Skip to content

vllm.model_executor.layers.fused_moe

Modules:

Name Description
batched_deep_gemm_moe
batched_triton_or_deep_gemm_moe
config
cpu_fused_moe
cutlass_moe

CUTLASS based Fused MoE kernels.

deep_gemm_moe
deep_gemm_utils

Taken from https://github.com/ModelTC/LightLLM/blob/8ed97c74c18f11505b048b1ba00ba5c0cef8bff6/lightllm/common/fused_moe/deepep_scatter_gather.py

deepep_ht_prepare_finalize
deepep_ll_prepare_finalize
flashinfer_cutlass_moe
flashinfer_cutlass_prepare_finalize
flashinfer_trtllm_moe
fused_batched_moe

Fused batched MoE kernel.

fused_marlin_moe

Fused MoE utilities for GPTQ.

fused_moe

Fused MoE Triton kernels.

gpt_oss_triton_kernels_moe
layer
modular_kernel
moe_align_block_size
moe_pallas
moe_permute_unpermute
moe_torch_iterative
pplx_prepare_finalize
prepare_finalize
rocm_aiter_fused_moe
routing_simulator

Token-to-Expert Routing Simulator

topk_weight_and_reduce
triton_deep_gemm_moe
trtllm_moe
utils

__all__ module-attribute

__all__ = [
    "FusedMoE",
    "FusedMoEConfig",
    "FusedMoEMethodBase",
    "FusedMoeWeightScaleSupported",
    "FusedMoEPermuteExpertsUnpermute",
    "FusedMoEActivationFormat",
    "FusedMoEPrepareAndFinalize",
    "activation_without_mul",
    "override_config",
    "get_config",
]

_config module-attribute

_config: Optional[dict[str, Any]] = None

BatchedDeepGemmExperts

Bases: FusedMoEPermuteExpertsUnpermute

Source code in vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py
class BatchedDeepGemmExperts(mk.FusedMoEPermuteExpertsUnpermute):

    def __init__(
        self,
        max_num_tokens: int,
        num_dispatchers: int,
        quant_config: FusedMoEQuantConfig,
    ):
        """
        max_num_tokens: Maximum number of tokens from a DP Rank
        num_dispatchers: The number of DP dispatchers.
        quant_config: Quantization configuration
        """
        super().__init__(quant_config)
        assert self.block_shape == deep_gemm_block_shape()
        self.max_num_tokens = max_num_tokens
        self.num_dispatchers = num_dispatchers

    @property
    def activation_formats(
        self
    ) -> tuple[mk.FusedMoEActivationFormat, mk.FusedMoEActivationFormat]:
        return (mk.FusedMoEActivationFormat.BatchedExperts,
                mk.FusedMoEActivationFormat.BatchedExperts)

    def supports_chunking(self) -> bool:
        return False

    def supports_expert_map(self) -> bool:
        return False

    def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
        # Let PrepareAndFinalize::finalize() decide the impl.
        return TopKWeightAndReduceDelegate()

    def workspace_shapes(
        self,
        a: torch.Tensor,
        aq: torch.Tensor,
        M: int,
        N: int,
        K: int,
        topk: int,
        global_num_experts: int,
        local_num_experts: int,
        expert_tokens_metadata: Optional[mk.ExpertTokensMetadata],
    ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
        assert a.dim() == 2
        # FIXME (varun): We should be able to dispatch only from the leader
        # DP ranks in the case of TP > 1. At the moment, all the Ranks
        # end up sending their tokens. This needs to be fixed.
        num_dispatchers = self.num_dispatchers
        num_experts = local_num_experts
        max_num_tokens = a.size(
            0) if self.max_num_tokens is None else self.max_num_tokens
        workspace13 = (num_experts, max_num_tokens * num_dispatchers,
                       max(K, N))
        workspace2 = (num_experts, max_num_tokens * num_dispatchers, (N // 2))
        output = (num_experts, max_num_tokens * num_dispatchers, K)
        return (workspace13, workspace2, output, a.dtype)

