Skip to content

vllm.model_executor.layers.quantization.mxfp4

logger module-attribute

logger = init_logger(__name__)

Mxfp4Backend

Bases: Enum

Source code in vllm/model_executor/layers/quantization/mxfp4.py
class Mxfp4Backend(Enum):
    NONE = 0

    # FlashInfer Backend
    SM100_FI_MXFP4_MXFP8_TRTLLM = 1
    SM100_FI_MXFP4_MXFP8_CUTLASS = 2
    SM100_FI_MXFP4_BF16 = 3
    SM90_FI_MXFP4_BF16 = 4

    # Marlin Backend
    MARLIN = 5

    # Triton Backend
    TRITON = 6

MARLIN class-attribute instance-attribute

MARLIN = 5

NONE class-attribute instance-attribute

NONE = 0

SM100_FI_MXFP4_BF16 class-attribute instance-attribute

SM100_FI_MXFP4_BF16 = 3

SM100_FI_MXFP4_MXFP8_CUTLASS class-attribute instance-attribute

SM100_FI_MXFP4_MXFP8_CUTLASS = 2

SM100_FI_MXFP4_MXFP8_TRTLLM class-attribute instance-attribute

SM100_FI_MXFP4_MXFP8_TRTLLM = 1

SM90_FI_MXFP4_BF16 class-attribute instance-attribute

SM90_FI_MXFP4_BF16 = 4

TRITON class-attribute instance-attribute

TRITON = 6

Mxfp4Config

Bases: QuantizationConfig

Source code in vllm/model_executor/layers/quantization/mxfp4.py
class Mxfp4Config(QuantizationConfig):

    def __init__(self, ignored_layers: Optional[list[str]] = None):
        super().__init__()
        self.ignored_layers = ignored_layers

    @classmethod
    def from_config(cls, config):
        return cls()

    @classmethod
    def get_min_capability(cls) -> int:
        return 80

    @classmethod
    def get_name(cls) -> QuantizationMethods:
        return "mxfp4"

    @classmethod
    def get_supported_act_dtypes(cls) -> list[torch.dtype]:
        return [torch.bfloat16]

    @classmethod
    def get_config_filenames(cls) -> list[str]:
        return []

    def get_quant_method(self, layer: torch.nn.Module,
                         prefix: str) -> Optional["QuantizeMethodBase"]:
        from vllm.attention.layer import Attention  # Avoid circular import

        if isinstance(layer, LinearBase):
            if self.ignored_layers and is_layer_skipped(
                    prefix=prefix,
                    ignored_layers=self.ignored_layers,
                    fused_mapping=self.packed_modules_mapping):
                return UnquantizedLinearMethod()
            raise NotImplementedError("Mxfp4 linear layer is not implemented")
        elif isinstance(layer, FusedMoE):
            return Mxfp4MoEMethod(layer.moe_config)
        elif isinstance(layer, Attention):
            raise NotImplementedError(
                "Mxfp4 attention layer is not implemented")
        return None

ignored_layers instance-attribute

ignored_layers = ignored_layers

__init__

__init__(ignored_layers: Optional[list[str]] = None)
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def __init__(self, ignored_layers: Optional[list[str]] = None):
    super().__init__()
    self.ignored_layers = ignored_layers

from_config classmethod

from_config(config)
Source code in vllm/model_executor/layers/quantization/mxfp4.py
@classmethod
def from_config(cls, config):
    return cls()

get_config_filenames classmethod

get_config_filenames() -> list[str]
Source code in vllm/model_executor/layers/quantization/mxfp4.py
@classmethod
def get_config_filenames(cls) -> list[str]:
    return []

get_min_capability classmethod

get_min_capability() -> int
Source code in vllm/model_executor/layers/quantization/mxfp4.py
@classmethod
def get_min_capability(cls) -> int:
    return 80

get_name classmethod

get_name() -> QuantizationMethods
Source code in vllm/model_executor/layers/quantization/mxfp4.py
@classmethod
def get_name(cls) -> QuantizationMethods:
    return "mxfp4"

get_quant_method

get_quant_method(
    layer: Module, prefix: str
) -> Optional[QuantizeMethodBase]
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def get_quant_method(self, layer: torch.nn.Module,
                     prefix: str) -> Optional["QuantizeMethodBase"]:
    from vllm.attention.layer import Attention  # Avoid circular import

    if isinstance(layer, LinearBase):
        if self.ignored_layers and is_layer_skipped(
                prefix=prefix,
                ignored_layers=self.ignored_layers,
                fused_mapping=self.packed_modules_mapping):
            return UnquantizedLinearMethod()
        raise NotImplementedError("Mxfp4 linear layer is not implemented")
    elif isinstance(layer, FusedMoE):
        return Mxfp4MoEMethod(layer.moe_config)
    elif isinstance(layer, Attention):
        raise NotImplementedError(
            "Mxfp4 attention layer is not implemented")
    return None

get_supported_act_dtypes classmethod

get_supported_act_dtypes() -> list[dtype]
Source code in vllm/model_executor/layers/quantization/mxfp4.py
@classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
    return [torch.bfloat16]

Mxfp4MoEMethod

Bases: FusedMoEMethodBase

Source code in vllm/model_executor/layers/quantization/mxfp4.py
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
class Mxfp4MoEMethod(FusedMoEMethodBase):

    def __init__(self, moe: FusedMoEConfig):
        super().__init__(moe)
        self.topk_indices_dtype = None
        self.moe = moe
        self.mxfp4_backend = get_mxfp4_backend()
        self.max_capture_size = get_current_vllm_config(
        ).compilation_config.max_capture_size

        assert self.mxfp4_backend != Mxfp4Backend.NONE, (
            "No MXFP4 MoE backend (FlashInfer/Marlin/Triton) available."
            "Please check your environment and try again.")
        self._cache_permute_indices: dict[torch.Size, torch.Tensor] = {}

    def create_weights(self, layer: torch.nn.Module, num_experts: int,
                       hidden_size: int, intermediate_size_per_partition: int,
                       params_dtype: torch.dtype, **extra_weight_attrs):
        self.num_experts = num_experts
        weight_dtype = torch.uint8
        scale_dtype = torch.uint8

        # FIXME (zyongye): ship after torch and safetensors support mxfp4
        # is_torch_mxfp4_available = (
        #     hasattr(torch, "float4_e2m1fn_x2") and
        #     hasattr(torch, "float8_e8m0fnu"))
        # if is_torch_mxfp4_available:
        #     weight_dtype = torch.float4_e2m1fn_x2
        #     scale_dtype = torch.float8_e8m0fnu

        mxfp4_block = 32

        intermediate_size_per_partition_after_pad = \
            intermediate_size_per_partition
        if self.mxfp4_backend == Mxfp4Backend.MARLIN:
            # The moe marlin kernel requires that for each linear
            # n % 256 == 0 and k % 128 == 0.
            # In gate_up_proj:
            #    n = 2 * intermediate_size_per_partition_after_pad
            #    k = hidden_size
            # In down_proj
            #    n = hidden_size
            #    k = intermediate_size_per_partition_after_pad
            intermediate_size_per_partition_after_pad = round_up(
                intermediate_size_per_partition, 128)
            hidden_size = round_up(hidden_size, 256)

            layer.params_dtype = params_dtype
            layer.num_experts = num_experts
            layer.hidden_size = hidden_size
            layer.intermediate_size_per_partition = \
                intermediate_size_per_partition_after_pad
        elif (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
              or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16):
            # pad the intermediate size to be a multiple of 2 * mxfp4_block
            # for to hold non-uniform sharded tensor as well as swizzling
            # other padding to increase performance
            intermediate_size_per_partition_after_pad = round_up(
                intermediate_size_per_partition, 256)
            hidden_size = round_up(hidden_size, 256)
        elif (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
              or self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16):
            intermediate_size_per_partition_after_pad = round_up(
                intermediate_size_per_partition, 128)
            hidden_size = round_up(hidden_size, 128)
        elif current_platform.is_rocm():
            intermediate_size_per_partition_after_pad = round_up(
                intermediate_size_per_partition, 256)
            hidden_size = round_up(hidden_size, 256)
        else:
            intermediate_size_per_partition_after_pad = round_up(
                intermediate_size_per_partition, 64)

        self.intermediate_size = intermediate_size_per_partition_after_pad
        self.hidden_size = hidden_size
        # Fused gate_up_proj (column parallel)
        w13_weight = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                2 * intermediate_size_per_partition_after_pad,
                hidden_size // 2,
                dtype=weight_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_weight", w13_weight)
        set_weight_attrs(w13_weight, extra_weight_attrs)

        w13_weight_scale = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                2 * intermediate_size_per_partition_after_pad,
                hidden_size // mxfp4_block,
                dtype=scale_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_weight_scale", w13_weight_scale)
        set_weight_attrs(w13_weight_scale, extra_weight_attrs)

        w13_bias = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                2 * intermediate_size_per_partition_after_pad,
                dtype=torch.bfloat16,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w13_bias", w13_bias)
        set_weight_attrs(w13_bias, extra_weight_attrs)

