute

ep_group = device_group

ep_rank instance-attribute

ep_rank = rank()

ep_size instance-attribute

ep_size = size()

experts instance-attribute

experts = FusedMoE(
    num_experts=n_routed_experts,
    top_k=num_experts_per_tok,
    hidden_size=hidden_size,
    intermediate_size=moe_intermediate_size,
    reduce_results=False,
    renormalize=norm_topk_prob,
    quant_config=quant_config,
    use_grouped_topk=True,
    num_expert_group=n_group,
    topk_group=topk_group,
    prefix=f"{prefix}.experts",
    scoring_func=scoring_func,
    routed_scaling_factor=1.0,
    e_score_correction_bias=e_score_correction_bias,
    enable_eplb=enable_eplb,
    num_redundant_experts=n_redundant_experts,
    is_sequence_parallel=is_sequence_parallel,
)

gate instance-attribute

gate = ReplicatedLinear(
    hidden_size,
    n_routed_experts,
    bias=False,
    quant_config=None,
    prefix=f"{prefix}.gate",
)

is_sequence_parallel instance-attribute

is_sequence_parallel = use_sequence_parallel_moe

n_local_physical_experts instance-attribute

n_local_physical_experts = n_physical_experts // ep_size

n_logical_experts instance-attribute

n_logical_experts = n_routed_experts

n_physical_experts instance-attribute

n_physical_experts = n_logical_experts + n_redundant_experts

n_redundant_experts instance-attribute

n_redundant_experts = num_redundant_experts

n_routed_experts instance-attribute

n_routed_experts: int = n_routed_experts

n_shared_experts instance-attribute

n_shared_experts: int = n_shared_experts

physical_expert_end instance-attribute

physical_expert_end = (
    physical_expert_start + n_local_physical_experts
)

physical_expert_start instance-attribute

physical_expert_start = ep_rank * n_local_physical_experts

routed_scaling_factor instance-attribute

routed_scaling_factor = routed_scaling_factor

shared_experts instance-attribute

shared_experts = None

tp_rank instance-attribute

tp_size instance-attribute

__init__

__init__(
    config: Union[DeepseekV2Config, DeepseekV3Config],
    parallel_config: ParallelConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
)
Source code in vllm/model_executor/models/deepseek_v2.py
def __init__(
    self,
    config: Union[DeepseekV2Config, DeepseekV3Config],
    parallel_config: ParallelConfig,
    quant_config: Optional[QuantizationConfig] = None,
    prefix: str = "",
):
    super().__init__()
    self.tp_size = get_tensor_model_parallel_world_size()
    self.tp_rank = get_tensor_model_parallel_rank()

    self.routed_scaling_factor = config.routed_scaling_factor

    self.ep_group = get_ep_group().device_group
    self.ep_rank = self.ep_group.rank()
    self.ep_size = self.ep_group.size()
    self.n_routed_experts: int = config.n_routed_experts
    self.n_shared_experts: int = config.n_shared_experts

    self.is_sequence_parallel = parallel_config.use_sequence_parallel_moe

    if config.hidden_act != "silu":
        raise ValueError(f"Unsupported activation: {config.hidden_act}. "
                         "Only silu is supported for now.")

    self.gate = ReplicatedLinear(config.hidden_size,
                                 config.n_routed_experts,
                                 bias=False,
                                 quant_config=None,
                                 prefix=f"{prefix}.gate")
    if config.topk_method == "noaux_tc":
        self.gate.e_score_correction_bias = nn.Parameter(
            torch.empty(config.n_routed_experts, dtype=torch.float32))
    else:
        self.gate.e_score_correction_bias = None

    # Load balancing settings.
    eplb_config = parallel_config.eplb_config
    self.enable_eplb = parallel_config.enable_eplb

    self.n_redundant_experts = eplb_config.num_redundant_experts
    self.n_logical_experts = self.n_routed_experts
    self.n_physical_experts = (self.n_logical_experts +
                               self.n_redundant_experts)
    self.n_local_physical_experts = self.n_physical_experts // self.ep_size

    self.physical_expert_start = (self.ep_rank *
                                  self.n_local_physical_experts)
    self.physical_expert_end = (self.physical_expert_start +
                                self.n_local_physical_experts)

    if config.n_shared_experts is None:
        self.experts = FusedMoE(
            num_experts=config.n_routed_experts,
            top_k=config.num_experts_per_tok,
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
            reduce_results=False,
            renormalize=config.norm_topk_prob,
            quant_config=quant_config,
            use_grouped_topk=True,
            num_expert_group=config.n_group,
            topk_group=config.topk_group,
            prefix=f"{prefix}.experts",
            scoring_func=config.scoring_func,
            # we do scaling outside, set factor to 1.0 to avoid double mul
            routed_scaling_factor=1.0,
            e_score_correction_bias=self.gate.e_score_correction_bias,
            enable_eplb=self.enable_eplb,
            num_redundant_experts=self.n_redundant_experts,
            is_sequence_parallel=self.is_sequence_parallel,
        )
        self.shared_experts = None
    else:
        intermediate_size = (config.moe_intermediate_size *
                             config.n_shared_experts)