    def apply(
        self,
        output: torch.Tensor,
        hidden_states: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        activation: str,
        global_num_experts: int,
        expert_map: Optional[torch.Tensor],
        a1q_scale: Optional[torch.Tensor],
        a2_scale: Optional[torch.Tensor],
        workspace13: torch.Tensor,
        workspace2: torch.Tensor,
        expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
        apply_router_weight_on_input: bool,
    ):
        assert expert_tokens_meta is not None
        expert_num_tokens = expert_tokens_meta.expert_num_tokens

        assert hidden_states.ndim == 3
        assert self.block_shape is not None

        a1q = hidden_states
        _, N, K = w1.size()

        assert w2.size(1) == K

        E, max_num_tokens, N, K, top_k_num = mk._moe_problem_size(
            hidden_states, w1, w2, topk_ids)

        workspace1 = _resize_cache(workspace13, (E, max_num_tokens, N))

        # (from deepgemm docs) : A value hint (which is a value on CPU)
        # for the M expectation of each batch, correctly setting this value
        # may lead to better performance.
        expected_m = max_num_tokens
        fp8_m_grouped_gemm_nt_masked((a1q, a1q_scale), (w1, self.w1_scale),
                                     workspace1, expert_num_tokens, expected_m)

        a2q, a2q_scale = silu_mul_fp8_quant_deep_gemm_cuda(
            workspace1, expert_num_tokens)

        fp8_m_grouped_gemm_nt_masked((a2q, a2q_scale), (w2, self.w2_scale),
                                     output, expert_num_tokens, expected_m)

activation_formats property

max_num_tokens instance-attribute

max_num_tokens = max_num_tokens

num_dispatchers instance-attribute

num_dispatchers = num_dispatchers

__init__

__init__(
    max_num_tokens: int,
    num_dispatchers: int,
    quant_config: FusedMoEQuantConfig,
)

max_num_tokens: Maximum number of tokens from a DP Rank num_dispatchers: The number of DP dispatchers. quant_config: Quantization configuration

Source code in vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py
def __init__(
    self,
    max_num_tokens: int,
    num_dispatchers: int,
    quant_config: FusedMoEQuantConfig,
):
    """
    max_num_tokens: Maximum number of tokens from a DP Rank
    num_dispatchers: The number of DP dispatchers.
    quant_config: Quantization configuration
    """
    super().__init__(quant_config)
    assert self.block_shape == deep_gemm_block_shape()
    self.max_num_tokens = max_num_tokens
    self.num_dispatchers = num_dispatchers

apply

apply(
    output: Tensor,
    hidden_states: Tensor,
    w1: Tensor,
    w2: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    activation: str,
    global_num_experts: int,
    expert_map: Optional[Tensor],
    a1q_scale: Optional[Tensor],
    a2_scale: Optional[Tensor],
    workspace13: Tensor,
    workspace2: Tensor,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
)
Source code in vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py
def apply(
    self,
    output: torch.Tensor,
    hidden_states: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    activation: str,
    global_num_experts: int,
    expert_map: Optional[torch.Tensor],
    a1q_scale: Optional[torch.Tensor],
    a2_scale: Optional[torch.Tensor],
    workspace13: torch.Tensor,
    workspace2: torch.Tensor,
    expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
):
    assert expert_tokens_meta is not None
    expert_num_tokens = expert_tokens_meta.expert_num_tokens

    assert hidden_states.ndim == 3
    assert self.block_shape is not None

    a1q = hidden_states
    _, N, K = w1.size()

    assert w2.size(1) == K

    E, max_num_tokens, N, K, top_k_num = mk._moe_problem_size(
        hidden_states, w1, w2, topk_ids)

    workspace1 = _resize_cache(workspace13, (E, max_num_tokens, N))