        # down_proj (row parallel)
        w2_weight = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                hidden_size,
                intermediate_size_per_partition_after_pad // 2,
                dtype=weight_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_weight", w2_weight)
        set_weight_attrs(w2_weight, extra_weight_attrs)

        w2_weight_scale = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                hidden_size,
                intermediate_size_per_partition_after_pad // mxfp4_block,
                dtype=scale_dtype,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_weight_scale", w2_weight_scale)
        set_weight_attrs(w2_weight_scale, extra_weight_attrs)

        w2_bias = torch.nn.Parameter(
            torch.zeros(
                num_experts,
                hidden_size,
                dtype=torch.bfloat16,
            ),
            requires_grad=False,
        )
        layer.register_parameter("w2_bias", w2_bias)
        set_weight_attrs(w2_bias, extra_weight_attrs)

    def process_weights_after_loading(self, layer):
        if self.mxfp4_backend == Mxfp4Backend.MARLIN:
            prepare_moe_fp4_layer_for_marlin(layer)
        elif (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
              or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16):
            from flashinfer.fp4_quantization import (
                nvfp4_block_scale_interleave)
            from flashinfer.fused_moe.core import (
                _maybe_get_cached_w2_permute_indices)
            layer.gemm1_alpha = Parameter(torch.tensor(
                [1.702] * self.num_experts, dtype=torch.float32).cuda(),
                                          requires_grad=False)
            layer.gemm1_beta = Parameter(torch.tensor(
                [1.0] * self.num_experts, dtype=torch.float32).cuda(),
                                         requires_grad=False)
            layer.gemm1_clamp_limit = Parameter(torch.tensor(
                [7.0] * self.num_experts, dtype=torch.float32).cuda(),
                                                requires_grad=False)
            sf_block_size = 32  # mxfp4 block size

            assert (layer.w13_weight.dim() == 3
                    and layer.w13_weight.shape[0] == self.num_experts
                    and layer.w13_weight.shape[1] == self.intermediate_size * 2
                    and layer.w13_weight.shape[2] == self.hidden_size // 2)
            assert (layer.w13_weight_scale.dim() == 3
                    and layer.w13_weight_scale.shape[0] == self.num_experts
                    and layer.w13_weight_scale.shape[1]
                    == self.intermediate_size * 2
                    and layer.w13_weight_scale.shape[2]
                    == self.hidden_size // sf_block_size)
            assert (layer.w2_weight.dim() == 3
                    and layer.w2_weight.shape[0] == self.num_experts
                    and layer.w2_weight.shape[1] == self.hidden_size and
                    layer.w2_weight.shape[2] == self.intermediate_size // 2)
            assert (layer.w2_weight_scale.dim() == 3
                    and layer.w2_weight_scale.shape[1] == self.hidden_size
                    and layer.w2_weight_scale.shape[2]
                    == self.intermediate_size // sf_block_size)
            assert (layer.w13_bias.dim() == 2
                    and layer.w13_bias.shape[0] == self.num_experts
                    and layer.w13_bias.shape[1] == self.intermediate_size * 2)
            assert (layer.w2_bias.dim() == 2
                    and layer.w2_bias.shape[0] == self.num_experts
                    and layer.w2_bias.shape[1] == self.hidden_size)

            w13_weight_scale = layer.w13_weight_scale.data
            w2_weight_scale = layer.w2_weight_scale.data
            w13_weight = layer.w13_weight.data
            w2_weight = layer.w2_weight.data
            w13_bias = layer.w13_bias.data.to(torch.float32)
            w2_bias = layer.w2_bias.data.to(torch.float32)

            # Swap w1 and w3 as the definition of
            # swiglu is different in the trtllm-gen
            def swap_every_two_rows(x, axis=-1):
                shape = x.shape
                if axis < 0:
                    axis = len(shape) + axis

                # Create a new shape with pairs swapped along specified axis
                new_shape = list(shape)
                new_shape[axis] = shape[axis] // 2
                new_shape.insert(axis + 1, 2)

                # Reshape to expose pairs, swap them, and reshape back
                x = x.reshape(*new_shape)
                x = x.flip(axis + 1)
                new_shape = list(shape)
                return x.reshape(*new_shape)

            w13_weight_scale = swap_every_two_rows(w13_weight_scale, -2)
            w13_weight = swap_every_two_rows(w13_weight, -2)
            w13_bias = swap_every_two_rows(w13_bias, -1)

            # Do not interleave as the checkpoint is already interleaved

            # Shuffle weights and scaling factors for transposed mma output
            gemm1_weights_mxfp4_shuffled = []
            gemm1_scales_mxfp4_shuffled = []
            gemm2_weights_mxfp4_shuffled = []
            gemm2_scales_mxfp4_shuffled = []
            gemm1_bias_shuffled = []
            gemm2_bias_shuffled = []
            epilogue_tile_m = 128  # FIXME: this depends on the kernel internals
            for i in range(self.num_experts):
                # w13 weight shuffling
                permute_indices = _maybe_get_cached_w2_permute_indices(
                    self._cache_permute_indices,
                    w13_weight[i].view(torch.uint8),
                    epilogue_tile_m,
                )
                gemm1_weights_mxfp4_shuffled.append(w13_weight[i].view(
                    torch.uint8)[permute_indices.to(
                        w13_weight.device)].contiguous())
                # w13 scale shuffling
                permute_sf_indices = _maybe_get_cached_w2_permute_indices(
                    self._cache_permute_indices,
                    w13_weight_scale[i].view(torch.uint8),
                    epilogue_tile_m,
                    num_elts_per_sf=16,
                )
                gemm1_scales_mxfp4_shuffled.append(
                    nvfp4_block_scale_interleave(w13_weight_scale[i].view(
                        torch.uint8)[permute_sf_indices.to(
                            w13_weight_scale.device)].contiguous()))
                # w13 bias shuffling
                permute_bias_indices = _maybe_get_cached_w2_permute_indices(
                    self._cache_permute_indices,
                    w13_bias[i].clone().reshape(-1, 1),
                    epilogue_tile_m,
                )
                gemm1_bias_shuffled.append(w13_bias[i].clone().reshape(
                    -1,
                    1)[permute_bias_indices.to(w13_bias.device)].contiguous())
                # w2 weight shuffling
                permute_indices = _maybe_get_cached_w2_permute_indices(
                    self._cache_permute_indices,
                    w2_weight[i].view(torch.uint8),
                    epilogue_tile_m,
                )
                gemm2_weights_mxfp4_shuffled.append(w2_weight[i].view(
                    torch.uint8)[permute_indices.to(
                        w2_weight.device)].contiguous())
                # w2 scale shuffling
                permute_sf_indices = _maybe_get_cached_w2_permute_indices(
                    self._cache_permute_indices,
                    w2_weight_scale[i].view(torch.uint8),
                    epilogue_tile_m,
                    num_elts_per_sf=16,
                )
                gemm2_scales_mxfp4_shuffled.append(
                    nvfp4_block_scale_interleave(w2_weight_scale[i].view(
                        torch.uint8)[permute_sf_indices.to(
                            w2_weight_scale.device)].contiguous()))
                # w2 bias shuffling
                permute_indices = _maybe_get_cached_w2_permute_indices(
                    self._cache_permute_indices,
                    w2_bias[i].clone().reshape(-1, 1),
                    epilogue_tile_m,
                )
                gemm2_bias_shuffled.append(w2_bias[i].clone().reshape(
                    -1, 1)[permute_indices.to(w2_bias.device)].contiguous())

            w13_weight = torch.stack(gemm1_weights_mxfp4_shuffled)
            w13_weight_scale = torch.stack(
                gemm1_scales_mxfp4_shuffled).reshape(
                    self.num_experts, 2 * self.intermediate_size,
                    self.hidden_size // sf_block_size).view(
                        torch.float8_e4m3fn)

            w2_weight = torch.stack(gemm2_weights_mxfp4_shuffled)
            w2_weight_scale = torch.stack(gemm2_scales_mxfp4_shuffled).reshape(
                self.num_experts, self.hidden_size, self.intermediate_size //
                sf_block_size).view(torch.float8_e4m3fn)

            layer.w13_weight = Parameter(w13_weight, requires_grad=False)
            layer.w13_weight_scale = Parameter(w13_weight_scale,
                                               requires_grad=False)
            layer.w2_weight = Parameter(w2_weight, requires_grad=False)
            layer.w2_weight_scale = Parameter(w2_weight_scale,
                                              requires_grad=False)
            layer.w13_bias = Parameter(
                torch.stack(gemm1_bias_shuffled).reshape(self.num_experts, -1),
                requires_grad=False)
            layer.w2_bias = Parameter(torch.stack(gemm2_bias_shuffled).reshape(
                self.num_experts, -1),
                                      requires_grad=False)
        elif (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
              or self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16):
            layer.gemm1_alpha = Parameter(torch.tensor(
                [1.702] * self.num_experts, dtype=torch.float32).cuda(),
                                          requires_grad=False)
            layer.gemm1_beta = Parameter(torch.tensor(
                [1.0] * self.num_experts, dtype=torch.float32).cuda(),
                                         requires_grad=False)
            layer.gemm1_clamp_limit = Parameter(torch.tensor(
                [7.0] * self.num_experts, dtype=torch.float32).cuda(),
                                                requires_grad=False)

            sf_block_size = 32  # mxfp4 block size

            # Common shape assertions
            assert (layer.w13_weight.dim() == 3
                    and layer.w13_weight.shape[0] == self.num_experts
                    and layer.w13_weight.shape[1] == self.intermediate_size * 2
                    and layer.w13_weight.shape[2] == self.hidden_size // 2)
            assert (layer.w13_weight_scale.dim() == 3
                    and layer.w13_weight_scale.shape[0] == self.num_experts
                    and layer.w13_weight_scale.shape[1]
                    == self.intermediate_size * 2
                    and layer.w13_weight_scale.shape[2]
                    == self.hidden_size // sf_block_size)
            assert (layer.w2_weight.dim() == 3
                    and layer.w2_weight.shape[0] == self.num_experts
                    and layer.w2_weight.shape[1] == self.hidden_size and
                    layer.w2_weight.shape[2] == self.intermediate_size // 2)
            assert (layer.w2_weight_scale.dim() == 3
                    and layer.w2_weight_scale.shape[1] == self.hidden_size
                    and layer.w2_weight_scale.shape[2]
                    == self.intermediate_size // sf_block_size)
            assert (layer.w13_bias.dim() == 2
                    and layer.w13_bias.shape[0] == self.num_experts
                    and layer.w13_bias.shape[1] == self.intermediate_size * 2)
            assert (layer.w2_bias.dim() == 2
                    and layer.w2_bias.shape[0] == self.num_experts
                    and layer.w2_bias.shape[1] == self.hidden_size)

