class Mxfp4MoEMethod(FusedMoEMethodBase):
def __init__(self, moe: FusedMoEConfig):
super().__init__(moe)
self.topk_indices_dtype = None
self.moe = moe
self.mxfp4_backend = get_mxfp4_backend()
self.max_capture_size = get_current_vllm_config(
).compilation_config.max_capture_size
assert self.mxfp4_backend != Mxfp4Backend.NONE, (
"No MXFP4 MoE backend (FlashInfer/Marlin/Triton) available."
"Please check your environment and try again.")
self._cache_permute_indices: dict[torch.Size, torch.Tensor] = {}
def create_weights(self, layer: torch.nn.Module, num_experts: int,
hidden_size: int, intermediate_size_per_partition: int,
params_dtype: torch.dtype, **extra_weight_attrs):
self.num_experts = num_experts
weight_dtype = torch.uint8
scale_dtype = torch.uint8
# FIXME (zyongye): ship after torch and safetensors support mxfp4
# is_torch_mxfp4_available = (
# hasattr(torch, "float4_e2m1fn_x2") and
# hasattr(torch, "float8_e8m0fnu"))
# if is_torch_mxfp4_available:
# weight_dtype = torch.float4_e2m1fn_x2
# scale_dtype = torch.float8_e8m0fnu
mxfp4_block = 32
intermediate_size_per_partition_after_pad = \
intermediate_size_per_partition
if self.mxfp4_backend == Mxfp4Backend.MARLIN:
# The moe marlin kernel requires that for each linear
# n % 256 == 0 and k % 128 == 0.
# In gate_up_proj:
# n = 2 * intermediate_size_per_partition_after_pad
# k = hidden_size
# In down_proj
# n = hidden_size
# k = intermediate_size_per_partition_after_pad
intermediate_size_per_partition_after_pad = round_up(
intermediate_size_per_partition, 128)
hidden_size = round_up(hidden_size, 256)
layer.params_dtype = params_dtype
layer.num_experts = num_experts
layer.hidden_size = hidden_size
layer.intermediate_size_per_partition = \
intermediate_size_per_partition_after_pad
elif (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16):
# pad the intermediate size to be a multiple of 2 * mxfp4_block
# for to hold non-uniform sharded tensor as well as swizzling
# other padding to increase performance
intermediate_size_per_partition_after_pad = round_up(
intermediate_size_per_partition, 256)
hidden_size = round_up(hidden_size, 256)
elif (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
or self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16):
intermediate_size_per_partition_after_pad = round_up(
intermediate_size_per_partition, 128)
hidden_size = round_up(hidden_size, 128)
elif current_platform.is_rocm():
intermediate_size_per_partition_after_pad = round_up(
intermediate_size_per_partition, 256)
hidden_size = round_up(hidden_size, 256)
else:
intermediate_size_per_partition_after_pad = round_up(
intermediate_size_per_partition, 64)
self.intermediate_size = intermediate_size_per_partition_after_pad
self.hidden_size = hidden_size
# Fused gate_up_proj (column parallel)
w13_weight = torch.nn.Parameter(
torch.zeros(
num_experts,
2 * intermediate_size_per_partition_after_pad,
hidden_size // 2,
dtype=weight_dtype,
),
requires_grad=False,
)
layer.register_parameter("w13_weight", w13_weight)
set_weight_attrs(w13_weight, extra_weight_attrs)
w13_weight_scale = torch.nn.Parameter(
torch.zeros(
num_experts,
2 * intermediate_size_per_partition_after_pad,
hidden_size // mxfp4_block,
dtype=scale_dtype,
),
requires_grad=False,
)
layer.register_parameter("w13_weight_scale", w13_weight_scale)
set_weight_attrs(w13_weight_scale, extra_weight_attrs)
w13_bias = torch.nn.Parameter(
torch.zeros(
num_experts,
2 * intermediate_size_per_partition_after_pad,
dtype=torch.bfloat16,
),
requires_grad=False,
)
layer.register_parameter("w13_bias", w13_bias)
set_weight_attrs(w13_bias, extra_weight_attrs)
# down_proj (row parallel)
w2_weight = torch.nn.Parameter(
torch.zeros(
num_experts,