    # (from deepgemm docs) : A value hint (which is a value on CPU)
    # for the M expectation of each batch, correctly setting this value
    # may lead to better performance.
    expected_m = max_num_tokens
    fp8_m_grouped_gemm_nt_masked((a1q, a1q_scale), (w1, self.w1_scale),
                                 workspace1, expert_num_tokens, expected_m)

    a2q, a2q_scale = silu_mul_fp8_quant_deep_gemm_cuda(
        workspace1, expert_num_tokens)

    fp8_m_grouped_gemm_nt_masked((a2q, a2q_scale), (w2, self.w2_scale),
                                 output, expert_num_tokens, expected_m)

finalize_weight_and_reduce_impl

finalize_weight_and_reduce_impl() -> TopKWeightAndReduce
Source code in vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py
def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
    # Let PrepareAndFinalize::finalize() decide the impl.
    return TopKWeightAndReduceDelegate()

supports_chunking

supports_chunking() -> bool
Source code in vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py
def supports_chunking(self) -> bool:
    return False

supports_expert_map

supports_expert_map() -> bool
Source code in vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py
def supports_expert_map(self) -> bool:
    return False

workspace_shapes

workspace_shapes(
    a: Tensor,
    aq: Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_metadata: Optional[ExpertTokensMetadata],
) -> tuple[
    tuple[int, ...], tuple[int, ...], tuple[int, ...], dtype
]
Source code in vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py
def workspace_shapes(
    self,
    a: torch.Tensor,
    aq: torch.Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_metadata: Optional[mk.ExpertTokensMetadata],
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
    assert a.dim() == 2
    # FIXME (varun): We should be able to dispatch only from the leader
    # DP ranks in the case of TP > 1. At the moment, all the Ranks
    # end up sending their tokens. This needs to be fixed.
    num_dispatchers = self.num_dispatchers
    num_experts = local_num_experts
    max_num_tokens = a.size(
        0) if self.max_num_tokens is None else self.max_num_tokens
    workspace13 = (num_experts, max_num_tokens * num_dispatchers,
                   max(K, N))
    workspace2 = (num_experts, max_num_tokens * num_dispatchers, (N // 2))
    output = (num_experts, max_num_tokens * num_dispatchers, K)
    return (workspace13, workspace2, output, a.dtype)

BatchedTritonExperts

Bases: FusedMoEPermuteExpertsUnpermute

A Triton based MoE expert class that operates on expert batched format, i.e. E x max_num_tokens x K. This is the format that the pplx dispatch/combine kernels use.

Source code in vllm/model_executor/layers/fused_moe/fused_batched_moe.py
class BatchedTritonExperts(mk.FusedMoEPermuteExpertsUnpermute):
    """
    A Triton based MoE expert class that operates on expert batched format,
    i.e. E x max_num_tokens x K.  This is the format that the pplx
    dispatch/combine kernels use.
    """

    def __init__(
        self,
        max_num_tokens: int,
        num_dispatchers: int,
        quant_config: FusedMoEQuantConfig,
    ):
        super().__init__(quant_config)
        assert not self.quant_config.use_int8_w8a8, "NYI"
        assert not self.quant_config.use_int8_w8a16, "NYI"
        assert not self.quant_config.use_int4_w4a16, "NYI"
        assert not self.quant_config.use_mxfp4_w4a4, "NYI"
        assert max_num_tokens > 0
        assert num_dispatchers > 0
        self.max_num_tokens = max_num_tokens
        self.num_dispatchers = num_dispatchers

    @property
    def activation_formats(
        self
    ) -> tuple[mk.FusedMoEActivationFormat, mk.FusedMoEActivationFormat]:
        return (mk.FusedMoEActivationFormat.BatchedExperts,
                mk.FusedMoEActivationFormat.BatchedExperts)

    def supports_chunking(self) -> bool:
        return False

    def supports_expert_map(self) -> bool:
        return False

    def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
        # Let PrepareAndFinalize::finalize() decide the impl.
        return TopKWeightAndReduceDelegate()

    def workspace_shapes(
        self,
        a: torch.Tensor,
        aq: torch.Tensor,
        M: int,
        N: int,
        K: int,
        topk: int,
        global_num_experts: int,
        local_num_experts: int,
        expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
    ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
        assert a.dim() == 2
        num_dp = self.num_dispatchers
        num_experts = local_num_experts
        max_num_tokens = self.max_num_tokens
        workspace13 = (num_experts, max_num_tokens * num_dp, max(K, N))
        workspace2 = (num_experts, max_num_tokens * num_dp, (N // 2))
        output = (num_experts, max_num_tokens * num_dp, K)
        return (workspace13, workspace2, output, a.dtype)