            # De-interleave and swap for w13 weight, bias, and scales
            w13_w = layer.w13_weight.data
            gate_w, up_w = w13_w[:, ::2, :], w13_w[:, 1::2, :]
            deinterleaved_w13_w = torch.cat([gate_w, up_w], dim=1)
            w1_w, w3_w = torch.chunk(deinterleaved_w13_w, 2, dim=1)
            w13_weight_swapped = torch.cat([w3_w, w1_w], dim=1)

            w13_b = layer.w13_bias.data.to(torch.float32)
            gate_b, up_b = w13_b[:, ::2], w13_b[:, 1::2]
            deinterleaved_w13_b = torch.cat([gate_b, up_b], dim=1)
            b1, b3 = torch.chunk(deinterleaved_w13_b, 2, dim=-1)
            w13_bias_swapped = torch.cat([b3, b1], dim=-1).to(torch.bfloat16)

            w13_s = layer.w13_weight_scale.data
            gate_s, up_s = w13_s[:, ::2, :], w13_s[:, 1::2, :]
            deinterleaved_w13_s = torch.cat([gate_s, up_s], dim=1)
            s1, s3 = torch.chunk(deinterleaved_w13_s, 2, dim=1)
            w13_scale_swapped = torch.cat([s3, s1], dim=1)

            if self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS:
                from flashinfer import block_scale_interleave

                orig_shape = w13_scale_swapped.shape
                w13_scale_interleaved = block_scale_interleave(
                    w13_scale_swapped.view(torch.uint8)).reshape(orig_shape)

                w2_s = layer.w2_weight_scale.data
                orig_shape = w2_s.shape
                w2_scale_interleaved = block_scale_interleave(
                    w2_s.view(torch.uint8)).reshape(orig_shape)

                layer.w13_weight = Parameter(w13_weight_swapped,
                                             requires_grad=False)
                layer.w13_weight_scale = Parameter(w13_scale_interleaved,
                                                   requires_grad=False)
                layer.w13_bias = Parameter(w13_bias_swapped,
                                           requires_grad=False)
                layer.w2_weight_scale = Parameter(w2_scale_interleaved,
                                                  requires_grad=False)
            elif self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16:

                def _interleave_mxfp4_cutlass_sm90(w):
                    w_shape = w.shape
                    w_interleaved = w.reshape(w_shape[0], w_shape[1],
                                              (w_shape[2] // 4), 4)
                    w_interleaved = w_interleaved.permute(0, 2, 1, 3)
                    w_interleaved = w_interleaved.reshape(
                        w_shape[0], w_shape[2] // 4, w_shape[1] * 4)
                    return w_interleaved

                w31_scales = w13_scale_swapped.to(torch.uint8).view(
                    torch.uint8)
                w31_scales_interleaved = _interleave_mxfp4_cutlass_sm90(
                    w31_scales)

                w2_weight_scale = layer.w2_weight_scale.data
                w2_scales = w2_weight_scale.to(torch.uint8).view(torch.uint8)
                w2_scales_interleaved = _interleave_mxfp4_cutlass_sm90(
                    w2_scales)

                layer.w13_weight = torch.nn.Parameter(torch.cat([w3_w, w1_w],
                                                                dim=1),
                                                      requires_grad=False)
                layer.w13_bias = torch.nn.Parameter(w13_bias_swapped,
                                                    requires_grad=False)
                layer.w13_weight_scale = torch.nn.Parameter(
                    w31_scales_interleaved, requires_grad=False)
                layer.w2_weight_scale = torch.nn.Parameter(
                    w2_scales_interleaved, requires_grad=False)
        elif self.mxfp4_backend == Mxfp4Backend.TRITON:
            from triton_kernels.matmul_ogs import FlexCtx, PrecisionConfig

            w13_bias = layer.w13_bias.to(torch.float32)
            w2_bias = layer.w2_bias.to(torch.float32)

            layer.w13_bias = Parameter(w13_bias, requires_grad=False)
            layer.w2_bias = Parameter(w2_bias, requires_grad=False)

            # Ideally we'd use FusedMoEModularKernel.prepare_finalize object
            # (stored in self.fused_experts) to determine if the MoE has a
            # batched activation format. As self.fused_experts is not
            # initialized at this point, we resort to checking the MoE config
            # directly.
            is_batched_moe = (self.moe.use_pplx_kernels
                              or self.moe.use_deepep_ll_kernels)
            if is_batched_moe:
                num_warps = 4 if envs.VLLM_MOE_DP_CHUNK_SIZE <= 512 else 8
            else:
                num_warps = 8

            w13_weight, w13_flex, w13_scale = _swizzle_mxfp4(
                layer.w13_weight, layer.w13_weight_scale, num_warps)
            w2_weight, w2_flex, w2_scale = _swizzle_mxfp4(
                layer.w2_weight, layer.w2_weight_scale, num_warps)

            self.w13_precision_config = PrecisionConfig(
                weight_scale=w13_scale, flex_ctx=FlexCtx(rhs_data=w13_flex))
            self.w2_precision_config = PrecisionConfig(
                weight_scale=w2_scale, flex_ctx=FlexCtx(rhs_data=w2_flex))

            self.w13_weight_triton_tensor = w13_weight
            self.w2_weight_triton_tensor = w2_weight

            # need to delete the original weights to save memory on single GPU
            del layer.w13_weight
            del layer.w2_weight
            layer.w13_weight = None
            layer.w2_weight = None
            torch.cuda.empty_cache()
        else:
            raise ValueError(f"Unsupported backend: {self.mxfp4_backend}")

    def _get_tile_tokens_dim(self, x: torch.Tensor, top_k: int):
        # Number of tokens in the input tensor.
        num_tokens = x.shape[0]
        # Factor to account for the imbalance of the experts.
        # factor equals to the
        # max_real_num_tokens_per_expert / perfect_num_tokens_per_expert
        # - 1.0 means perfect expert distribution.
        # - > 1.0 means some experts have more
        #     tokens than the perfect distribution.
        # - < 1.0 does not make sense.
        imbalance_factor = 1.3
        # Calculate the number of tokens per expert
        # assuming perfect distribution.
        num_tokens_per_expert = (num_tokens * top_k) // self.num_experts
        # Apply the imbalance factor.
        num_tokens_per_expert = int(num_tokens_per_expert * imbalance_factor)
        # And pad the number to the next power of 2.
        tile_tokens_dim = next_power_of_2(num_tokens_per_expert)
        # Cap to 8-64 tokens per CTA tile
        # as it's the range supported by the kernel.
        tile_tokens_dim = min(max(tile_tokens_dim, 8), 64)

        return tile_tokens_dim

    def get_fused_moe_quant_config(
            self, layer: torch.nn.Module) -> Optional[FusedMoEQuantConfig]:

        if self.mxfp4_backend == Mxfp4Backend.MARLIN:
            return None

        if self.mxfp4_backend == Mxfp4Backend.TRITON:
            w1_scale = self.w13_precision_config
            w2_scale = self.w2_precision_config
            return mxfp4_w4a16_moe_quant_config(
                w1_bias=layer.w13_bias,
                w2_bias=layer.w2_bias,
                w1_scale=w1_scale,
                w2_scale=w2_scale,
            )
        else:
            w1_scale = layer.w13_weight_scale
            w2_scale = layer.w2_weight_scale
            return mxfp4_w4a4_moe_quant_config(
                w1_bias=layer.w13_bias,
                w2_bias=layer.w2_bias,
                w1_scale=w1_scale,
                w2_scale=w2_scale,
            )

    def select_gemm_impl(
        self,
        prepare_finalize: mk.FusedMoEPrepareAndFinalize,
        layer: torch.nn.Module,
    ) -> mk.FusedMoEPermuteExpertsUnpermute:
        if (prepare_finalize.activation_format ==
                mk.FusedMoEActivationFormat.BatchedExperts):
            raise NotImplementedError(
                "Mxfp4 does not support batched experts format for EP")
        else:
            assert self.moe_quant_config is not None
            if (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
                    or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16):
                # B200 code-path
                kwargs = {
                    "gemm1_alpha": layer.gemm1_alpha,
                    "gemm1_beta": layer.gemm1_beta,
                    "gemm1_clamp_limit": layer.gemm1_clamp_limit,
                    # TODO(bnell): part of quant_config
                    "max_capture_size": self.max_capture_size,
                }
                return TrtLlmGenExperts(self.moe, self.moe_quant_config,
                                        **kwargs)
            else:
                return OAITritonExperts(self.moe_quant_config)

    def _route_and_experts(
            self,
            layer: torch.nn.Module,
            x: torch.Tensor,
            router_logits: torch.Tensor,
            top_k: int,
            renormalize: bool,
            use_grouped_topk: bool = False,
            topk_group: Optional[int] = None,
            num_expert_group: Optional[int] = None,
            global_num_experts: int = -1,
            expert_map: Optional[torch.Tensor] = None,
            custom_routing_function: Optional[Callable] = None,
            scoring_func: str = "softmax",
            e_score_correction_bias: Optional[torch.Tensor] = None,
            apply_router_weight_on_input: bool = False,
            activation: str = "silu",
            enable_eplb: bool = False,
            expert_load_view: Optional[torch.Tensor] = None,
            logical_to_physical_map: Optional[torch.Tensor] = None,
            logical_replica_count: Optional[torch.Tensor] = None
    ) -> torch.Tensor:

        assert isinstance(self.fused_experts, mk.FusedMoEModularKernel)

        topk_weights, topk_ids, _ = FusedMoE.select_experts(
            hidden_states=x,
            router_logits=router_logits,
            use_grouped_topk=use_grouped_topk,
            top_k=top_k,
            renormalize=renormalize,
            topk_group=topk_group,
            num_expert_group=num_expert_group,
            custom_routing_function=custom_routing_function,
            scoring_func=scoring_func,
            e_score_correction_bias=e_score_correction_bias,
            indices_type=self.topk_indices_dtype,
            enable_eplb=enable_eplb,
            expert_map=expert_map,
            expert_load_view=expert_load_view,
            logical_to_physical_map=logical_to_physical_map,
            logical_replica_count=logical_replica_count)

        w13_weight = (self.w13_weight_triton_tensor
                      if layer.w13_weight is None else layer.w13_weight)
        w2_weight = (self.w2_weight_triton_tensor
                     if layer.w2_weight is None else layer.w2_weight)
        assert all([w is not None for w in [w13_weight, w2_weight]])

        return self.fused_experts(
            hidden_states=x,
            w1=w13_weight,
            w2=w2_weight,
            topk_weights=topk_weights,
            topk_ids=topk_ids,
            inplace=True,
            activation=activation,
            global_num_experts=global_num_experts,
            expert_map=expert_map,
            apply_router_weight_on_input=apply_router_weight_on_input,
        )

    def apply(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        router_logits: torch.Tensor,
        top_k: int,
        renormalize: bool,
        use_grouped_topk: bool = False,
        topk_group: Optional[int] = None,
        num_expert_group: Optional[int] = None,
        global_num_experts: int = -1,
        expert_map: Optional[torch.Tensor] = None,
        custom_routing_function: Optional[Callable] = None,
        scoring_func: str = "softmax",
        routed_scaling_factor: float = 1.0,
        e_score_correction_bias: Optional[torch.Tensor] = None,
        apply_router_weight_on_input: bool = False,
        activation: str = "silu",
        enable_eplb: bool = False,
        expert_load_view: Optional[torch.Tensor] = None,
        logical_to_physical_map: Optional[torch.Tensor] = None,
        logical_replica_count: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:

        if enable_eplb:
            raise NotImplementedError("EPLB is not supported for mxfp4")

        if self.mxfp4_backend == Mxfp4Backend.MARLIN:
            topk_weights, topk_ids, _ = FusedMoE.select_experts(
                hidden_states=x,
                router_logits=router_logits,
                use_grouped_topk=use_grouped_topk,
                top_k=top_k,
                renormalize=renormalize,
                topk_group=topk_group,
                num_expert_group=num_expert_group,
                custom_routing_function=custom_routing_function,
                scoring_func=scoring_func,
                routed_scaling_factor=routed_scaling_factor,
                e_score_correction_bias=e_score_correction_bias)

            return torch.ops.vllm.fused_marlin_moe(
                x,
                layer.w13_weight,
                layer.w2_weight,
                layer.w13_bias,
                layer.w2_bias,
                layer.w13_weight_scale,
                layer.w2_weight_scale,
                router_logits,
                topk_weights,
                topk_ids,
                global_scale1=None,
                global_scale2=None,
                quant_type_id=scalar_types.float4_e2m1f.id,
                apply_router_weight_on_input=apply_router_weight_on_input,
                global_num_experts=global_num_experts,
                activation=activation,
                expert_map=expert_map)

        if self.fused_experts is not None:
            return self._route_and_experts(
                layer,
                x,
                router_logits,
                top_k,
                renormalize,
                use_grouped_topk,
                topk_group,
                num_expert_group,
                global_num_experts,
                expert_map,
                custom_routing_function,
                scoring_func,
                e_score_correction_bias,
                apply_router_weight_on_input,
                activation,
                enable_eplb,
                expert_load_view,
                logical_to_physical_map,
                logical_replica_count,
            )

        assert _can_support_mxfp4(
            use_grouped_topk, topk_group, num_expert_group, expert_map,
            custom_routing_function, e_score_correction_bias,
            apply_router_weight_on_input, scoring_func, activation,
            expert_load_view, logical_to_physical_map,
            logical_replica_count), (
                "MXFP4 are not supported with this configuration.")

        if (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
                or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16):
            from flashinfer import trtllm_fp4_block_scale_moe
            if self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16:
                assert x.dtype == torch.bfloat16
                x_quant = x
                x_scale = None
            elif self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM:
                from flashinfer import mxfp8_quantize
                x_quant, x_scale = mxfp8_quantize(x, False)  # to mxfp8
                x_scale = x_scale.view(torch.float8_e4m3fn).reshape(
                    *x.shape[:-1], -1)

            trtllm_gen_output = trtllm_fp4_block_scale_moe(
                router_logits.to(torch.bfloat16),
                None,  # routing_bias
                x_quant,
                x_scale,
                layer.w13_weight,  # uint8 (e2m1 x 2)
                layer.w13_weight_scale,  # uint8 (e4m3 x 2)
                layer.w13_bias,  # fp32 per expert per channel
                layer.gemm1_alpha,  # fp32 per expert
                layer.gemm1_beta,  # fp32 per expert
                layer.gemm1_clamp_limit,  # fp32 per expert
                layer.w2_weight,  # uint8 (e2m1 x 2)
                layer.w2_weight_scale,  # ue8m0
                layer.w2_bias,  # fp32 per expert per channel
                None,  # output1_scale_scalar
                None,  # output1_scale_gate_scalar
                None,  # output2_scale_scalar
                global_num_experts,
                top_k,
                None,  # n_group
                None,  # topk_group
                self.intermediate_size,  # padded to multiple of 256
                layer.ep_rank * layer.local_num_experts,  # local_expert_offset
                self.num_experts,  # local num experts
                None,
                self._get_tile_tokens_dim(x, top_k),
                1 if renormalize else 0,  # routing_method_type, renormalize
                True,  # do finalize
                tune_max_num_tokens=self.max_capture_size,
            )[0]
            return trtllm_gen_output
        elif (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
              or self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16):
            from vllm.utils.flashinfer import flashinfer_cutlass_fused_moe

            topk_weights, topk_ids, _ = FusedMoE.select_experts(
                hidden_states=x,
                router_logits=router_logits,
                use_grouped_topk=use_grouped_topk,
                top_k=top_k,
                renormalize=renormalize,
                topk_group=topk_group,
                num_expert_group=num_expert_group,
                custom_routing_function=custom_routing_function,
                scoring_func=scoring_func,
                e_score_correction_bias=e_score_correction_bias,
            )

            # Backend-specific preparation
            if self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS:

                from flashinfer import mxfp8_quantize

                x_quant, x_scale = mxfp8_quantize(x, True, 32)

                fake_input_scale = torch.ones(self.num_experts,
                                              device=x.device)
                quant_scales = [
                    layer.w13_weight_scale.contiguous().view(torch.int32),
                    fake_input_scale,
                    layer.w2_weight_scale.contiguous().view(torch.int32),
                    fake_input_scale,
                ]

                fi_input = x_quant
                extra_kwargs = dict(
                    use_mxfp8_act_scaling=True,
                    input_sf=x_scale,
                    fc1_expert_weights=layer.w13_weight.contiguous().view(
                        torch.long),
                    fc2_expert_weights=layer.w2_weight.contiguous().view(
                        torch.long),
                )
            elif self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16:
                assert x.dtype == torch.bfloat16

                quant_scales = [
                    layer.w13_weight_scale,
                    layer.w2_weight_scale,
                ]

                fi_input = x
                extra_kwargs = dict(
                    use_w4_group_scaling=True,
                    fc1_expert_weights=layer.w13_weight,
                    fc2_expert_weights=layer.w2_weight,
                )

            output = torch.empty_like(x, dtype=torch.bfloat16)
            _ = flashinfer_cutlass_fused_moe(
                input=fi_input,
                token_selected_experts=topk_ids.to(torch.int).contiguous(),
                token_final_scales=topk_weights,
                output_dtype=torch.bfloat16,
                output=output,
                quant_scales=quant_scales,
                fc1_expert_biases=layer.w13_bias,
                fc2_expert_biases=layer.w2_bias,
                swiglu_alpha=layer.gemm1_alpha,
                swiglu_beta=layer.gemm1_beta,
                swiglu_limit=layer.gemm1_clamp_limit,
                tp_size=self.moe.tp_size,
                tp_rank=self.moe.tp_rank,
                ep_size=self.moe.ep_size,
                ep_rank=self.moe.ep_rank,
                tune_max_num_tokens=self.max_capture_size,
                **extra_kwargs,
            )

            return output
        elif self.mxfp4_backend == Mxfp4Backend.TRITON:
            from vllm.model_executor.layers.fused_moe.gpt_oss_triton_kernels_moe import (  # noqa: E501
                triton_kernel_moe_forward)
            return triton_kernel_moe_forward(
                hidden_states=x,
                w1=self.w13_weight_triton_tensor,
                w2=self.w2_weight_triton_tensor,
                gating_output=router_logits,
                topk=top_k,
                renormalize=renormalize,
                global_num_experts=global_num_experts,
                expert_map=expert_map,
                quant_config=self.moe_quant_config,
                apply_router_weight_on_input=apply_router_weight_on_input,
            )
        else:
            raise ValueError(f"Unsupported backend: {self.mxfp4_backend}")