hidden_size,
intermediate_size_per_partition_after_pad // 2,
dtype=weight_dtype,
),
requires_grad=False,
)
layer.register_parameter("w2_weight", w2_weight)
set_weight_attrs(w2_weight, extra_weight_attrs)
w2_weight_scale = torch.nn.Parameter(
torch.zeros(
num_experts,
hidden_size,
intermediate_size_per_partition_after_pad // mxfp4_block,
dtype=scale_dtype,
),
requires_grad=False,
)
layer.register_parameter("w2_weight_scale", w2_weight_scale)
set_weight_attrs(w2_weight_scale, extra_weight_attrs)
w2_bias = torch.nn.Parameter(
torch.zeros(
num_experts,
hidden_size,
dtype=torch.bfloat16,
),
requires_grad=False,
)
layer.register_parameter("w2_bias", w2_bias)
set_weight_attrs(w2_bias, extra_weight_attrs)
def process_weights_after_loading(self, layer):
if self.mxfp4_backend == Mxfp4Backend.MARLIN:
prepare_moe_fp4_layer_for_marlin(layer)
elif (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16):
from flashinfer.fp4_quantization import (
nvfp4_block_scale_interleave)
from flashinfer.fused_moe.core import (
_maybe_get_cached_w2_permute_indices)
layer.gemm1_alpha = Parameter(torch.tensor(
[1.702] * self.num_experts, dtype=torch.float32).cuda(),
requires_grad=False)
layer.gemm1_beta = Parameter(torch.tensor(
[1.0] * self.num_experts, dtype=torch.float32).cuda(),
requires_grad=False)
layer.gemm1_clamp_limit = Parameter(torch.tensor(
[7.0] * self.num_experts, dtype=torch.float32).cuda(),
requires_grad=False)
sf_block_size = 32 # mxfp4 block size
assert (layer.w13_weight.dim() == 3
and layer.w13_weight.shape[0] == self.num_experts
and layer.w13_weight.shape[1] == self.intermediate_size * 2
and layer.w13_weight.shape[2] == self.hidden_size // 2)
assert (layer.w13_weight_scale.dim() == 3
and layer.w13_weight_scale.shape[0] == self.num_experts
and layer.w13_weight_scale.shape[1]
== self.intermediate_size * 2
and layer.w13_weight_scale.shape[2]
== self.hidden_size // sf_block_size)
assert (layer.w2_weight.dim() == 3
and layer.w2_weight.shape[0] == self.num_experts
and layer.w2_weight.shape[1] == self.hidden_size and
layer.w2_weight.shape[2] == self.intermediate_size // 2)
assert (layer.w2_weight_scale.dim() == 3
and layer.w2_weight_scale.shape[1] == self.hidden_size
and layer.w2_weight_scale.shape[2]
== self.intermediate_size // sf_block_size)
assert (layer.w13_bias.dim() == 2
and layer.w13_bias.shape[0] == self.num_experts
and layer.w13_bias.shape[1] == self.intermediate_size * 2)
assert (layer.w2_bias.dim() == 2
and layer.w2_bias.shape[0] == self.num_experts
and layer.w2_bias.shape[1] == self.hidden_size)
w13_weight_scale = layer.w13_weight_scale.data
w2_weight_scale = layer.w2_weight_scale.data
w13_weight = layer.w13_weight.data
w2_weight = layer.w2_weight.data
w13_bias = layer.w13_bias.data.to(torch.float32)
w2_bias = layer.w2_bias.data.to(torch.float32)
# Swap w1 and w3 as the definition of
# swiglu is different in the trtllm-gen
def swap_every_two_rows(x, axis=-1):
shape = x.shape
if axis < 0:
axis = len(shape) + axis
# Create a new shape with pairs swapped along specified axis
new_shape = list(shape)
new_shape[axis] = shape[axis] // 2
new_shape.insert(axis + 1, 2)
# Reshape to expose pairs, swap them, and reshape back
x = x.reshape(*new_shape)
x = x.flip(axis + 1)
new_shape = list(shape)
return x.reshape(*new_shape)
w13_weight_scale = swap_every_two_rows(w13_weight_scale, -2)
w13_weight = swap_every_two_rows(w13_weight, -2)
w13_bias = swap_every_two_rows(w13_bias, -1)
# Do not interleave as the checkpoint is already interleaved
# Shuffle weights and scaling factors for transposed mma output
gemm1_weights_mxfp4_shuffled = []
gemm1_scales_mxfp4_shuffled = []
gemm2_weights_mxfp4_shuffled = []
gemm2_scales_mxfp4_shuffled = []