    def apply(
        self,
        output: torch.Tensor,
        hidden_states: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        activation: str,
        global_num_experts: int,
        expert_map: Optional[torch.Tensor],
        a1q_scale: Optional[torch.Tensor],
        a2_scale: Optional[torch.Tensor],
        workspace13: torch.Tensor,
        workspace2: torch.Tensor,
        expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
        apply_router_weight_on_input: bool,
    ):
        # Check constraints.
        if self.quant_config.use_int4_w4a16:
            assert hidden_states.size(-1) // 2 == w1.size(2), (
                "Hidden size mismatch")
        else:
            assert hidden_states.size(-1) == w1.size(2), (
                f"Hidden size mismatch {hidden_states.size(-1)} "
                f"!= {w1.size(2)}")

        assert hidden_states.is_contiguous(
        ), "Hidden_states must be contiguous"
        assert w1.stride(-1) == 1, "Stride of last dimension must be 1"
        assert w2.stride(-1) == 1, "Stride of last dimension must be 1"
        assert hidden_states.dtype in [
            torch.float32, torch.float16, torch.bfloat16, torch.float8_e4m3fn
        ]
        assert expert_tokens_meta is not None

        expert_num_tokens = expert_tokens_meta.expert_num_tokens

        E, max_num_tokens, N, K, top_k_num = mk._moe_problem_size(
            hidden_states, w1, w2, topk_ids)

        assert w1.size(0) == E
        assert w2.size(0) == E

        config_dtype = self.quant_config.config_name(hidden_states.dtype)

        config = try_get_optimal_moe_config(
            w1.size(),
            w2.size(),
            top_k_num,
            config_dtype,
            max_num_tokens,
            block_shape=self.block_shape,
        )

        if hidden_states.dtype == torch.bfloat16:
            compute_type = tl.bfloat16
        elif hidden_states.dtype == torch.float16:
            compute_type = tl.float16
        elif hidden_states.dtype == torch.float32:
            compute_type = tl.float32
        elif hidden_states.dtype == torch.float8_e4m3fn:
            compute_type = tl.bfloat16
        else:
            raise ValueError(
                f"Unsupported compute_type: {hidden_states.dtype}")

        # We can reuse the memory between these because by the time we need
        # cache3, we're done with cache1
        intermediate_cache1 = _resize_cache(workspace13,
                                            (E, max_num_tokens, N))
        intermediate_cache2 = _resize_cache(workspace2,
                                            (E, max_num_tokens, N // 2))

        # TODO(bnell): should this be done for any quantized type?
        if self.quant_config.use_fp8_w8a8:
            intermediate_cache1.fill_(0)

        a1q_scale = normalize_batched_scales_shape(a1q_scale, E)

        # MM1
        invoke_moe_batched_triton_kernel(
            A=hidden_states,
            B=w1,
            C=intermediate_cache1,
            expert_num_tokens=expert_num_tokens,
            compute_type=compute_type,
            A_scale=a1q_scale,
            B_scale=self.w1_scale,
            B_zp=self.w1_zp,
            use_fp8_w8a8=self.quant_config.use_fp8_w8a8,
            use_int8_w8a16=self.quant_config.use_int8_w8a16,
            use_int4_w4a16=self.quant_config.use_int4_w4a16,
            config=config,
            per_act_token_quant=self.per_act_token_quant,
            block_shape=self.block_shape)

        intermediate_cache2.fill_(0)