_cache_permute_indices instance-attribute

_cache_permute_indices: dict[Size, Tensor] = {}

max_capture_size instance-attribute

max_capture_size = max_capture_size

moe instance-attribute

moe = moe

mxfp4_backend instance-attribute

mxfp4_backend = get_mxfp4_backend()

topk_indices_dtype instance-attribute

topk_indices_dtype = None

__init__

__init__(moe: FusedMoEConfig)
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def __init__(self, moe: FusedMoEConfig):
    super().__init__(moe)
    self.topk_indices_dtype = None
    self.moe = moe
    self.mxfp4_backend = get_mxfp4_backend()
    self.max_capture_size = get_current_vllm_config(
    ).compilation_config.max_capture_size

    assert self.mxfp4_backend != Mxfp4Backend.NONE, (
        "No MXFP4 MoE backend (FlashInfer/Marlin/Triton) available."
        "Please check your environment and try again.")
    self._cache_permute_indices: dict[torch.Size, torch.Tensor] = {}

_get_tile_tokens_dim

_get_tile_tokens_dim(x: Tensor, top_k: int)
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def _get_tile_tokens_dim(self, x: torch.Tensor, top_k: int):
    # Number of tokens in the input tensor.
    num_tokens = x.shape[0]
    # Factor to account for the imbalance of the experts.
    # factor equals to the
    # max_real_num_tokens_per_expert / perfect_num_tokens_per_expert
    # - 1.0 means perfect expert distribution.
    # - > 1.0 means some experts have more
    #     tokens than the perfect distribution.
    # - < 1.0 does not make sense.
    imbalance_factor = 1.3
    # Calculate the number of tokens per expert
    # assuming perfect distribution.
    num_tokens_per_expert = (num_tokens * top_k) // self.num_experts
    # Apply the imbalance factor.
    num_tokens_per_expert = int(num_tokens_per_expert * imbalance_factor)
    # And pad the number to the next power of 2.
    tile_tokens_dim = next_power_of_2(num_tokens_per_expert)
    # Cap to 8-64 tokens per CTA tile
    # as it's the range supported by the kernel.
    tile_tokens_dim = min(max(tile_tokens_dim, 8), 64)

    return tile_tokens_dim

_route_and_experts

_route_and_experts(
    layer: Module,
    x: Tensor,
    router_logits: Tensor,
    top_k: int,
    renormalize: bool,
    use_grouped_topk: bool = False,
    topk_group: Optional[int] = None,
    num_expert_group: Optional[int] = None,
    global_num_experts: int = -1,
    expert_map: Optional[Tensor] = None,
    custom_routing_function: Optional[Callable] = None,
    scoring_func: str = "softmax",
    e_score_correction_bias: Optional[Tensor] = None,
    apply_router_weight_on_input: bool = False,
    activation: str = "silu",
    enable_eplb: bool = False,
    expert_load_view: Optional[Tensor] = None,
    logical_to_physical_map: Optional[Tensor] = None,
    logical_replica_count: Optional[Tensor] = None,
) -> Tensor
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def _route_and_experts(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        router_logits: torch.Tensor,
        top_k: int,
        renormalize: bool,
        use_grouped_topk: bool = False,
        topk_group: Optional[int] = None,
        num_expert_group: Optional[int] = None,
        global_num_experts: int = -1,
        expert_map: Optional[torch.Tensor] = None,
        custom_routing_function: Optional[Callable] = None,
        scoring_func: str = "softmax",
        e_score_correction_bias: Optional[torch.Tensor] = None,
        apply_router_weight_on_input: bool = False,
        activation: str = "silu",
        enable_eplb: bool = False,
        expert_load_view: Optional[torch.Tensor] = None,
        logical_to_physical_map: Optional[torch.Tensor] = None,
        logical_replica_count: Optional[torch.Tensor] = None
) -> torch.Tensor:

    assert isinstance(self.fused_experts, mk.FusedMoEModularKernel)

    topk_weights, topk_ids, _ = FusedMoE.select_experts(
        hidden_states=x,
        router_logits=router_logits,
        use_grouped_topk=use_grouped_topk,
        top_k=top_k,
        renormalize=renormalize,
        topk_group=topk_group,
        num_expert_group=num_expert_group,
        custom_routing_function=custom_routing_function,
        scoring_func=scoring_func,
        e_score_correction_bias=e_score_correction_bias,
        indices_type=self.topk_indices_dtype,
        enable_eplb=enable_eplb,
        expert_map=expert_map,
        expert_load_view=expert_load_view,
        logical_to_physical_map=logical_to_physical_map,
        logical_replica_count=logical_replica_count)

    w13_weight = (self.w13_weight_triton_tensor
                  if layer.w13_weight is None else layer.w13_weight)
    w2_weight = (self.w2_weight_triton_tensor
                 if layer.w2_weight is None else layer.w2_weight)
    assert all([w is not None for w in [w13_weight, w2_weight]])

    return self.fused_experts(
        hidden_states=x,
        w1=w13_weight,
        w2=w2_weight,
        topk_weights=topk_weights,
        topk_ids=topk_ids,
        inplace=True,
        activation=activation,
        global_num_experts=global_num_experts,
        expert_map=expert_map,
        apply_router_weight_on_input=apply_router_weight_on_input,
    )

apply

apply(
    layer: Module,
    x: Tensor,
    router_logits: Tensor,
    top_k: int,
    renormalize: bool,
    use_grouped_topk: bool = False,
    topk_group: Optional[int] = None,
    num_expert_group: Optional[int] = None,
    global_num_experts: int = -1,
    expert_map: Optional[Tensor] = None,
    custom_routing_function: Optional[Callable] = None,
    scoring_func: str = "softmax",
    routed_scaling_factor: float = 1.0,
    e_score_correction_bias: Optional[Tensor] = None,
    apply_router_weight_on_input: bool = False,
    activation: str = "silu",
    enable_eplb: bool = False,
    expert_load_view: Optional[Tensor] = None,
    logical_to_physical_map: Optional[Tensor] = None,
    logical_replica_count: Optional[Tensor] = None,
) -> Union[Tensor, tuple[Tensor, Tensor]]
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def apply(
    self,
    layer: torch.nn.Module,
    x: torch.Tensor,
    router_logits: torch.Tensor,
    top_k: int,
    renormalize: bool,
    use_grouped_topk: bool = False,
    topk_group: Optional[int] = None,
    num_expert_group: Optional[int] = None,
    global_num_experts: int = -1,
    expert_map: Optional[torch.Tensor] = None,
    custom_routing_function: Optional[Callable] = None,
    scoring_func: str = "softmax",
    routed_scaling_factor: float = 1.0,
    e_score_correction_bias: Optional[torch.Tensor] = None,
    apply_router_weight_on_input: bool = False,
    activation: str = "silu",
    enable_eplb: bool = False,
    expert_load_view: Optional[torch.Tensor] = None,
    logical_to_physical_map: Optional[torch.Tensor] = None,
    logical_replica_count: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:

    if enable_eplb:
        raise NotImplementedError("EPLB is not supported for mxfp4")

    if self.mxfp4_backend == Mxfp4Backend.MARLIN:
        topk_weights, topk_ids, _ = FusedMoE.select_experts(
            hidden_states=x,
            router_logits=router_logits,
            use_grouped_topk=use_grouped_topk,
            top_k=top_k,
            renormalize=renormalize,
            topk_group=topk_group,
            num_expert_group=num_expert_group,
            custom_routing_function=custom_routing_function,
            scoring_func=scoring_func,
            routed_scaling_factor=routed_scaling_factor,
            e_score_correction_bias=e_score_correction_bias)

        return torch.ops.vllm.fused_marlin_moe(
            x,
            layer.w13_weight,
            layer.w2_weight,
            layer.w13_bias,
            layer.w2_bias,
            layer.w13_weight_scale,
            layer.w2_weight_scale,
            router_logits,
            topk_weights,
            topk_ids,
            global_scale1=None,
            global_scale2=None,
            quant_type_id=scalar_types.float4_e2m1f.id,
            apply_router_weight_on_input=apply_router_weight_on_input,
            global_num_experts=global_num_experts,
            activation=activation,
            expert_map=expert_map)

    if self.fused_experts is not None:
        return self._route_and_experts(
            layer,
            x,
            router_logits,
            top_k,
            renormalize,
            use_grouped_topk,
            topk_group,
            num_expert_group,
            global_num_experts,
            expert_map,
            custom_routing_function,
            scoring_func,
            e_score_correction_bias,
            apply_router_weight_on_input,
            activation,
            enable_eplb,
            expert_load_view,
            logical_to_physical_map,
            logical_replica_count,
        )

    assert _can_support_mxfp4(
        use_grouped_topk, topk_group, num_expert_group, expert_map,
        custom_routing_function, e_score_correction_bias,
        apply_router_weight_on_input, scoring_func, activation,
        expert_load_view, logical_to_physical_map,
        logical_replica_count), (
            "MXFP4 are not supported with this configuration.")