        self.shared_experts = DeepseekV2MLP(
            hidden_size=config.hidden_size,
            intermediate_size=intermediate_size,
            hidden_act=config.hidden_act,
            quant_config=quant_config,
            is_sequence_parallel=self.is_sequence_parallel,
            reduce_results=False,
            prefix=f"{prefix}.shared_experts",
        )

        self.experts = SharedFusedMoE(
            shared_experts=self.shared_experts,
            num_experts=config.n_routed_experts,
            top_k=config.num_experts_per_tok,
            hidden_size=config.hidden_size,
            intermediate_size=config.moe_intermediate_size,
            reduce_results=False,
            renormalize=config.norm_topk_prob,
            quant_config=quant_config,
            use_grouped_topk=True,
            num_expert_group=config.n_group,
            topk_group=config.topk_group,
            prefix=f"{prefix}.experts",
            scoring_func=config.scoring_func,
            # we do scaling outside, set factor to 1.0 to avoid double mul
            routed_scaling_factor=1.0,
            e_score_correction_bias=self.gate.e_score_correction_bias,
            enable_eplb=self.enable_eplb,
            num_redundant_experts=self.n_redundant_experts,
            is_sequence_parallel=self.is_sequence_parallel,
        )

forward

forward(hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/deepseek_v2.py
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
    num_tokens, hidden_dim = hidden_states.shape
    hidden_states = hidden_states.view(-1, hidden_dim)

    # Chunk the hidden states so they aren't replicated across TP ranks.
    # This avoids duplicate computation in self.experts.
    # TODO: We can replace the all_reduce at the end of attn with a
    # reduce_scatter instead of chunking here.
    if self.is_sequence_parallel:
        hidden_states = sequence_parallel_chunk(hidden_states)

    # router_logits: (num_tokens, n_experts)
    router_logits, _ = self.gate(hidden_states)

    fused_moe_out = self.experts(hidden_states=hidden_states,
                                 router_logits=router_logits)

    if self.shared_experts is not None:
        shared_output, final_hidden_states = fused_moe_out
    else:
        shared_output = None
        final_hidden_states = fused_moe_out

    # Fix FP16 overflow
    # See DeepseekV2DecoderLayer for more details.
    if hidden_states.dtype != torch.float16:
        final_hidden_states *= self.routed_scaling_factor
    elif self.shared_experts is not None:
        assert shared_output is not None
        shared_output *= (1. / self.routed_scaling_factor)

    if self.shared_experts is not None:
        assert shared_output is not None
        final_hidden_states += shared_output

    if self.is_sequence_parallel:
        final_hidden_states = tensor_model_parallel_all_gather(
            final_hidden_states, 0)
        final_hidden_states = final_hidden_states[:num_tokens]
    elif self.tp_size > 1:
        final_hidden_states = (
            self.experts.maybe_all_reduce_tensor_model_parallel(
                final_hidden_states))

    return final_hidden_states.view(num_tokens, hidden_dim)

DeepseekV2Model

Bases: Module

Source code in vllm/model_executor/models/deepseek_v2.py
@support_torch_compile
class DeepseekV2Model(nn.Module):

    fall_back_to_pt_during_load = False

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()

        config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        self.config = config

        self.vocab_size = config.vocab_size
        self.is_v32 = hasattr(config, "index_topk")
        if self.is_v32:
            topk_tokens = config.index_topk
            topk_indices_buffer = torch.empty(
                vllm_config.scheduler_config.max_num_batched_tokens,
                topk_tokens,
                dtype=torch.int32,
                device="cuda")
        else:
            topk_indices_buffer = None

        if get_pp_group().is_first_rank:
            self.embed_tokens = VocabParallelEmbedding(
                config.vocab_size,
                config.hidden_size,
                quant_config=quant_config,
                prefix=f"{prefix}.embed_tokens")
        else:
            self.embed_tokens = PPMissingLayer()

        self.start_layer, self.end_layer, self.layers = make_layers(
            config.num_hidden_layers,
            lambda prefix: DeepseekV2DecoderLayer(vllm_config, prefix,
                                                  topk_indices_buffer),
            prefix=f"{prefix}.layers")

        if get_pp_group().is_last_rank:
            self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        else:
            self.norm = PPMissingLayer()
        self.make_empty_intermediate_tensors = (
            make_empty_intermediate_tensors_factory(
                ["hidden_states", "residual"], config.hidden_size))