gemm1_bias_shuffled = []
gemm2_bias_shuffled = []
epilogue_tile_m = 128 # FIXME: this depends on the kernel internals
for i in range(self.num_experts):
# w13 weight shuffling
permute_indices = _maybe_get_cached_w2_permute_indices(
self._cache_permute_indices,
w13_weight[i].view(torch.uint8),
epilogue_tile_m,
)
gemm1_weights_mxfp4_shuffled.append(w13_weight[i].view(
torch.uint8)[permute_indices.to(
w13_weight.device)].contiguous())
# w13 scale shuffling
permute_sf_indices = _maybe_get_cached_w2_permute_indices(
self._cache_permute_indices,
w13_weight_scale[i].view(torch.uint8),
epilogue_tile_m,
num_elts_per_sf=16,
)
gemm1_scales_mxfp4_shuffled.append(
nvfp4_block_scale_interleave(w13_weight_scale[i].view(
torch.uint8)[permute_sf_indices.to(
w13_weight_scale.device)].contiguous()))
# w13 bias shuffling
permute_bias_indices = _maybe_get_cached_w2_permute_indices(
self._cache_permute_indices,
w13_bias[i].clone().reshape(-1, 1),
epilogue_tile_m,
)
gemm1_bias_shuffled.append(w13_bias[i].clone().reshape(
-1,
1)[permute_bias_indices.to(w13_bias.device)].contiguous())
# w2 weight shuffling
permute_indices = _maybe_get_cached_w2_permute_indices(
self._cache_permute_indices,
w2_weight[i].view(torch.uint8),
epilogue_tile_m,
)
gemm2_weights_mxfp4_shuffled.append(w2_weight[i].view(
torch.uint8)[permute_indices.to(
w2_weight.device)].contiguous())
# w2 scale shuffling
permute_sf_indices = _maybe_get_cached_w2_permute_indices(
self._cache_permute_indices,
w2_weight_scale[i].view(torch.uint8),
epilogue_tile_m,
num_elts_per_sf=16,
)
gemm2_scales_mxfp4_shuffled.append(
nvfp4_block_scale_interleave(w2_weight_scale[i].view(
torch.uint8)[permute_sf_indices.to(
w2_weight_scale.device)].contiguous()))
# w2 bias shuffling
permute_indices = _maybe_get_cached_w2_permute_indices(
self._cache_permute_indices,
w2_bias[i].clone().reshape(-1, 1),
epilogue_tile_m,
)
gemm2_bias_shuffled.append(w2_bias[i].clone().reshape(
-1, 1)[permute_indices.to(w2_bias.device)].contiguous())
w13_weight = torch.stack(gemm1_weights_mxfp4_shuffled)
w13_weight_scale = torch.stack(
gemm1_scales_mxfp4_shuffled).reshape(
self.num_experts, 2 * self.intermediate_size,
self.hidden_size // sf_block_size).view(
torch.float8_e4m3fn)
w2_weight = torch.stack(gemm2_weights_mxfp4_shuffled)
w2_weight_scale = torch.stack(gemm2_scales_mxfp4_shuffled).reshape(
self.num_experts, self.hidden_size, self.intermediate_size //
sf_block_size).view(torch.float8_e4m3fn)
layer.w13_weight = Parameter(w13_weight, requires_grad=False)
layer.w13_weight_scale = Parameter(w13_weight_scale,
requires_grad=False)
layer.w2_weight = Parameter(w2_weight, requires_grad=False)
layer.w2_weight_scale = Parameter(w2_weight_scale,
requires_grad=False)
layer.w13_bias = Parameter(
torch.stack(gemm1_bias_shuffled).reshape(self.num_experts, -1),
requires_grad=False)
layer.w2_bias = Parameter(torch.stack(gemm2_bias_shuffled).reshape(
self.num_experts, -1),
requires_grad=False)
elif (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
or self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16):
layer.gemm1_alpha = Parameter(torch.tensor(
[1.702] * self.num_experts, dtype=torch.float32).cuda(),
requires_grad=False)
layer.gemm1_beta = Parameter(torch.tensor(
[1.0] * self.num_experts, dtype=torch.float32).cuda(),
requires_grad=False)
layer.gemm1_clamp_limit = Parameter(torch.tensor(
[7.0] * self.num_experts, dtype=torch.float32).cuda(),
requires_grad=False)
sf_block_size = 32 # mxfp4 block size
# Common shape assertions
assert (layer.w13_weight.dim() == 3
and layer.w13_weight.shape[0] == self.num_experts
and layer.w13_weight.shape[1] == self.intermediate_size * 2
and layer.w13_weight.shape[2] == self.hidden_size // 2)