    if (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
            or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16):
        from flashinfer import trtllm_fp4_block_scale_moe
        if self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16:
            assert x.dtype == torch.bfloat16
            x_quant = x
            x_scale = None
        elif self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM:
            from flashinfer import mxfp8_quantize
            x_quant, x_scale = mxfp8_quantize(x, False)  # to mxfp8
            x_scale = x_scale.view(torch.float8_e4m3fn).reshape(
                *x.shape[:-1], -1)

        trtllm_gen_output = trtllm_fp4_block_scale_moe(
            router_logits.to(torch.bfloat16),
            None,  # routing_bias
            x_quant,
            x_scale,
            layer.w13_weight,  # uint8 (e2m1 x 2)
            layer.w13_weight_scale,  # uint8 (e4m3 x 2)
            layer.w13_bias,  # fp32 per expert per channel
            layer.gemm1_alpha,  # fp32 per expert
            layer.gemm1_beta,  # fp32 per expert
            layer.gemm1_clamp_limit,  # fp32 per expert
            layer.w2_weight,  # uint8 (e2m1 x 2)
            layer.w2_weight_scale,  # ue8m0
            layer.w2_bias,  # fp32 per expert per channel
            None,  # output1_scale_scalar
            None,  # output1_scale_gate_scalar
            None,  # output2_scale_scalar
            global_num_experts,
            top_k,
            None,  # n_group
            None,  # topk_group
            self.intermediate_size,  # padded to multiple of 256
            layer.ep_rank * layer.local_num_experts,  # local_expert_offset
            self.num_experts,  # local num experts
            None,
            self._get_tile_tokens_dim(x, top_k),
            1 if renormalize else 0,  # routing_method_type, renormalize
            True,  # do finalize
            tune_max_num_tokens=self.max_capture_size,
        )[0]
        return trtllm_gen_output
    elif (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
          or self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16):
        from vllm.utils.flashinfer import flashinfer_cutlass_fused_moe

        topk_weights, topk_ids, _ = FusedMoE.select_experts(
            hidden_states=x,
            router_logits=router_logits,
            use_grouped_topk=use_grouped_topk,
            top_k=top_k,
            renormalize=renormalize,
            topk_group=topk_group,
            num_expert_group=num_expert_group,
            custom_routing_function=custom_routing_function,
            scoring_func=scoring_func,
            e_score_correction_bias=e_score_correction_bias,
        )

        # Backend-specific preparation
        if self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS:

            from flashinfer import mxfp8_quantize

            x_quant, x_scale = mxfp8_quantize(x, True, 32)

            fake_input_scale = torch.ones(self.num_experts,
                                          device=x.device)
            quant_scales = [
                layer.w13_weight_scale.contiguous().view(torch.int32),
                fake_input_scale,
                layer.w2_weight_scale.contiguous().view(torch.int32),
                fake_input_scale,
            ]

            fi_input = x_quant
            extra_kwargs = dict(
                use_mxfp8_act_scaling=True,
                input_sf=x_scale,
                fc1_expert_weights=layer.w13_weight.contiguous().view(
                    torch.long),
                fc2_expert_weights=layer.w2_weight.contiguous().view(
                    torch.long),
            )
        elif self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16:
            assert x.dtype == torch.bfloat16

            quant_scales = [
                layer.w13_weight_scale,
                layer.w2_weight_scale,
            ]

            fi_input = x
            extra_kwargs = dict(
                use_w4_group_scaling=True,
                fc1_expert_weights=layer.w13_weight,
                fc2_expert_weights=layer.w2_weight,
            )

        output = torch.empty_like(x, dtype=torch.bfloat16)
        _ = flashinfer_cutlass_fused_moe(
            input=fi_input,
            token_selected_experts=topk_ids.to(torch.int).contiguous(),
            token_final_scales=topk_weights,
            output_dtype=torch.bfloat16,
            output=output,
            quant_scales=quant_scales,
            fc1_expert_biases=layer.w13_bias,
            fc2_expert_biases=layer.w2_bias,
            swiglu_alpha=layer.gemm1_alpha,
            swiglu_beta=layer.gemm1_beta,
            swiglu_limit=layer.gemm1_clamp_limit,
            tp_size=self.moe.tp_size,
            tp_rank=self.moe.tp_rank,
            ep_size=self.moe.ep_size,
            ep_rank=self.moe.ep_rank,
            tune_max_num_tokens=self.max_capture_size,
            **extra_kwargs,
        )

        return output
    elif self.mxfp4_backend == Mxfp4Backend.TRITON:
        from vllm.model_executor.layers.fused_moe.gpt_oss_triton_kernels_moe import (  # noqa: E501
            triton_kernel_moe_forward)
        return triton_kernel_moe_forward(
            hidden_states=x,
            w1=self.w13_weight_triton_tensor,
            w2=self.w2_weight_triton_tensor,
            gating_output=router_logits,
            topk=top_k,
            renormalize=renormalize,
            global_num_experts=global_num_experts,
            expert_map=expert_map,
            quant_config=self.moe_quant_config,
            apply_router_weight_on_input=apply_router_weight_on_input,
        )
    else:
        raise ValueError(f"Unsupported backend: {self.mxfp4_backend}")

create_weights

create_weights(
    layer: Module,
    num_experts: int,
    hidden_size: int,
    intermediate_size_per_partition: int,
    params_dtype: dtype,
    **extra_weight_attrs,
)
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def create_weights(self, layer: torch.nn.Module, num_experts: int,
                   hidden_size: int, intermediate_size_per_partition: int,
                   params_dtype: torch.dtype, **extra_weight_attrs):
    self.num_experts = num_experts
    weight_dtype = torch.uint8
    scale_dtype = torch.uint8

    # FIXME (zyongye): ship after torch and safetensors support mxfp4
    # is_torch_mxfp4_available = (
    #     hasattr(torch, "float4_e2m1fn_x2") and
    #     hasattr(torch, "float8_e8m0fnu"))
    # if is_torch_mxfp4_available:
    #     weight_dtype = torch.float4_e2m1fn_x2
    #     scale_dtype = torch.float8_e8m0fnu

    mxfp4_block = 32

    intermediate_size_per_partition_after_pad = \
        intermediate_size_per_partition
    if self.mxfp4_backend == Mxfp4Backend.MARLIN:
        # The moe marlin kernel requires that for each linear
        # n % 256 == 0 and k % 128 == 0.
        # In gate_up_proj:
        #    n = 2 * intermediate_size_per_partition_after_pad
        #    k = hidden_size
        # In down_proj
        #    n = hidden_size
        #    k = intermediate_size_per_partition_after_pad
        intermediate_size_per_partition_after_pad = round_up(
            intermediate_size_per_partition, 128)
        hidden_size = round_up(hidden_size, 256)

        layer.params_dtype = params_dtype
        layer.num_experts = num_experts
        layer.hidden_size = hidden_size
        layer.intermediate_size_per_partition = \
            intermediate_size_per_partition_after_pad
    elif (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
          or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16):
        # pad the intermediate size to be a multiple of 2 * mxfp4_block
        # for to hold non-uniform sharded tensor as well as swizzling
        # other padding to increase performance
        intermediate_size_per_partition_after_pad = round_up(
            intermediate_size_per_partition, 256)
        hidden_size = round_up(hidden_size, 256)
    elif (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
          or self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16):
        intermediate_size_per_partition_after_pad = round_up(
            intermediate_size_per_partition, 128)
        hidden_size = round_up(hidden_size, 128)
    elif current_platform.is_rocm():
        intermediate_size_per_partition_after_pad = round_up(
            intermediate_size_per_partition, 256)
        hidden_size = round_up(hidden_size, 256)
    else:
        intermediate_size_per_partition_after_pad = round_up(
            intermediate_size_per_partition, 64)

    self.intermediate_size = intermediate_size_per_partition_after_pad
    self.hidden_size = hidden_size
    # Fused gate_up_proj (column parallel)
    w13_weight = torch.nn.Parameter(
        torch.zeros(
            num_experts,
            2 * intermediate_size_per_partition_after_pad,
            hidden_size // 2,
            dtype=weight_dtype,
        ),
        requires_grad=False,
    )
    layer.register_parameter("w13_weight", w13_weight)
    set_weight_attrs(w13_weight, extra_weight_attrs)

    w13_weight_scale = torch.nn.Parameter(
        torch.zeros(
            num_experts,
            2 * intermediate_size_per_partition_after_pad,
            hidden_size // mxfp4_block,
            dtype=scale_dtype,
        ),
        requires_grad=False,
    )
    layer.register_parameter("w13_weight_scale", w13_weight_scale)
    set_weight_attrs(w13_weight_scale, extra_weight_attrs)

    w13_bias = torch.nn.Parameter(
        torch.zeros(
            num_experts,
            2 * intermediate_size_per_partition_after_pad,
            dtype=torch.bfloat16,
        ),
        requires_grad=False,
    )
    layer.register_parameter("w13_bias", w13_bias)
    set_weight_attrs(w13_bias, extra_weight_attrs)

    # down_proj (row parallel)
    w2_weight = torch.nn.Parameter(
        torch.zeros(
            num_experts,
            hidden_size,
            intermediate_size_per_partition_after_pad // 2,
            dtype=weight_dtype,
        ),
        requires_grad=False,
    )
    layer.register_parameter("w2_weight", w2_weight)
    set_weight_attrs(w2_weight, extra_weight_attrs)

    w2_weight_scale = torch.nn.Parameter(
        torch.zeros(
            num_experts,
            hidden_size,
            intermediate_size_per_partition_after_pad // mxfp4_block,
            dtype=scale_dtype,
        ),
        requires_grad=False,
    )
    layer.register_parameter("w2_weight_scale", w2_weight_scale)
    set_weight_attrs(w2_weight_scale, extra_weight_attrs)

    w2_bias = torch.nn.Parameter(
        torch.zeros(
            num_experts,
            hidden_size,
            dtype=torch.bfloat16,
        ),
        requires_grad=False,
    )
    layer.register_parameter("w2_bias", w2_bias)
    set_weight_attrs(w2_bias, extra_weight_attrs)

get_fused_moe_quant_config

get_fused_moe_quant_config(
    layer: Module,
) -> Optional[FusedMoEQuantConfig]
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def get_fused_moe_quant_config(
        self, layer: torch.nn.Module) -> Optional[FusedMoEQuantConfig]:

    if self.mxfp4_backend == Mxfp4Backend.MARLIN:
        return None

    if self.mxfp4_backend == Mxfp4Backend.TRITON:
        w1_scale = self.w13_precision_config
        w2_scale = self.w2_precision_config
        return mxfp4_w4a16_moe_quant_config(
            w1_bias=layer.w13_bias,
            w2_bias=layer.w2_bias,
            w1_scale=w1_scale,
            w2_scale=w2_scale,
        )
    else:
        w1_scale = layer.w13_weight_scale
        w2_scale = layer.w2_weight_scale
        return mxfp4_w4a4_moe_quant_config(
            w1_bias=layer.w13_bias,
            w2_bias=layer.w2_bias,
            w1_scale=w1_scale,
            w2_scale=w2_scale,
        )

process_weights_after_loading

process_weights_after_loading(layer)
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def process_weights_after_loading(self, layer):
    if self.mxfp4_backend == Mxfp4Backend.MARLIN:
        prepare_moe_fp4_layer_for_marlin(layer)
    elif (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
          or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16):
        from flashinfer.fp4_quantization import (
            nvfp4_block_scale_interleave)
        from flashinfer.fused_moe.core import (
            _maybe_get_cached_w2_permute_indices)
        layer.gemm1_alpha = Parameter(torch.tensor(
            [1.702] * self.num_experts, dtype=torch.float32).cuda(),
                                      requires_grad=False)
        layer.gemm1_beta = Parameter(torch.tensor(
            [1.0] * self.num_experts, dtype=torch.float32).cuda(),
                                     requires_grad=False)
        layer.gemm1_clamp_limit = Parameter(torch.tensor(
            [7.0] * self.num_experts, dtype=torch.float32).cuda(),
                                            requires_grad=False)
        sf_block_size = 32  # mxfp4 block size

        assert (layer.w13_weight.dim() == 3
                and layer.w13_weight.shape[0] == self.num_experts
                and layer.w13_weight.shape[1] == self.intermediate_size * 2
                and layer.w13_weight.shape[2] == self.hidden_size // 2)
        assert (layer.w13_weight_scale.dim() == 3
                and layer.w13_weight_scale.shape[0] == self.num_experts
                and layer.w13_weight_scale.shape[1]
                == self.intermediate_size * 2
                and layer.w13_weight_scale.shape[2]
                == self.hidden_size // sf_block_size)
        assert (layer.w2_weight.dim() == 3
                and layer.w2_weight.shape[0] == self.num_experts
                and layer.w2_weight.shape[1] == self.hidden_size and
                layer.w2_weight.shape[2] == self.intermediate_size // 2)
        assert (layer.w2_weight_scale.dim() == 3
                and layer.w2_weight_scale.shape[1] == self.hidden_size
                and layer.w2_weight_scale.shape[2]
                == self.intermediate_size // sf_block_size)
        assert (layer.w13_bias.dim() == 2
                and layer.w13_bias.shape[0] == self.num_experts
                and layer.w13_bias.shape[1] == self.intermediate_size * 2)
        assert (layer.w2_bias.dim() == 2
                and layer.w2_bias.shape[0] == self.num_experts
                and layer.w2_bias.shape[1] == self.hidden_size)

        w13_weight_scale = layer.w13_weight_scale.data
        w2_weight_scale = layer.w2_weight_scale.data
        w13_weight = layer.w13_weight.data
        w2_weight = layer.w2_weight.data
        w13_bias = layer.w13_bias.data.to(torch.float32)
        w2_bias = layer.w2_bias.data.to(torch.float32)

        # Swap w1 and w3 as the definition of
        # swiglu is different in the trtllm-gen
        def swap_every_two_rows(x, axis=-1):
            shape = x.shape
            if axis < 0:
                axis = len(shape) + axis

            # Create a new shape with pairs swapped along specified axis
            new_shape = list(shape)
            new_shape[axis] = shape[axis] // 2
            new_shape.insert(axis + 1, 2)

            # Reshape to expose pairs, swap them, and reshape back
            x = x.reshape(*new_shape)
            x = x.flip(axis + 1)
            new_shape = list(shape)
            return x.reshape(*new_shape)

        w13_weight_scale = swap_every_two_rows(w13_weight_scale, -2)
        w13_weight = swap_every_two_rows(w13_weight, -2)
        w13_bias = swap_every_two_rows(w13_bias, -1)

        # Do not interleave as the checkpoint is already interleaved

        # Shuffle weights and scaling factors for transposed mma output
        gemm1_weights_mxfp4_shuffled = []
        gemm1_scales_mxfp4_shuffled = []
        gemm2_weights_mxfp4_shuffled = []
        gemm2_scales_mxfp4_shuffled = []
        gemm1_bias_shuffled = []
        gemm2_bias_shuffled = []
        epilogue_tile_m = 128  # FIXME: this depends on the kernel internals
        for i in range(self.num_experts):
            # w13 weight shuffling
            permute_indices = _maybe_get_cached_w2_permute_indices(
                self._cache_permute_indices,
                w13_weight[i].view(torch.uint8),
                epilogue_tile_m,
            )
            gemm1_weights_mxfp4_shuffled.append(w13_weight[i].view(
                torch.uint8)[permute_indices.to(
                    w13_weight.device)].contiguous())
            # w13 scale shuffling
            permute_sf_indices = _maybe_get_cached_w2_permute_indices(
                self._cache_permute_indices,
                w13_weight_scale[i].view(torch.uint8),
                epilogue_tile_m,
                num_elts_per_sf=16,
            )
            gemm1_scales_mxfp4_shuffled.append(
                nvfp4_block_scale_interleave(w13_weight_scale[i].view(
                    torch.uint8)[permute_sf_indices.to(
                        w13_weight_scale.device)].contiguous()))
            # w13 bias shuffling
            permute_bias_indices = _maybe_get_cached_w2_permute_indices(
                self._cache_permute_indices,
                w13_bias[i].clone().reshape(-1, 1),
                epilogue_tile_m,
            )
            gemm1_bias_shuffled.append(w13_bias[i].clone().reshape(
                -1,
                1)[permute_bias_indices.to(w13_bias.device)].contiguous())
            # w2 weight shuffling
            permute_indices = _maybe_get_cached_w2_permute_indices(
                self._cache_permute_indices,
                w2_weight[i].view(torch.uint8),
                epilogue_tile_m,
            )
            gemm2_weights_mxfp4_shuffled.append(w2_weight[i].view(
                torch.uint8)[permute_indices.to(
                    w2_weight.device)].contiguous())
            # w2 scale shuffling
            permute_sf_indices = _maybe_get_cached_w2_permute_indices(
                self._cache_permute_indices,
                w2_weight_scale[i].view(torch.uint8),
                epilogue_tile_m,
                num_elts_per_sf=16,
            )
            gemm2_scales_mxfp4_shuffled.append(
                nvfp4_block_scale_interleave(w2_weight_scale[i].view(
                    torch.uint8)[permute_sf_indices.to(
                        w2_weight_scale.device)].contiguous()))
            # w2 bias shuffling
            permute_indices = _maybe_get_cached_w2_permute_indices(
                self._cache_permute_indices,
                w2_bias[i].clone().reshape(-1, 1),
                epilogue_tile_m,
            )
            gemm2_bias_shuffled.append(w2_bias[i].clone().reshape(
                -1, 1)[permute_indices.to(w2_bias.device)].contiguous())

        w13_weight = torch.stack(gemm1_weights_mxfp4_shuffled)
        w13_weight_scale = torch.stack(
            gemm1_scales_mxfp4_shuffled).reshape(
                self.num_experts, 2 * self.intermediate_size,
                self.hidden_size // sf_block_size).view(
                    torch.float8_e4m3fn)

        w2_weight = torch.stack(gemm2_weights_mxfp4_shuffled)
        w2_weight_scale = torch.stack(gemm2_scales_mxfp4_shuffled).reshape(
            self.num_experts, self.hidden_size, self.intermediate_size //
            sf_block_size).view(torch.float8_e4m3fn)

        layer.w13_weight = Parameter(w13_weight, requires_grad=False)
        layer.w13_weight_scale = Parameter(w13_weight_scale,
                                           requires_grad=False)
        layer.w2_weight = Parameter(w2_weight, requires_grad=False)
        layer.w2_weight_scale = Parameter(w2_weight_scale,
                                          requires_grad=False)
        layer.w13_bias = Parameter(
            torch.stack(gemm1_bias_shuffled).reshape(self.num_experts, -1),
            requires_grad=False)
        layer.w2_bias = Parameter(torch.stack(gemm2_bias_shuffled).reshape(
            self.num_experts, -1),
                                  requires_grad=False)
    elif (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
          or self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16):
        layer.gemm1_alpha = Parameter(torch.tensor(
            [1.702] * self.num_experts, dtype=torch.float32).cuda(),
                                      requires_grad=False)
        layer.gemm1_beta = Parameter(torch.tensor(
            [1.0] * self.num_experts, dtype=torch.float32).cuda(),
                                     requires_grad=False)
        layer.gemm1_clamp_limit = Parameter(torch.tensor(
            [7.0] * self.num_experts, dtype=torch.float32).cuda(),
                                            requires_grad=False)

        sf_block_size = 32  # mxfp4 block size

        # Common shape assertions
        assert (layer.w13_weight.dim() == 3
                and layer.w13_weight.shape[0] == self.num_experts
                and layer.w13_weight.shape[1] == self.intermediate_size * 2
                and layer.w13_weight.shape[2] == self.hidden_size // 2)
        assert (layer.w13_weight_scale.dim() == 3
                and layer.w13_weight_scale.shape[0] == self.num_experts
                and layer.w13_weight_scale.shape[1]
                == self.intermediate_size * 2
                and layer.w13_weight_scale.shape[2]
                == self.hidden_size // sf_block_size)
        assert (layer.w2_weight.dim() == 3
                and layer.w2_weight.shape[0] == self.num_experts
                and layer.w2_weight.shape[1] == self.hidden_size and
                layer.w2_weight.shape[2] == self.intermediate_size // 2)
        assert (layer.w2_weight_scale.dim() == 3
                and layer.w2_weight_scale.shape[1] == self.hidden_size
                and layer.w2_weight_scale.shape[2]
                == self.intermediate_size // sf_block_size)
        assert (layer.w13_bias.dim() == 2
                and layer.w13_bias.shape[0] == self.num_experts
                and layer.w13_bias.shape[1] == self.intermediate_size * 2)
        assert (layer.w2_bias.dim() == 2
                and layer.w2_bias.shape[0] == self.num_experts
                and layer.w2_bias.shape[1] == self.hidden_size)