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embed_tokens(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: Optional[IntermediateTensors],
        inputs_embeds: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, IntermediateTensors]:
        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.get_input_embeddings(input_ids)
            residual = None
        else:
            assert intermediate_tensors is not None
            hidden_states = intermediate_tensors["hidden_states"]
            residual = intermediate_tensors["residual"]

        for layer in islice(self.layers, self.start_layer, self.end_layer):
            hidden_states, residual = layer(positions, hidden_states, residual)

        if not get_pp_group().is_last_rank:
            return IntermediateTensors({
                "hidden_states": hidden_states,
                "residual": residual
            })

        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states

config instance-attribute

config = config

embed_tokens instance-attribute

embed_tokens = VocabParallelEmbedding(
    vocab_size,
    hidden_size,
    quant_config=quant_config,
    prefix=f"{prefix}.embed_tokens",
)

fall_back_to_pt_during_load class-attribute instance-attribute

fall_back_to_pt_during_load = False

is_v32 instance-attribute

is_v32 = hasattr(config, 'index_topk')

make_empty_intermediate_tensors instance-attribute

make_empty_intermediate_tensors = (
    make_empty_intermediate_tensors_factory(
        ["hidden_states", "residual"], hidden_size
    )
)

norm instance-attribute

norm = RMSNorm(hidden_size, eps=rms_norm_eps)

vocab_size instance-attribute

vocab_size = vocab_size

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/deepseek_v2.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()

    config = vllm_config.model_config.hf_config
    quant_config = vllm_config.quant_config
    self.config = config

    self.vocab_size = config.vocab_size
    self.is_v32 = hasattr(config, "index_topk")
    if self.is_v32:
        topk_tokens = config.index_topk
        topk_indices_buffer = torch.empty(
            vllm_config.scheduler_config.max_num_batched_tokens,
            topk_tokens,
            dtype=torch.int32,
            device="cuda")
    else:
        topk_indices_buffer = None

    if get_pp_group().is_first_rank:
        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
            quant_config=quant_config,
            prefix=f"{prefix}.embed_tokens")
    else:
        self.embed_tokens = PPMissingLayer()

    self.start_layer, self.end_layer, self.layers = make_layers(
        config.num_hidden_layers,
        lambda prefix: DeepseekV2DecoderLayer(vllm_config, prefix,
                                              topk_indices_buffer),
        prefix=f"{prefix}.layers")

    if get_pp_group().is_last_rank:
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
    else:
        self.norm = PPMissingLayer()
    self.make_empty_intermediate_tensors = (
        make_empty_intermediate_tensors_factory(
            ["hidden_states", "residual"], config.hidden_size))

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[IntermediateTensors],
    inputs_embeds: Optional[Tensor] = None,
) -> Union[Tensor, IntermediateTensors]
Source code in vllm/model_executor/models/deepseek_v2.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: Optional[IntermediateTensors],
    inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
    if get_pp_group().is_first_rank:
        if inputs_embeds is not None:
            hidden_states = inputs_embeds
        else:
            hidden_states = self.get_input_embeddings(input_ids)
        residual = None
    else:
        assert intermediate_tensors is not None
        hidden_states = intermediate_tensors["hidden_states"]
        residual = intermediate_tensors["residual"]

    for layer in islice(self.layers, self.start_layer, self.end_layer):
        hidden_states, residual = layer(positions, hidden_states, residual)

    if not get_pp_group().is_last_rank:
        return IntermediateTensors({
            "hidden_states": hidden_states,
            "residual": residual
        })

    hidden_states, _ = self.norm(hidden_states, residual)
    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/deepseek_v2.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.embed_tokens(input_ids)

DeepseekV32IndexerCache

Bases: Module, AttentionLayerBase

Source code in vllm/model_executor/models/deepseek_v2.py
class DeepseekV32IndexerCache(torch.nn.Module, AttentionLayerBase):

    def __init__(self, head_dim: int, dtype: torch.dtype, prefix: str,
                 cache_config: CacheConfig):
        super().__init__()
        self.kv_cache = [torch.tensor([])]
        self.head_dim = head_dim
        self.prefix = prefix
        self.cache_config = cache_config
        self.dtype = dtype
        compilation_config = get_current_vllm_config().compilation_config
        if prefix in compilation_config.static_forward_context:
            raise ValueError(f"Duplicate layer name: {prefix}")
        compilation_config.static_forward_context[prefix] = self

    def get_kv_cache_spec(self) -> KVCacheSpec:
        return MLAAttentionSpec(  # Only has one vector instead of K + V
            block_size=self.cache_config.block_size,
            num_kv_heads=1,
            head_size=self.head_dim,
            dtype=self.dtype,
        )

    def forward(self):
        ...