assert (layer.w13_weight_scale.dim() == 3
and layer.w13_weight_scale.shape[0] == self.num_experts
and layer.w13_weight_scale.shape[1]
== self.intermediate_size * 2
and layer.w13_weight_scale.shape[2]
== self.hidden_size // sf_block_size)
assert (layer.w2_weight.dim() == 3
and layer.w2_weight.shape[0] == self.num_experts
and layer.w2_weight.shape[1] == self.hidden_size and
layer.w2_weight.shape[2] == self.intermediate_size // 2)
assert (layer.w2_weight_scale.dim() == 3
and layer.w2_weight_scale.shape[1] == self.hidden_size
and layer.w2_weight_scale.shape[2]
== self.intermediate_size // sf_block_size)
assert (layer.w13_bias.dim() == 2
and layer.w13_bias.shape[0] == self.num_experts
and layer.w13_bias.shape[1] == self.intermediate_size * 2)
assert (layer.w2_bias.dim() == 2
and layer.w2_bias.shape[0] == self.num_experts
and layer.w2_bias.shape[1] == self.hidden_size)
# De-interleave and swap for w13 weight, bias, and scales
w13_w = layer.w13_weight.data
gate_w, up_w = w13_w[:, ::2, :], w13_w[:, 1::2, :]
deinterleaved_w13_w = torch.cat([gate_w, up_w], dim=1)
w1_w, w3_w = torch.chunk(deinterleaved_w13_w, 2, dim=1)
w13_weight_swapped = torch.cat([w3_w, w1_w], dim=1)
w13_b = layer.w13_bias.data.to(torch.float32)
gate_b, up_b = w13_b[:, ::2], w13_b[:, 1::2]
deinterleaved_w13_b = torch.cat([gate_b, up_b], dim=1)
b1, b3 = torch.chunk(deinterleaved_w13_b, 2, dim=-1)
w13_bias_swapped = torch.cat([b3, b1], dim=-1).to(torch.bfloat16)
w13_s = layer.w13_weight_scale.data
gate_s, up_s = w13_s[:, ::2, :], w13_s[:, 1::2, :]
deinterleaved_w13_s = torch.cat([gate_s, up_s], dim=1)
s1, s3 = torch.chunk(deinterleaved_w13_s, 2, dim=1)
w13_scale_swapped = torch.cat([s3, s1], dim=1)
if self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS:
from flashinfer import block_scale_interleave
orig_shape = w13_scale_swapped.shape
w13_scale_interleaved = block_scale_interleave(
w13_scale_swapped.view(torch.uint8)).reshape(orig_shape)
w2_s = layer.w2_weight_scale.data
orig_shape = w2_s.shape
w2_scale_interleaved = block_scale_interleave(
w2_s.view(torch.uint8)).reshape(orig_shape)
layer.w13_weight = Parameter(w13_weight_swapped,
requires_grad=False)
layer.w13_weight_scale = Parameter(w13_scale_interleaved,
requires_grad=False)
layer.w13_bias = Parameter(w13_bias_swapped,
requires_grad=False)
layer.w2_weight_scale = Parameter(w2_scale_interleaved,
requires_grad=False)
elif self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16:
def _interleave_mxfp4_cutlass_sm90(w):
w_shape = w.shape
w_interleaved = w.reshape(w_shape[0], w_shape[1],
(w_shape[2] // 4), 4)
w_interleaved = w_interleaved.permute(0, 2, 1, 3)
w_interleaved = w_interleaved.reshape(
w_shape[0], w_shape[2] // 4, w_shape[1] * 4)
return w_interleaved
w31_scales = w13_scale_swapped.to(torch.uint8).view(
torch.uint8)
w31_scales_interleaved = _interleave_mxfp4_cutlass_sm90(
w31_scales)
w2_weight_scale = layer.w2_weight_scale.data
w2_scales = w2_weight_scale.to(torch.uint8).view(torch.uint8)
w2_scales_interleaved = _interleave_mxfp4_cutlass_sm90(
w2_scales)
layer.w13_weight = torch.nn.Parameter(torch.cat([w3_w, w1_w],
dim=1),
requires_grad=False)
layer.w13_bias = torch.nn.Parameter(w13_bias_swapped,
requires_grad=False)
layer.w13_weight_scale = torch.nn.Parameter(
w31_scales_interleaved, requires_grad=False)
layer.w2_weight_scale = torch.nn.Parameter(
w2_scales_interleaved, requires_grad=False)
elif self.mxfp4_backend == Mxfp4Backend.TRITON:
from triton_kernels.matmul_ogs import FlexCtx, PrecisionConfig
w13_bias = layer.w13_bias.to(torch.float32)
w2_bias = layer.w2_bias.to(torch.float32)
layer.w13_bias = Parameter(w13_bias, requires_grad=False)
layer.w2_bias = Parameter(w2_bias, requires_grad=False)