        # TODO (bnell): use triton utility from batched deep gemm.
        self.activation(activation, intermediate_cache2.view(-1, N // 2),
                        intermediate_cache1.view(-1, N))

        qintermediate_cache2, a2q_scale = batched_moe_kernel_quantize_input(
            intermediate_cache2, a2_scale, max_num_tokens, E, N,
            expert_num_tokens, self.quant_dtype, self.per_act_token_quant,
            self.block_shape)

        invoke_moe_batched_triton_kernel(
            A=qintermediate_cache2,
            B=w2,
            C=output,
            expert_num_tokens=expert_num_tokens,
            compute_type=compute_type,
            A_scale=a2q_scale,
            B_scale=self.w2_scale,
            B_zp=self.w2_zp,
            use_fp8_w8a8=self.quant_config.use_fp8_w8a8,
            use_int8_w8a16=self.quant_config.use_int8_w8a16,
            use_int4_w4a16=self.quant_config.use_int4_w4a16,
            config=config,
            per_act_token_quant=self.per_act_token_quant,
            block_shape=self.block_shape)

activation_formats property

max_num_tokens instance-attribute

max_num_tokens = max_num_tokens

num_dispatchers instance-attribute

num_dispatchers = num_dispatchers

__init__

__init__(
    max_num_tokens: int,
    num_dispatchers: int,
    quant_config: FusedMoEQuantConfig,
)
Source code in vllm/model_executor/layers/fused_moe/fused_batched_moe.py
def __init__(
    self,
    max_num_tokens: int,
    num_dispatchers: int,
    quant_config: FusedMoEQuantConfig,
):
    super().__init__(quant_config)
    assert not self.quant_config.use_int8_w8a8, "NYI"
    assert not self.quant_config.use_int8_w8a16, "NYI"
    assert not self.quant_config.use_int4_w4a16, "NYI"
    assert not self.quant_config.use_mxfp4_w4a4, "NYI"
    assert max_num_tokens > 0
    assert num_dispatchers > 0
    self.max_num_tokens = max_num_tokens
    self.num_dispatchers = num_dispatchers

apply

apply(
    output: Tensor,
    hidden_states: Tensor,
    w1: Tensor,
    w2: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    activation: str,
    global_num_experts: int,
    expert_map: Optional[Tensor],
    a1q_scale: Optional[Tensor],
    a2_scale: Optional[Tensor],
    workspace13: Tensor,
    workspace2: Tensor,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
)
Source code in vllm/model_executor/layers/fused_moe/fused_batched_moe.py
def apply(
    self,
    output: torch.Tensor,
    hidden_states: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    activation: str,
    global_num_experts: int,
    expert_map: Optional[torch.Tensor],
    a1q_scale: Optional[torch.Tensor],
    a2_scale: Optional[torch.Tensor],
    workspace13: torch.Tensor,
    workspace2: torch.Tensor,
    expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
):
    # Check constraints.
    if self.quant_config.use_int4_w4a16:
        assert hidden_states.size(-1) // 2 == w1.size(2), (
            "Hidden size mismatch")
    else:
        assert hidden_states.size(-1) == w1.size(2), (
            f"Hidden size mismatch {hidden_states.size(-1)} "
            f"!= {w1.size(2)}")

    assert hidden_states.is_contiguous(
    ), "Hidden_states must be contiguous"
    assert w1.stride(-1) == 1, "Stride of last dimension must be 1"
    assert w2.stride(-1) == 1, "Stride of last dimension must be 1"
    assert hidden_states.dtype in [
        torch.float32, torch.float16, torch.bfloat16, torch.float8_e4m3fn
    ]
    assert expert_tokens_meta is not None

    expert_num_tokens = expert_tokens_meta.expert_num_tokens

    E, max_num_tokens, N, K, top_k_num = mk._moe_problem_size(
        hidden_states, w1, w2, topk_ids)

    assert w1.size(0) == E
    assert w2.size(0) == E

    config_dtype = self.quant_config.config_name(hidden_states.dtype)

    config = try_get_optimal_moe_config(
        w1.size(),
        w2.size(),
        top_k_num,
        config_dtype,
        max_num_tokens,
        block_shape=self.block_shape,
    )

    if hidden_states.dtype == torch.bfloat16:
        compute_type = tl.bfloat16
    elif hidden_states.dtype == torch.float16:
        compute_type = tl.float16
    elif hidden_states.dtype == torch.float32:
        compute_type = tl.float32
    elif hidden_states.dtype == torch.float8_e4m3fn:
        compute_type = tl.bfloat16
    else:
        raise ValueError(
            f"Unsupported compute_type: {hidden_states.dtype}")

