vllm.model_executor.models.clip ¶
Minimal implementation of CLIPVisionModel intended to be only used within a vision language model.
CLIPAttention ¶
Bases: Module
Multi-headed attention from 'Attention Is All You Need' paper
Source code in vllm/model_executor/models/clip.py
out_proj instance-attribute
¶
out_proj = RowParallelLinear(
input_size=embed_dim,
output_size=embed_dim,
quant_config=quant_config,
prefix=f"{prefix}.out_proj",
)
qkv_proj instance-attribute
¶
qkv_proj = QKVParallelLinear(
hidden_size=embed_dim,
head_size=head_dim,
total_num_heads=num_heads,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
__init__ ¶
__init__(
config: CLIPVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/clip.py
forward ¶
forward(hidden_states: Tensor)
Input shape: Batch x Time x Channel
Source code in vllm/model_executor/models/clip.py
CLIPEncoder ¶
Bases: Module
Transformer encoder consisting of config.num_hidden_layers
self attention layers. Each layer is a [CLIPEncoderLayer
].
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config | CLIPVisionConfig | CLIPConfig | required |
Source code in vllm/model_executor/models/clip.py
layers instance-attribute
¶
layers = ModuleList(
[
(
CLIPEncoderLayer(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.layers.{layer_idx}",
)
)
for layer_idx in (range(num_hidden_layers))
]
)
__init__ ¶
__init__(
config: CLIPVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
num_hidden_layers_override: Optional[int] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/clip.py
forward ¶
Source code in vllm/model_executor/models/clip.py
CLIPEncoderInfo ¶
Bases: VisionEncoderInfo[CLIPVisionConfig]
Source code in vllm/model_executor/models/clip.py
CLIPEncoderLayer ¶
Bases: Module
Source code in vllm/model_executor/models/clip.py
mlp instance-attribute
¶
mlp = CLIPMLP(
config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self_attn instance-attribute
¶
self_attn = CLIPAttention(
config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
__init__ ¶
__init__(
config: CLIPVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/clip.py
forward ¶
Source code in vllm/model_executor/models/clip.py
CLIPMLP ¶
Bases: Module
Source code in vllm/model_executor/models/clip.py
fc1 instance-attribute
¶
fc1 = ColumnParallelLinear(
hidden_size,
intermediate_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.fc1",
)
fc2 instance-attribute
¶
fc2 = RowParallelLinear(
intermediate_size,
hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.fc2",
)
__init__ ¶
__init__(
config: CLIPVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/clip.py
forward ¶
CLIPVisionEmbeddings ¶
Bases: Module
Source code in vllm/model_executor/models/clip.py
patch_embedding instance-attribute
¶
patch_embedding = Conv2d(
in_channels=num_channels,
out_channels=embed_dim,
kernel_size=patch_size,
stride=patch_size,
bias=False,
)
__init__ ¶
Source code in vllm/model_executor/models/clip.py
forward ¶
Source code in vllm/model_executor/models/clip.py
CLIPVisionModel ¶
Bases: Module
, SupportsQuant
Source code in vllm/model_executor/models/clip.py
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
|
packed_modules_mapping class-attribute
instance-attribute
¶
vision_model instance-attribute
¶
vision_model = CLIPVisionTransformer(
config=config,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override,
require_post_norm=require_post_norm,
prefix=f"{prefix}.vision_model",
)
__init__ ¶
__init__(
config: CLIPVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
require_post_norm: Optional[bool] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/clip.py
forward ¶
forward(
pixel_values: Tensor,
select_layers: Optional[list[int]] = None,
feature_select_strategy: Optional[
VisionFeatureSelectStrategy
] = None,
) -> Tensor
Source code in vllm/model_executor/models/clip.py
load_weights ¶
Source code in vllm/model_executor/models/clip.py
CLIPVisionTransformer ¶
Bases: Module
Source code in vllm/model_executor/models/clip.py
encoder instance-attribute
¶
encoder = CLIPEncoder(
config=config,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override,
prefix=f"{prefix}.encoder",
)
__init__ ¶
__init__(
config: CLIPVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
require_post_norm: Optional[bool] = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/clip.py
forward ¶
forward(
pixel_values: Tensor,
*,
select_layers: Optional[list[int]] = None,
feature_select_strategy: Optional[
VisionFeatureSelectStrategy
] = None,
) -> Tensor