    def get_attn_backend(self) -> AttentionBackend:
        return DeepseekV32IndexerBackend

cache_config instance-attribute

cache_config = cache_config

dtype instance-attribute

dtype = dtype

head_dim instance-attribute

head_dim = head_dim

kv_cache instance-attribute

kv_cache = [tensor([])]

prefix instance-attribute

prefix = prefix

__init__

__init__(
    head_dim: int,
    dtype: dtype,
    prefix: str,
    cache_config: CacheConfig,
)
Source code in vllm/model_executor/models/deepseek_v2.py
def __init__(self, head_dim: int, dtype: torch.dtype, prefix: str,
             cache_config: CacheConfig):
    super().__init__()
    self.kv_cache = [torch.tensor([])]
    self.head_dim = head_dim
    self.prefix = prefix
    self.cache_config = cache_config
    self.dtype = dtype
    compilation_config = get_current_vllm_config().compilation_config
    if prefix in compilation_config.static_forward_context:
        raise ValueError(f"Duplicate layer name: {prefix}")
    compilation_config.static_forward_context[prefix] = self

forward

forward()
Source code in vllm/model_executor/models/deepseek_v2.py
def forward(self):
    ...

get_attn_backend

get_attn_backend() -> AttentionBackend
Source code in vllm/model_executor/models/deepseek_v2.py
def get_attn_backend(self) -> AttentionBackend:
    return DeepseekV32IndexerBackend

get_kv_cache_spec

get_kv_cache_spec() -> KVCacheSpec
Source code in vllm/model_executor/models/deepseek_v2.py
def get_kv_cache_spec(self) -> KVCacheSpec:
    return MLAAttentionSpec(  # Only has one vector instead of K + V
        block_size=self.cache_config.block_size,
        num_kv_heads=1,
        head_size=self.head_dim,
        dtype=self.dtype,
    )

DeepseekV3ForCausalLM

Bases: DeepseekV2ForCausalLM

Source code in vllm/model_executor/models/deepseek_v2.py
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
    pass

Indexer

Bases: Module

Source code in vllm/model_executor/models/deepseek_v2.py
class Indexer(nn.Module):

    def __init__(self,
                 vllm_config: VllmConfig,
                 config: Union[DeepseekV2Config, DeepseekV3Config],
                 hidden_size: int,
                 q_lora_rank: int,
                 quant_config: Optional[QuantizationConfig],
                 cache_config: Optional[CacheConfig],
                 topk_indices_buffer: Optional[torch.Tensor],
                 prefix: str = ""):
        super().__init__()
        self.vllm_config = vllm_config
        self.config = config
        # self.indexer_cfg = config.attn_module_list_cfg[0]["attn_index"]
        self.topk_tokens = config.index_topk
        self.n_head = config.index_n_heads  # 64
        self.head_dim = config.index_head_dim  # 128
        self.rope_dim = config.qk_rope_head_dim  # 64
        self.q_lora_rank = q_lora_rank  # 1536
        # no tensor parallel, just replicated
        self.wq_b = ReplicatedLinear(self.q_lora_rank,
                                     self.head_dim * self.n_head,
                                     bias=False,
                                     quant_config=quant_config,
                                     prefix=f"{prefix}.wq_b")
        self.wk = ReplicatedLinear(hidden_size,
                                   self.head_dim,
                                   bias=False,
                                   quant_config=quant_config,
                                   prefix=f"{prefix}.wk")
        self.k_norm = LayerNorm(self.head_dim, eps=1e-6)
        self.weights_proj = ReplicatedLinear(hidden_size,
                                             self.n_head,
                                             quant_config=None,
                                             prefix=f"{prefix}.weights_proj")
        self.softmax_scale = self.head_dim**-0.5

        self.scale_fmt = "ue8m0"
        self.quant_block_size = 128  # TODO: get from config
        self.topk_indices_buffer = topk_indices_buffer

        # NOTE: (zyongye) we use fp8 naive cache,
        #       where we store value in fp8 and scale in fp32
        #       per self.quant_block_size element
        self.k_cache = DeepseekV32IndexerCache(
            head_dim=self.head_dim +
            self.head_dim // self.quant_block_size * 4,
            dtype=torch.uint8,
            prefix=f"{prefix}.k_cache",
            cache_config=cache_config)
        self.max_model_len = vllm_config.model_config.max_model_len
        self.prefix = prefix
        from vllm.v1.attention.backends.mla.indexer import (
            get_max_prefill_buffer_size)
        self.max_total_seq_len = get_max_prefill_buffer_size(vllm_config)

    def forward(self, hidden_states: torch.Tensor, qr: torch.Tensor, positions,
                rotary_emb) -> torch.Tensor:
        q, _ = self.wq_b(qr)
        q = q.view(-1, self.n_head, self.head_dim)
        q_pe, q_nope = torch.split(
            q, [self.rope_dim, self.head_dim - self.rope_dim], dim=-1)

        k, _ = self.wk(hidden_states)
        k = self.k_norm(k)
        k_pe, k_nope = torch.split(
            k, [self.rope_dim, self.head_dim - self.rope_dim], dim=-1)

        q_pe, k_pe = rotary_emb(positions, q_pe, k_pe.unsqueeze(1))
        q = torch.cat([q_pe, q_nope], dim=-1)
        k = torch.cat([k_pe.squeeze(1), k_nope], dim=-1)

