class QuarkW8A8Fp8MoEMethod(QuarkMoEMethod):
def __init__(
self,
weight_config: dict[str, Any],
input_config: dict[str, Any],
moe: FusedMoEConfig,
):
super().__init__(moe)
self.weight_quant = weight_config
self.input_quant = input_config
self.weight_qscheme = self.weight_quant.get("qscheme")
self.input_qscheme = self.input_quant.get("qscheme")
per_tensor = (self.weight_qscheme == "per_tensor"
and self.input_qscheme == "per_tensor")
per_channel = (self.weight_qscheme == "per_channel"
and self.input_qscheme == "per_channel")
self.act_quant_group_shape = GroupShape.PER_TOKEN \
if per_channel else GroupShape.PER_TENSOR
if not (per_tensor or per_channel):
raise ValueError(
"For FP8 Fused MoE layers, only per-tensor and per-channel "
"scales for weights and activations are supported. Found "
f"{self.weight_qscheme}, {self.input_qscheme}") # noqa E501
self.static_input_scales = not self.input_quant.get("is_dynamic")
if self.static_input_scales and per_channel:
raise ValueError(
"For FP8 Fused MoE layer, we require either per tensor or "
"channelwise, dynamic per token quantization.")
# For GPUs that lack FP8 hardware support, we can leverage the Marlin
# kernel for fast weight-only FP8 quantization
self.use_marlin = (not current_platform.has_device_capability(89)
or envs.VLLM_TEST_FORCE_FP8_MARLIN)
# Disable marlin for rocm
if current_platform.is_rocm():
self.use_marlin = False
self.rocm_aiter_moe_enabled = is_rocm_aiter_moe_enabled()
def create_weights(self, layer: torch.nn.Module, num_experts: int,
hidden_size: int, intermediate_size_per_partition: int,
params_dtype: torch.dtype, **extra_weight_attrs):
layer.intermediate_size_per_partition = intermediate_size_per_partition
layer.hidden_size = hidden_size
layer.num_experts = num_experts
layer.orig_dtype = params_dtype
layer.weight_block_size = None
params_dtype = torch.float8_e4m3fn
# WEIGHTS
w13_weight = torch.nn.Parameter(torch.empty(
num_experts,
2 * intermediate_size_per_partition,
hidden_size,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w13_weight", w13_weight)
set_weight_attrs(w13_weight, extra_weight_attrs)
w2_weight = torch.nn.Parameter(torch.empty(
num_experts,
hidden_size,
intermediate_size_per_partition,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w2_weight", w2_weight)
set_weight_attrs(w2_weight, extra_weight_attrs)
# WEIGHT_SCALES
if self.weight_qscheme == "per_tensor":
# Allocate 2 scales for w1 and w3 respectively.
# They are combined to a single scale after weight loading.
w13_weight_scale = torch.nn.Parameter(torch.ones(
num_experts, 2, dtype=torch.float32),
requires_grad=False)
layer.register_parameter("w13_weight_scale", w13_weight_scale)
w2_weight_scale = torch.nn.Parameter(torch.ones(
num_experts, dtype=torch.float32),
requires_grad=False)
layer.register_parameter("w2_weight_scale", w2_weight_scale)
# Add PER-TENSOR quantization for FusedMoE.weight_loader.
extra_weight_attrs.update(
{"quant_method": FusedMoeWeightScaleSupported.TENSOR.value})
set_weight_attrs(w13_weight_scale, extra_weight_attrs)
set_weight_attrs(w2_weight_scale, extra_weight_attrs)
elif self.weight_qscheme == "per_channel":
# quark's scale is 1 dim.
w13_weight_scale = torch.nn.Parameter(torch.ones(
num_experts,
2 * intermediate_size_per_partition,
dtype=torch.float32),
requires_grad=False)
layer.register_parameter("w13_weight_scale", w13_weight_scale)
w2_weight_scale = torch.nn.Parameter(torch.ones(
num_experts, hidden_size, dtype=torch.float32),
requires_grad=False)
layer.register_parameter("w2_weight_scale", w2_weight_scale)
# Add PER-CHANNEL quantization for FusedMoE.weight_loader.
extra_weight_attrs.update(
{"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value})
set_weight_attrs(w13_weight_scale, extra_weight_attrs)
set_weight_attrs(w2_weight_scale, extra_weight_attrs)
# INPUT_SCALES
if self.static_input_scales:
w13_input_scale = torch.nn.Parameter(torch.ones(
num_experts, dtype=torch.float32),
requires_grad=False)
layer.register_parameter("w13_input_scale", w13_input_scale)
set_weight_attrs(w13_input_scale, extra_weight_attrs)
w2_input_scale = torch.nn.Parameter(torch.ones(
num_experts, dtype=torch.float32),
requires_grad=False)
layer.register_parameter("w2_input_scale", w2_input_scale)
set_weight_attrs(w2_input_scale, extra_weight_attrs)
else:
layer.w13_input_scale = None
layer.w2_input_scale = None
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
# Fp8 moe kernels require a single activation scale.
# We take the max of all the scales in case they differ.
if self.static_input_scales:
if (layer.w13_input_scale is None or layer.w2_input_scale is None):
raise ValueError(
"QuantConfig has static quantization, but found "
"activation scales are None.")