        # De-interleave and swap for w13 weight, bias, and scales
        w13_w = layer.w13_weight.data
        gate_w, up_w = w13_w[:, ::2, :], w13_w[:, 1::2, :]
        deinterleaved_w13_w = torch.cat([gate_w, up_w], dim=1)
        w1_w, w3_w = torch.chunk(deinterleaved_w13_w, 2, dim=1)
        w13_weight_swapped = torch.cat([w3_w, w1_w], dim=1)

        w13_b = layer.w13_bias.data.to(torch.float32)
        gate_b, up_b = w13_b[:, ::2], w13_b[:, 1::2]
        deinterleaved_w13_b = torch.cat([gate_b, up_b], dim=1)
        b1, b3 = torch.chunk(deinterleaved_w13_b, 2, dim=-1)
        w13_bias_swapped = torch.cat([b3, b1], dim=-1).to(torch.bfloat16)

        w13_s = layer.w13_weight_scale.data
        gate_s, up_s = w13_s[:, ::2, :], w13_s[:, 1::2, :]
        deinterleaved_w13_s = torch.cat([gate_s, up_s], dim=1)
        s1, s3 = torch.chunk(deinterleaved_w13_s, 2, dim=1)
        w13_scale_swapped = torch.cat([s3, s1], dim=1)

        if self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS:
            from flashinfer import block_scale_interleave

            orig_shape = w13_scale_swapped.shape
            w13_scale_interleaved = block_scale_interleave(
                w13_scale_swapped.view(torch.uint8)).reshape(orig_shape)

            w2_s = layer.w2_weight_scale.data
            orig_shape = w2_s.shape
            w2_scale_interleaved = block_scale_interleave(
                w2_s.view(torch.uint8)).reshape(orig_shape)

            layer.w13_weight = Parameter(w13_weight_swapped,
                                         requires_grad=False)
            layer.w13_weight_scale = Parameter(w13_scale_interleaved,
                                               requires_grad=False)
            layer.w13_bias = Parameter(w13_bias_swapped,
                                       requires_grad=False)
            layer.w2_weight_scale = Parameter(w2_scale_interleaved,
                                              requires_grad=False)
        elif self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16:

            def _interleave_mxfp4_cutlass_sm90(w):
                w_shape = w.shape
                w_interleaved = w.reshape(w_shape[0], w_shape[1],
                                          (w_shape[2] // 4), 4)
                w_interleaved = w_interleaved.permute(0, 2, 1, 3)
                w_interleaved = w_interleaved.reshape(
                    w_shape[0], w_shape[2] // 4, w_shape[1] * 4)
                return w_interleaved

            w31_scales = w13_scale_swapped.to(torch.uint8).view(
                torch.uint8)
            w31_scales_interleaved = _interleave_mxfp4_cutlass_sm90(
                w31_scales)

            w2_weight_scale = layer.w2_weight_scale.data
            w2_scales = w2_weight_scale.to(torch.uint8).view(torch.uint8)
            w2_scales_interleaved = _interleave_mxfp4_cutlass_sm90(
                w2_scales)

            layer.w13_weight = torch.nn.Parameter(torch.cat([w3_w, w1_w],
                                                            dim=1),
                                                  requires_grad=False)
            layer.w13_bias = torch.nn.Parameter(w13_bias_swapped,
                                                requires_grad=False)
            layer.w13_weight_scale = torch.nn.Parameter(
                w31_scales_interleaved, requires_grad=False)
            layer.w2_weight_scale = torch.nn.Parameter(
                w2_scales_interleaved, requires_grad=False)
    elif self.mxfp4_backend == Mxfp4Backend.TRITON:
        from triton_kernels.matmul_ogs import FlexCtx, PrecisionConfig

        w13_bias = layer.w13_bias.to(torch.float32)
        w2_bias = layer.w2_bias.to(torch.float32)

        layer.w13_bias = Parameter(w13_bias, requires_grad=False)
        layer.w2_bias = Parameter(w2_bias, requires_grad=False)

        # Ideally we'd use FusedMoEModularKernel.prepare_finalize object
        # (stored in self.fused_experts) to determine if the MoE has a
        # batched activation format. As self.fused_experts is not
        # initialized at this point, we resort to checking the MoE config
        # directly.
        is_batched_moe = (self.moe.use_pplx_kernels
                          or self.moe.use_deepep_ll_kernels)
        if is_batched_moe:
            num_warps = 4 if envs.VLLM_MOE_DP_CHUNK_SIZE <= 512 else 8
        else:
            num_warps = 8

        w13_weight, w13_flex, w13_scale = _swizzle_mxfp4(
            layer.w13_weight, layer.w13_weight_scale, num_warps)
        w2_weight, w2_flex, w2_scale = _swizzle_mxfp4(
            layer.w2_weight, layer.w2_weight_scale, num_warps)

        self.w13_precision_config = PrecisionConfig(
            weight_scale=w13_scale, flex_ctx=FlexCtx(rhs_data=w13_flex))
        self.w2_precision_config = PrecisionConfig(
            weight_scale=w2_scale, flex_ctx=FlexCtx(rhs_data=w2_flex))

        self.w13_weight_triton_tensor = w13_weight
        self.w2_weight_triton_tensor = w2_weight

        # need to delete the original weights to save memory on single GPU
        del layer.w13_weight
        del layer.w2_weight
        layer.w13_weight = None
        layer.w2_weight = None
        torch.cuda.empty_cache()
    else:
        raise ValueError(f"Unsupported backend: {self.mxfp4_backend}")

select_gemm_impl

select_gemm_impl(
    prepare_finalize: FusedMoEPrepareAndFinalize,
    layer: Module,
) -> FusedMoEPermuteExpertsUnpermute
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def select_gemm_impl(
    self,
    prepare_finalize: mk.FusedMoEPrepareAndFinalize,
    layer: torch.nn.Module,
) -> mk.FusedMoEPermuteExpertsUnpermute:
    if (prepare_finalize.activation_format ==
            mk.FusedMoEActivationFormat.BatchedExperts):
        raise NotImplementedError(
            "Mxfp4 does not support batched experts format for EP")
    else:
        assert self.moe_quant_config is not None
        if (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
                or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16):
            # B200 code-path
            kwargs = {
                "gemm1_alpha": layer.gemm1_alpha,
                "gemm1_beta": layer.gemm1_beta,
                "gemm1_clamp_limit": layer.gemm1_clamp_limit,
                # TODO(bnell): part of quant_config
                "max_capture_size": self.max_capture_size,
            }
            return TrtLlmGenExperts(self.moe, self.moe_quant_config,
                                    **kwargs)
        else:
            return OAITritonExperts(self.moe_quant_config)

get_mxfp4_backend

get_mxfp4_backend()
Source code in vllm/model_executor/layers/quantization/mxfp4.py
def get_mxfp4_backend():
    # Backend Selection
    if current_platform.is_cuda():
        if (current_platform.is_device_capability(90) and has_flashinfer()
                and envs.VLLM_USE_FLASHINFER_MOE_MXFP4_BF16):
            logger.info_once("Using FlashInfer MXFP4 BF16 backend for SM90")
            return Mxfp4Backend.SM90_FI_MXFP4_BF16
        elif (current_platform.is_device_capability(100) and has_flashinfer()
              and envs.VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS):
            logger.info_once(
                "Using FlashInfer MXFP4 MXFP8 CUTLASS backend for SM100")
            return Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
        elif (current_platform.is_device_capability(100) and has_flashinfer()
              and envs.VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8):
            logger.info_once(
                "Using FlashInfer MXFP4 MXFP8 TRTLLM backend for SM100, "
                "for high concurrency throughput workloads consider setting "
                "VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS=1 for better "
                "performance")
            return Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
        elif current_platform.is_device_capability(100) and has_flashinfer():
            logger.info_once(
                "Using FlashInfer MXFP4 BF16 backend for SM100, "
                "For faster performance on SM100, consider setting "
                "VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8=1, though this may impact "
                "accuracy.")
            return Mxfp4Backend.SM100_FI_MXFP4_BF16
        elif ((current_platform.is_device_capability(100)
               or current_platform.is_device_capability(90))
              and not has_flashinfer()):
            logger.warning_once(
                "MXFP4 MoE is enabled on Hopper/Blackwell but FlashInfer "
                "is not available. This may result in degraded performance. "
                "Please `pip install vllm[flashinfer]` for best results.")

        # If FlashInfer is not available, try either Marlin or Triton
        if current_platform.get_device_capability(
        )[0] < 9 or not has_triton_kernels() or not is_torch_equal_or_newer(
                "2.8.0"):
            logger.info_once("Using Marlin backend")
            return Mxfp4Backend.MARLIN
        else:
            logger.info_once("Using Triton backend")
            return Mxfp4Backend.TRITON
    elif current_platform.is_rocm() and has_triton_kernels():
        logger.info_once("Using Triton backend")
        return Mxfp4Backend.TRITON

    return Mxfp4Backend.NONE