        # we only quant q here since k quant is fused with cache insertion
        q = q.view(-1, self.head_dim)
        q_fp8, q_scale = per_token_group_quant_fp8(q,
                                                   self.quant_block_size,
                                                   column_major_scales=False,
                                                   use_ue8m0=self.scale_fmt
                                                   is not None)
        q_fp8 = q_fp8.view(-1, self.n_head, self.head_dim)
        q_scale = q_scale.view(-1, self.n_head, 1)

        weights, _ = self.weights_proj(hidden_states)
        weights = weights.unsqueeze(
            -1) * q_scale * self.softmax_scale * self.n_head**-0.5
        weights = weights.squeeze(-1)

        return torch.ops.vllm.sparse_attn_indexer(
            hidden_states,
            self.k_cache.prefix,
            self.k_cache.kv_cache[0],
            q_fp8,
            k,
            weights,
            self.quant_block_size,
            self.scale_fmt,
            self.topk_tokens,
            self.head_dim,
            self.max_model_len,
            self.max_total_seq_len,
            self.topk_indices_buffer,
        )

config instance-attribute

config = config

head_dim instance-attribute

head_dim = index_head_dim

k_cache instance-attribute

k_cache = DeepseekV32IndexerCache(
    head_dim=head_dim + head_dim // quant_block_size * 4,
    dtype=uint8,
    prefix=f"{prefix}.k_cache",
    cache_config=cache_config,
)

k_norm instance-attribute

k_norm = LayerNorm(head_dim, eps=1e-06)

max_model_len instance-attribute

max_model_len = max_model_len

max_total_seq_len instance-attribute

max_total_seq_len = get_max_prefill_buffer_size(vllm_config)

n_head instance-attribute

n_head = index_n_heads

prefix instance-attribute

prefix = prefix

q_lora_rank instance-attribute

q_lora_rank = q_lora_rank

quant_block_size instance-attribute

quant_block_size = 128

rope_dim instance-attribute

rope_dim = qk_rope_head_dim

scale_fmt instance-attribute

scale_fmt = 'ue8m0'

softmax_scale instance-attribute

softmax_scale = head_dim ** -0.5

topk_indices_buffer instance-attribute

topk_indices_buffer = topk_indices_buffer

topk_tokens instance-attribute

topk_tokens = index_topk

vllm_config instance-attribute

vllm_config = vllm_config

weights_proj instance-attribute

weights_proj = ReplicatedLinear(
    hidden_size,
    n_head,
    quant_config=None,
    prefix=f"{prefix}.weights_proj",
)

wk instance-attribute

wk = ReplicatedLinear(
    hidden_size,
    head_dim,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.wk",
)

wq_b instance-attribute

wq_b = ReplicatedLinear(
    q_lora_rank,
    head_dim * n_head,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.wq_b",
)

__init__

__init__(
    vllm_config: VllmConfig,
    config: Union[DeepseekV2Config, DeepseekV3Config],
    hidden_size: int,
    q_lora_rank: int,
    quant_config: Optional[QuantizationConfig],
    cache_config: Optional[CacheConfig],
    topk_indices_buffer: Optional[Tensor],
    prefix: str = "",
)
Source code in vllm/model_executor/models/deepseek_v2.py
def __init__(self,
             vllm_config: VllmConfig,
             config: Union[DeepseekV2Config, DeepseekV3Config],
             hidden_size: int,
             q_lora_rank: int,
             quant_config: Optional[QuantizationConfig],
             cache_config: Optional[CacheConfig],
             topk_indices_buffer: Optional[torch.Tensor],
             prefix: str = ""):
    super().__init__()
    self.vllm_config = vllm_config
    self.config = config
    # self.indexer_cfg = config.attn_module_list_cfg[0]["attn_index"]
    self.topk_tokens = config.index_topk
    self.n_head = config.index_n_heads  # 64
    self.head_dim = config.index_head_dim  # 128
    self.rope_dim = config.qk_rope_head_dim  # 64
    self.q_lora_rank = q_lora_rank  # 1536
    # no tensor parallel, just replicated
    self.wq_b = ReplicatedLinear(self.q_lora_rank,
                                 self.head_dim * self.n_head,
                                 bias=False,
                                 quant_config=quant_config,
                                 prefix=f"{prefix}.wq_b")
    self.wk = ReplicatedLinear(hidden_size,
                               self.head_dim,
                               bias=False,
                               quant_config=quant_config,
                               prefix=f"{prefix}.wk")
    self.k_norm = LayerNorm(self.head_dim, eps=1e-6)
    self.weights_proj = ReplicatedLinear(hidden_size,
                                         self.n_head,
                                         quant_config=None,
                                         prefix=f"{prefix}.weights_proj")
    self.softmax_scale = self.head_dim**-0.5

    self.scale_fmt = "ue8m0"
    self.quant_block_size = 128  # TODO: get from config
    self.topk_indices_buffer = topk_indices_buffer