if (not all_close_1d(layer.w13_input_scale)
or not all_close_1d(layer.w2_input_scale)):
logger.warning_once(
"Found input_scales that are not equal for "
"fp8 MoE layer. Using the maximum across experts "
"for each layer. ")
layer.w13_input_scale = torch.nn.Parameter(
layer.w13_input_scale.max(), requires_grad=False)
layer.w2_input_scale = torch.nn.Parameter(
layer.w2_input_scale.max(), requires_grad=False)
if current_platform.is_fp8_fnuz():
# Normalize the weights and scales
w13_weight, w13_weight_scale, w13_input_scale = \
normalize_e4m3fn_to_e4m3fnuz(
layer.w13_weight, layer.w13_weight_scale,
layer.w13_input_scale)
w2_weight, w2_weight_scale, w2_input_scale = \
normalize_e4m3fn_to_e4m3fnuz(
layer.w2_weight, layer.w2_weight_scale,
layer.w2_input_scale)
# Reset the parameter
layer.w13_weight = torch.nn.Parameter(w13_weight,
requires_grad=False)
layer.w13_weight_scale = torch.nn.Parameter(w13_weight_scale,
requires_grad=False)
if w13_input_scale is not None:
layer.w13_input_scale = torch.nn.Parameter(w13_input_scale,
requires_grad=False)
layer.w2_weight = torch.nn.Parameter(w2_weight,
requires_grad=False)
layer.w2_weight_scale = torch.nn.Parameter(w2_weight_scale,
requires_grad=False)
if w2_input_scale is not None:
layer.w2_input_scale = torch.nn.Parameter(w2_input_scale,
requires_grad=False)
# For per-tensor case, Fp8 moe kernel needs single weight scale
# for w13 per expert. Use max then dequant and requant each expert.
if self.weight_qscheme == "per_tensor":
assert layer.w13_weight_scale is not None
shard_size = layer.intermediate_size_per_partition
max_w13_scales = layer.w13_weight_scale.max(dim=1).values
for expert_id in range(layer.local_num_experts):
start = 0
for shard_id in range(2):
dq_weight = per_tensor_dequantize(
layer.w13_weight[expert_id][start:start +
shard_size, :],
layer.w13_weight_scale[expert_id][shard_id])
layer.w13_weight[expert_id][
start:start + shard_size, :], _ = ops.scaled_fp8_quant(
dq_weight, max_w13_scales[expert_id])
start += shard_size
layer.w13_weight_scale = torch.nn.Parameter(max_w13_scales,
requires_grad=False)
# quark's scale is 1 dim.
elif self.weight_qscheme == "per_channel":
if self.act_quant_group_shape == GroupShape.PER_TOKEN:
w13_weight_scale = layer.w13_weight_scale.unsqueeze(-1)
layer.w13_weight_scale = torch.nn.Parameter(
w13_weight_scale, requires_grad=False)
w2_weight_scale = layer.w2_weight_scale.unsqueeze(-1)
layer.w2_weight_scale = torch.nn.Parameter(w2_weight_scale,
requires_grad=False)
# Property to determine if AITER is used
if self.rocm_aiter_moe_enabled:
from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import ( # noqa E501
rocm_aiter_fused_experts, shuffle_weights)
# reshaping weights is required for aiter moe kernel.
shuffled_w13, shuffled_w2 = shuffle_weights(
layer.w13_weight.data, layer.w2_weight.data)
layer.w13_weight = torch.nn.Parameter(shuffled_w13,
requires_grad=False)
layer.w2_weight = torch.nn.Parameter(shuffled_w2,
requires_grad=False)
self.rocm_aiter_fused_experts_func = rocm_aiter_fused_experts
elif self.use_marlin:
prepare_moe_fp8_layer_for_marlin(layer, False)
# Activations not quantized for marlin.
del layer.w13_input_scale
del layer.w2_input_scale
self.fused_experts_func = None
else:
from vllm.model_executor.layers.fused_moe import fused_experts
self.fused_experts_func = fused_experts
def get_fused_moe_quant_config(
self, layer: torch.nn.Module) -> Optional[FusedMoEQuantConfig]:
return fp8_w8a8_moe_quant_config(
w1_scale=layer.w13_weight_scale,
w2_scale=layer.w2_weight_scale,
a1_scale=layer.w13_input_scale,
a2_scale=layer.w2_input_scale,
per_act_token_quant=self.weight_qscheme == "per_channel",
)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
routed_scaling_factor: float = 1.0,
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
expert_load_view: Optional[torch.Tensor] = None,
logical_to_physical_map: Optional[torch.Tensor] = None,
logical_replica_count: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
assert self.fused_experts is None
if enable_eplb:
raise NotImplementedError(
"EPLB not supported for `QuarkW8A8Fp8MoEMethod` yet.")
topk_weights, topk_ids, _ = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
routed_scaling_factor=routed_scaling_factor,
e_score_correction_bias=e_score_correction_bias,
indices_type=self.topk_indices_dtype)
if self.rocm_aiter_moe_enabled:
return self.rocm_aiter_fused_experts_func(
hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
activation=activation,
apply_router_weight_on_input=apply_router_weight_on_input,
quant_config=self.moe_quant_config,
expert_map=expert_map)
if self.use_marlin:
assert activation == "silu", (
f"{activation} not supported for Marlin MoE.")
return torch.ops.vllm.fused_marlin_moe(
x,
layer.w13_weight,
layer.w2_weight,
None,
None,
layer.w13_weight_scale,
layer.w2_weight_scale,
router_logits,
topk_weights,
topk_ids,
quant_type_id=scalar_types.float8_e4m3fn.id,
apply_router_weight_on_input=apply_router_weight_on_input,
global_num_experts=global_num_experts,
expert_map=expert_map)
assert self.fused_experts_func is not None
return self.fused_experts_func(
hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=True,
activation=activation,
apply_router_weight_on_input=apply_router_weight_on_input,
global_num_experts=global_num_experts,
expert_map=expert_map,
quant_config=self.moe_quant_config)