# Ideally we'd use FusedMoEModularKernel.prepare_finalize object
# (stored in self.fused_experts) to determine if the MoE has a
# batched activation format. As self.fused_experts is not
# initialized at this point, we resort to checking the MoE config
# directly.
is_batched_moe = (self.moe.use_pplx_kernels
or self.moe.use_deepep_ll_kernels)
if is_batched_moe:
num_warps = 4 if envs.VLLM_MOE_DP_CHUNK_SIZE <= 512 else 8
else:
num_warps = 8
w13_weight, w13_flex, w13_scale = _swizzle_mxfp4(
layer.w13_weight, layer.w13_weight_scale, num_warps)
w2_weight, w2_flex, w2_scale = _swizzle_mxfp4(
layer.w2_weight, layer.w2_weight_scale, num_warps)
self.w13_precision_config = PrecisionConfig(
weight_scale=w13_scale, flex_ctx=FlexCtx(rhs_data=w13_flex))
self.w2_precision_config = PrecisionConfig(
weight_scale=w2_scale, flex_ctx=FlexCtx(rhs_data=w2_flex))
self.w13_weight_triton_tensor = w13_weight
self.w2_weight_triton_tensor = w2_weight
# need to delete the original weights to save memory on single GPU
del layer.w13_weight
del layer.w2_weight
layer.w13_weight = None
layer.w2_weight = None
torch.cuda.empty_cache()
else:
raise ValueError(f"Unsupported backend: {self.mxfp4_backend}")
def _get_tile_tokens_dim(self, x: torch.Tensor, top_k: int):
# Number of tokens in the input tensor.
num_tokens = x.shape[0]
# Factor to account for the imbalance of the experts.
# factor equals to the
# max_real_num_tokens_per_expert / perfect_num_tokens_per_expert
# - 1.0 means perfect expert distribution.
# - > 1.0 means some experts have more
# tokens than the perfect distribution.
# - < 1.0 does not make sense.
imbalance_factor = 1.3
# Calculate the number of tokens per expert
# assuming perfect distribution.
num_tokens_per_expert = (num_tokens * top_k) // self.num_experts
# Apply the imbalance factor.
num_tokens_per_expert = int(num_tokens_per_expert * imbalance_factor)
# And pad the number to the next power of 2.
tile_tokens_dim = next_power_of_2(num_tokens_per_expert)