    # NOTE: (zyongye) we use fp8 naive cache,
    #       where we store value in fp8 and scale in fp32
    #       per self.quant_block_size element
    self.k_cache = DeepseekV32IndexerCache(
        head_dim=self.head_dim +
        self.head_dim // self.quant_block_size * 4,
        dtype=torch.uint8,
        prefix=f"{prefix}.k_cache",
        cache_config=cache_config)
    self.max_model_len = vllm_config.model_config.max_model_len
    self.prefix = prefix
    from vllm.v1.attention.backends.mla.indexer import (
        get_max_prefill_buffer_size)
    self.max_total_seq_len = get_max_prefill_buffer_size(vllm_config)

forward

forward(
    hidden_states: Tensor, qr: Tensor, positions, rotary_emb
) -> Tensor
Source code in vllm/model_executor/models/deepseek_v2.py
def forward(self, hidden_states: torch.Tensor, qr: torch.Tensor, positions,
            rotary_emb) -> torch.Tensor:
    q, _ = self.wq_b(qr)
    q = q.view(-1, self.n_head, self.head_dim)
    q_pe, q_nope = torch.split(
        q, [self.rope_dim, self.head_dim - self.rope_dim], dim=-1)

    k, _ = self.wk(hidden_states)
    k = self.k_norm(k)
    k_pe, k_nope = torch.split(
        k, [self.rope_dim, self.head_dim - self.rope_dim], dim=-1)

    q_pe, k_pe = rotary_emb(positions, q_pe, k_pe.unsqueeze(1))
    q = torch.cat([q_pe, q_nope], dim=-1)
    k = torch.cat([k_pe.squeeze(1), k_nope], dim=-1)

    # we only quant q here since k quant is fused with cache insertion
    q = q.view(-1, self.head_dim)
    q_fp8, q_scale = per_token_group_quant_fp8(q,
                                               self.quant_block_size,
                                               column_major_scales=False,
                                               use_ue8m0=self.scale_fmt
                                               is not None)
    q_fp8 = q_fp8.view(-1, self.n_head, self.head_dim)
    q_scale = q_scale.view(-1, self.n_head, 1)

    weights, _ = self.weights_proj(hidden_states)
    weights = weights.unsqueeze(
        -1) * q_scale * self.softmax_scale * self.n_head**-0.5
    weights = weights.squeeze(-1)

    return torch.ops.vllm.sparse_attn_indexer(
        hidden_states,
        self.k_cache.prefix,
        self.k_cache.kv_cache[0],
        q_fp8,
        k,
        weights,
        self.quant_block_size,
        self.scale_fmt,
        self.topk_tokens,
        self.head_dim,
        self.max_model_len,
        self.max_total_seq_len,
        self.topk_indices_buffer,
    )

cp_gather_indexer_k_quant_cache

cp_gather_indexer_k_quant_cache(
    kv_cache,
    dst_value,
    dst_scale,
    block_table,
    cu_seq_lens,
    batch_size,
)
Source code in vllm/model_executor/models/deepseek_v2.py
@torch.inference_mode()
def cp_gather_indexer_k_quant_cache(
    kv_cache,  # [num_blocks, block_size, head_dim + 1]
    dst_value,  # [cu_seq_lens[-1], head_dim]
    dst_scale,  # [cu_seq_lens[-1], 4]
    block_table,  # [batch_size, num_blocks]
    cu_seq_lens,  # [batch_size + 1, ]
    batch_size,
):
    num_blocks, block_size, _ = kv_cache.shape
    head_dim = dst_value.shape[-1]
    kv_cache = kv_cache.view(num_blocks, -1)

    expected_value = []
    expected_scale = []
    for b in range(batch_size):
        s = cu_seq_lens[b + 1] - cu_seq_lens[b]
        if s == 0:
            continue
        tot = cdiv(s, block_size)
        blocks = block_table[b, :tot]

        value = []
        scale = []
        full_block = torch.arange(tot - 1,
                                  device=kv_cache.device,
                                  dtype=torch.int32)
        non_remaining_value = kv_cache[blocks[full_block], :block_size *
                                       head_dim].view(-1, head_dim)
        non_remaining_scale = kv_cache[blocks[full_block],
                                       block_size * head_dim:].view(-1, 4)

        remaining = s - (tot - 1) * block_size

        value = torch.cat([
            non_remaining_value,
            kv_cache[blocks[-1], :remaining * head_dim].view(-1, head_dim)
        ],
                          dim=0)
        scale = torch.cat([
            non_remaining_scale,
            kv_cache[blocks[-1], block_size * head_dim:block_size * head_dim +
                     remaining * 4].view(-1, 4)
        ],
                          dim=0)

        expected_value.append(value)
        expected_scale.append(scale)

    gather_value = torch.cat(expected_value, dim=0).view(-1, head_dim)
    gather_scale = torch.cat(expected_scale, dim=0).view(-1, 4)
    gather_value = gather_value.view(torch.float8_e4m3fn)
    gather_scale = gather_scale.view(torch.float32)
    dst_value.copy_(gather_value)
    dst_scale.copy_(gather_scale)

get_spec_layer_idx_from_weight_name

get_spec_layer_idx_from_weight_name(
    config: Union[DeepseekV2Config, DeepseekV3Config],
    weight_name: str,
) -> Optional[int]
Source code in vllm/model_executor/models/deepseek_v2.py
def get_spec_layer_idx_from_weight_name(config: Union[DeepseekV2Config,
                                                      DeepseekV3Config],
                                        weight_name: str) -> Optional[int]:
    if (hasattr(config, "num_nextn_predict_layers")
            and config.num_nextn_predict_layers > 0):
        layer_idx = config.num_hidden_layers
        for i in range(config.num_nextn_predict_layers):
            if weight_name.startswith(f"model.layers.{layer_idx+i}."):
                return layer_idx + i
    return None

sparse_attn_indexer

sparse_attn_indexer(
    hidden_states: Tensor,
    k_cache_prefix: str,
    kv_cache: Tensor,
    q_fp8: Tensor,
    k: Tensor,
    weights: Tensor,
    quant_block_size: int,
    scale_fmt: Optional[str],
    topk_tokens: int,
    head_dim: int,
    max_model_len: int,
    total_seq_lens: int,
    topk_indices_buffer: Optional[Tensor],
) -> Tensor
Source code in vllm/model_executor/models/deepseek_v2.py
def sparse_attn_indexer(
    hidden_states: torch.Tensor,
    k_cache_prefix: str,
    kv_cache: torch.Tensor,
    q_fp8: torch.Tensor,
    k: torch.Tensor,
    weights: torch.Tensor,
    quant_block_size: int,
    scale_fmt: Optional[str],
    topk_tokens: int,
    head_dim: int,
    max_model_len: int,
    total_seq_lens: int,
    topk_indices_buffer: Optional[torch.Tensor],
) -> torch.Tensor:

    # careful! this will be None in dummy run
    attn_metadata = get_forward_context().attn_metadata
    # assert isinstance(attn_metadata, dict)
    if not isinstance(attn_metadata, dict):
        return sparse_attn_indexer_fake(
            hidden_states,
            k_cache_prefix,
            kv_cache,
            q_fp8,
            k,
            weights,
            quant_block_size,
            scale_fmt,
            topk_tokens,
            head_dim,
            max_model_len,
            total_seq_lens,
            topk_indices_buffer,
        )
    attn_metadata = attn_metadata[k_cache_prefix]
    assert isinstance(attn_metadata, DeepseekV32IndexerMetadata)
    slot_mapping = attn_metadata.slot_mapping
    has_decode = attn_metadata.num_decodes > 0
    has_prefill = attn_metadata.num_prefills > 0
    num_decode_tokens = attn_metadata.num_decode_tokens

    ops.indexer_k_quant_and_cache(
        k,
        kv_cache,
        slot_mapping,
        quant_block_size,
        scale_fmt,
    )

    topk_indices_buffer[:hidden_states.shape[0]] = -1
    if has_prefill:
        prefill_metadata = attn_metadata.prefill
        num_prefills = attn_metadata.num_prefills
        k_fp8 = torch.empty([prefill_metadata.total_seq_lens, head_dim],
                            device=k.device,
                            dtype=torch.float8_e4m3fn)
        k_scale = torch.empty([prefill_metadata.total_seq_lens, 1],
                              device=k.device,
                              dtype=torch.float32)
        cp_gather_indexer_k_quant_cache(
            kv_cache,
            k_fp8,
            k_scale,
            prefill_metadata.block_table,
            prefill_metadata.cu_seq_lens,
            num_prefills,
        )
        cu_seqlen_ks = prefill_metadata.cu_seqlen_ks
        cu_seqlen_ke = prefill_metadata.cu_seqlen_ke
        num_tokens = attn_metadata.num_actual_tokens
        logits = fp8_mqa_logits(
            q_fp8[num_decode_tokens:num_tokens],
            (k_fp8, k_scale),
            weights[num_decode_tokens:num_tokens],
            cu_seqlen_ks,
            cu_seqlen_ke,
        )
        topk_indices = logits.topk(min(topk_tokens, logits.shape[-1]),
                                   dim=-1)[1]
        topk_indices -= cu_seqlen_ks[:, None]
        mask_lo = topk_indices >= 0
        mask_hi = topk_indices - (cu_seqlen_ke - cu_seqlen_ks)[:, None] < 0
        mask = torch.full_like(topk_indices,
                               False,
                               dtype=torch.bool,
                               device=topk_indices.device)
        mask = mask_lo & mask_hi
        topk_indices = topk_indices.masked_fill(~mask, -1)
        topk_indices_buffer[num_decode_tokens:num_tokens, :topk_indices.
                            shape[-1]] = topk_indices.to(dtype=torch.int32)