# Cap to 8-64 tokens per CTA tile
# as it's the range supported by the kernel.
tile_tokens_dim = min(max(tile_tokens_dim, 8), 64)
return tile_tokens_dim
def get_fused_moe_quant_config(
self, layer: torch.nn.Module) -> Optional[FusedMoEQuantConfig]:
if self.mxfp4_backend == Mxfp4Backend.MARLIN:
return None
if self.mxfp4_backend == Mxfp4Backend.TRITON:
w1_scale = self.w13_precision_config
w2_scale = self.w2_precision_config
return mxfp4_w4a16_moe_quant_config(
w1_bias=layer.w13_bias,
w2_bias=layer.w2_bias,
w1_scale=w1_scale,
w2_scale=w2_scale,
)
else:
w1_scale = layer.w13_weight_scale
w2_scale = layer.w2_weight_scale
return mxfp4_w4a4_moe_quant_config(
w1_bias=layer.w13_bias,
w2_bias=layer.w2_bias,
w1_scale=w1_scale,
w2_scale=w2_scale,
)
def select_gemm_impl(
self,
prepare_finalize: mk.FusedMoEPrepareAndFinalize,
layer: torch.nn.Module,
) -> mk.FusedMoEPermuteExpertsUnpermute:
if (prepare_finalize.activation_format ==
mk.FusedMoEActivationFormat.BatchedExperts):
raise NotImplementedError(
"Mxfp4 does not support batched experts format for EP")
else:
assert self.moe_quant_config is not None
if (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16):
# B200 code-path
kwargs = {
"gemm1_alpha": layer.gemm1_alpha,
"gemm1_beta": layer.gemm1_beta,
"gemm1_clamp_limit": layer.gemm1_clamp_limit,
# TODO(bnell): part of quant_config
"max_capture_size": self.max_capture_size,
}
return TrtLlmGenExperts(self.moe, self.moe_quant_config,
**kwargs)
else:
return OAITritonExperts(self.moe_quant_config)
def _route_and_experts(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
expert_load_view: Optional[torch.Tensor] = None,
logical_to_physical_map: Optional[torch.Tensor] = None,
logical_replica_count: Optional[torch.Tensor] = None
) -> torch.Tensor:
assert isinstance(self.fused_experts, mk.FusedMoEModularKernel)
topk_weights, topk_ids, _ = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias,
indices_type=self.topk_indices_dtype,
enable_eplb=enable_eplb,
expert_map=expert_map,
expert_load_view=expert_load_view,
logical_to_physical_map=logical_to_physical_map,
logical_replica_count=logical_replica_count)
w13_weight = (self.w13_weight_triton_tensor
if layer.w13_weight is None else layer.w13_weight)
w2_weight = (self.w2_weight_triton_tensor
if layer.w2_weight is None else layer.w2_weight)
assert all([w is not None for w in [w13_weight, w2_weight]])
return self.fused_experts(
hidden_states=x,
w1=w13_weight,
w2=w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=True,
activation=activation,
global_num_experts=global_num_experts,
expert_map=expert_map,
apply_router_weight_on_input=apply_router_weight_on_input,
)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
routed_scaling_factor: float = 1.0,
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
enable_eplb: bool = False,
expert_load_view: Optional[torch.Tensor] = None,
logical_to_physical_map: Optional[torch.Tensor] = None,
logical_replica_count: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
if enable_eplb:
raise NotImplementedError("EPLB is not supported for mxfp4")
if self.mxfp4_backend == Mxfp4Backend.MARLIN:
topk_weights, topk_ids, _ = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
routed_scaling_factor=routed_scaling_factor,
e_score_correction_bias=e_score_correction_bias)
return torch.ops.vllm.fused_marlin_moe(
x,
layer.w13_weight,
layer.w2_weight,
layer.w13_bias,
layer.w2_bias,
layer.w13_weight_scale,
layer.w2_weight_scale,
router_logits,
topk_weights,
topk_ids,
global_scale1=None,
global_scale2=None,
quant_type_id=scalar_types.float4_e2m1f.id,
apply_router_weight_on_input=apply_router_weight_on_input,
global_num_experts=global_num_experts,
activation=activation,
expert_map=expert_map)
if self.fused_experts is not None:
return self._route_and_experts(
layer,
x,
router_logits,
top_k,
renormalize,
use_grouped_topk,
topk_group,
num_expert_group,
global_num_experts,
expert_map,
custom_routing_function,
scoring_func,
e_score_correction_bias,
apply_router_weight_on_input,
activation,
enable_eplb,
expert_load_view,
logical_to_physical_map,
logical_replica_count,
)
assert _can_support_mxfp4(
use_grouped_topk, topk_group, num_expert_group, expert_map,
custom_routing_function, e_score_correction_bias,
apply_router_weight_on_input, scoring_func, activation,
expert_load_view, logical_to_physical_map,
logical_replica_count), (
"MXFP4 are not supported with this configuration.")