    if has_decode:
        decode_metadata = attn_metadata.decode
        # kv_cache size requirement [num_block, block_size, n_head, head_dim],
        # we only have [num_block, block_size, head_dim],
        kv_cache = kv_cache.unsqueeze(-2)
        decode_lens = decode_metadata.decode_lens
        if decode_metadata.requires_padding:
            # pad in edge case where we have short chunked prefill length <
            # decode_threshold since we unstrictly split
            # prefill and decode by decode_threshold
            # (currently set to 1 + speculative tokens)
            padded_q_fp8_decode_tokens = pack_seq_triton(
                q_fp8[:num_decode_tokens], decode_lens)
        else:
            padded_q_fp8_decode_tokens = q_fp8[:num_decode_tokens].reshape(
                decode_lens.shape[0], -1, *q_fp8.shape[1:])
        # TODO: move and optimize below logic with triton kernels
        batch_size = padded_q_fp8_decode_tokens.shape[0]
        next_n = padded_q_fp8_decode_tokens.shape[1]
        assert batch_size == decode_metadata.seq_lens.shape[0]
        num_padded_tokens = batch_size * next_n
        logits = fp8_paged_mqa_logits(
            padded_q_fp8_decode_tokens,
            kv_cache,
            weights[:num_padded_tokens],
            decode_metadata.seq_lens,
            decode_metadata.block_table,
            decode_metadata.schedule_metadata,
            max_model_len=max_model_len,
        )
        # padded query len
        current_device = padded_q_fp8_decode_tokens.device
        padded_num_tokens = batch_size * next_n
        positions = torch.arange(max_model_len,
                                 device=current_device).unsqueeze(0).expand(
                                     batch_size * next_n, -1)
        row_indices = torch.arange(padded_num_tokens,
                                   device=current_device) // next_n
        next_n_offset = torch.arange(
            padded_num_tokens,
            device=padded_q_fp8_decode_tokens.device) % next_n
        index_end_pos = (decode_metadata.seq_lens[row_indices] - next_n +
                         next_n_offset).unsqueeze(1)
        # index_end_pos: [B * N, 1]
        mask = positions <= index_end_pos
        # mask: [B * N, L]
        logits = logits.masked_fill(~mask, float('-inf'))
        topk_indices = logits.topk(topk_tokens,
                                   dim=-1)[1].to(torch.int32)  # [B * N, K]
        # ensure we don't set indices for the top k
        # that is out of range(masked already)
        # this will happen if context length is shorter than K
        topk_indices[topk_indices > index_end_pos] = -1
        if decode_metadata.requires_padding:
            # if padded, we need to unpack
            # the topk indices removing padded tokens
            topk_indices = unpack_seq_triton(
                topk_indices.reshape(batch_size, -1, topk_indices.shape[-1]),
                decode_lens)
        topk_indices_buffer[:num_decode_tokens, :topk_indices.
                            shape[-1]] = topk_indices.to(dtype=torch.int32)

    return topk_indices_buffer

sparse_attn_indexer_fake

sparse_attn_indexer_fake(
    hidden_states: Tensor,
    k_cache_prefix: str,
    kv_cache: Tensor,
    q_fp8: Tensor,
    k: Tensor,
    weights: Tensor,
    quant_block_size: int,
    scale_fmt: Optional[str],
    topk_tokens: int,
    head_dim: int,
    max_model_len: int,
    total_seq_lens: int,
    topk_indices_buffer: Optional[Tensor],
) -> Tensor
Source code in vllm/model_executor/models/deepseek_v2.py
def sparse_attn_indexer_fake(
    hidden_states: torch.Tensor,
    k_cache_prefix: str,
    kv_cache: torch.Tensor,
    q_fp8: torch.Tensor,
    k: torch.Tensor,
    weights: torch.Tensor,
    quant_block_size: int,
    scale_fmt: Optional[str],
    topk_tokens: int,
    head_dim: int,
    max_model_len: int,
    total_seq_lens: int,
    topk_indices_buffer: Optional[torch.Tensor],
) -> torch.Tensor:
    # profile run
    # NOTE(Chen): create the max possible flattened_kv. So that
    # profile_run can get correct memory usage.
    _flattened_kv = torch.empty([total_seq_lens, head_dim + 4],
                                device=k.device,
                                dtype=torch.uint8)
    _k_fp8 = _flattened_kv[..., :head_dim].view(
        torch.float8_e4m3fn).contiguous()
    _k_scale = _flattened_kv[..., head_dim:].view(torch.float32).contiguous()
    return topk_indices_buffer

yarn_get_mscale

yarn_get_mscale(
    scale: float = 1, mscale: float = 1
) -> float
Source code in vllm/model_executor/models/deepseek_v2.py
def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
    import math
    if scale <= 1:
        return 1.0
    return 0.1 * mscale * math.log(scale) + 1.0