if (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM
or self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16):
from flashinfer import trtllm_fp4_block_scale_moe
if self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_BF16:
assert x.dtype == torch.bfloat16
x_quant = x
x_scale = None
elif self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_TRTLLM:
from flashinfer import mxfp8_quantize
x_quant, x_scale = mxfp8_quantize(x, False) # to mxfp8
x_scale = x_scale.view(torch.float8_e4m3fn).reshape(
*x.shape[:-1], -1)
trtllm_gen_output = trtllm_fp4_block_scale_moe(
router_logits.to(torch.bfloat16),
None, # routing_bias
x_quant,
x_scale,
layer.w13_weight, # uint8 (e2m1 x 2)
layer.w13_weight_scale, # uint8 (e4m3 x 2)
layer.w13_bias, # fp32 per expert per channel
layer.gemm1_alpha, # fp32 per expert
layer.gemm1_beta, # fp32 per expert
layer.gemm1_clamp_limit, # fp32 per expert
layer.w2_weight, # uint8 (e2m1 x 2)
layer.w2_weight_scale, # ue8m0
layer.w2_bias, # fp32 per expert per channel
None, # output1_scale_scalar
None, # output1_scale_gate_scalar
None, # output2_scale_scalar
global_num_experts,
top_k,
None, # n_group
None, # topk_group
self.intermediate_size, # padded to multiple of 256
layer.ep_rank * layer.local_num_experts, # local_expert_offset
self.num_experts, # local num experts
None,
self._get_tile_tokens_dim(x, top_k),
1 if renormalize else 0, # routing_method_type, renormalize
True, # do finalize
tune_max_num_tokens=self.max_capture_size,
)[0]
return trtllm_gen_output
elif (self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS
or self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16):
from vllm.utils.flashinfer import flashinfer_cutlass_fused_moe
topk_weights, topk_ids, _ = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias,
)
# Backend-specific preparation
if self.mxfp4_backend == Mxfp4Backend.SM100_FI_MXFP4_MXFP8_CUTLASS:
from flashinfer import mxfp8_quantize
x_quant, x_scale = mxfp8_quantize(x, True, 32)
fake_input_scale = torch.ones(self.num_experts,
device=x.device)
quant_scales = [
layer.w13_weight_scale.contiguous().view(torch.int32),
fake_input_scale,
layer.w2_weight_scale.contiguous().view(torch.int32),
fake_input_scale,
]
fi_input = x_quant
extra_kwargs = dict(
use_mxfp8_act_scaling=True,
input_sf=x_scale,
fc1_expert_weights=layer.w13_weight.contiguous().view(
torch.long),
fc2_expert_weights=layer.w2_weight.contiguous().view(
torch.long),
)
elif self.mxfp4_backend == Mxfp4Backend.SM90_FI_MXFP4_BF16:
assert x.dtype == torch.bfloat16
quant_scales = [
layer.w13_weight_scale,
layer.w2_weight_scale,
]
fi_input = x
extra_kwargs = dict(
use_w4_group_scaling=True,
fc1_expert_weights=layer.w13_weight,
fc2_expert_weights=layer.w2_weight,
)
output = torch.empty_like(x, dtype=torch.bfloat16)
_ = flashinfer_cutlass_fused_moe(
input=fi_input,
token_selected_experts=topk_ids.to(torch.int).contiguous(),
token_final_scales=topk_weights,
output_dtype=torch.bfloat16,
output=output,
quant_scales=quant_scales,
fc1_expert_biases=layer.w13_bias,
fc2_expert_biases=layer.w2_bias,
swiglu_alpha=layer.gemm1_alpha,
swiglu_beta=layer.gemm1_beta,
swiglu_limit=layer.gemm1_clamp_limit,
tp_size=self.moe.tp_size,
tp_rank=self.moe.tp_rank,
ep_size=self.moe.ep_size,
ep_rank=self.moe.ep_rank,
tune_max_num_tokens=self.max_capture_size,
**extra_kwargs,
)
return output
elif self.mxfp4_backend == Mxfp4Backend.TRITON:
from vllm.model_executor.layers.fused_moe.gpt_oss_triton_kernels_moe import ( # noqa: E501
triton_kernel_moe_forward)
return triton_kernel_moe_forward(
hidden_states=x,
w1=self.w13_weight_triton_tensor,
w2=self.w2_weight_triton_tensor,
gating_output=router_logits,
topk=top_k,
renormalize=renormalize,
global_num_experts=global_num_experts,
expert_map=expert_map,
quant_config=self.moe_quant_config,
apply_router_weight_on_input=apply_router_weight_on_input,
)
else:
raise ValueError(f"Unsupported backend: {self.mxfp4_backend}")