    # We can reuse the memory between these because by the time we need
    # cache3, we're done with cache1
    intermediate_cache1 = _resize_cache(workspace13,
                                        (E, max_num_tokens, N))
    intermediate_cache2 = _resize_cache(workspace2,
                                        (E, max_num_tokens, N // 2))

    # TODO(bnell): should this be done for any quantized type?
    if self.quant_config.use_fp8_w8a8:
        intermediate_cache1.fill_(0)

    a1q_scale = normalize_batched_scales_shape(a1q_scale, E)

    # MM1
    invoke_moe_batched_triton_kernel(
        A=hidden_states,
        B=w1,
        C=intermediate_cache1,
        expert_num_tokens=expert_num_tokens,
        compute_type=compute_type,
        A_scale=a1q_scale,
        B_scale=self.w1_scale,
        B_zp=self.w1_zp,
        use_fp8_w8a8=self.quant_config.use_fp8_w8a8,
        use_int8_w8a16=self.quant_config.use_int8_w8a16,
        use_int4_w4a16=self.quant_config.use_int4_w4a16,
        config=config,
        per_act_token_quant=self.per_act_token_quant,
        block_shape=self.block_shape)

    intermediate_cache2.fill_(0)

    # TODO (bnell): use triton utility from batched deep gemm.
    self.activation(activation, intermediate_cache2.view(-1, N // 2),
                    intermediate_cache1.view(-1, N))

    qintermediate_cache2, a2q_scale = batched_moe_kernel_quantize_input(
        intermediate_cache2, a2_scale, max_num_tokens, E, N,
        expert_num_tokens, self.quant_dtype, self.per_act_token_quant,
        self.block_shape)

    invoke_moe_batched_triton_kernel(
        A=qintermediate_cache2,
        B=w2,
        C=output,
        expert_num_tokens=expert_num_tokens,
        compute_type=compute_type,
        A_scale=a2q_scale,
        B_scale=self.w2_scale,
        B_zp=self.w2_zp,
        use_fp8_w8a8=self.quant_config.use_fp8_w8a8,
        use_int8_w8a16=self.quant_config.use_int8_w8a16,
        use_int4_w4a16=self.quant_config.use_int4_w4a16,
        config=config,
        per_act_token_quant=self.per_act_token_quant,
        block_shape=self.block_shape)

finalize_weight_and_reduce_impl

finalize_weight_and_reduce_impl() -> TopKWeightAndReduce
Source code in vllm/model_executor/layers/fused_moe/fused_batched_moe.py
def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
    # Let PrepareAndFinalize::finalize() decide the impl.
    return TopKWeightAndReduceDelegate()

supports_chunking

supports_chunking() -> bool
Source code in vllm/model_executor/layers/fused_moe/fused_batched_moe.py
def supports_chunking(self) -> bool:
    return False

supports_expert_map

supports_expert_map() -> bool
Source code in vllm/model_executor/layers/fused_moe/fused_batched_moe.py
def supports_expert_map(self) -> bool:
    return False

workspace_shapes

workspace_shapes(
    a: Tensor,
    aq: Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
) -> tuple[
    tuple[int, ...], tuple[int, ...], tuple[int, ...], dtype
]
Source code in vllm/model_executor/layers/fused_moe/fused_batched_moe.py
def workspace_shapes(
    self,
    a: torch.Tensor,
    aq: torch.Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
    assert a.dim() == 2
    num_dp = self.num_dispatchers
    num_experts = local_num_experts
    max_num_tokens = self.max_num_tokens
    workspace13 = (num_experts, max_num_tokens * num_dp, max(K, N))
    workspace2 = (num_experts, max_num_tokens * num_dp, (N // 2))
    output = (num_experts, max_num_tokens * num_dp, K)
    return (workspace13, workspace2, output, a.dtype)

BatchedTritonOrDeepGemmExperts

Bases: FusedMoEPermuteExpertsUnpermute

Source code in vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py
class BatchedTritonOrDeepGemmExperts(mk.FusedMoEPermuteExpertsUnpermute):

    def __init__(
        self,
        max_num_tokens: int,
        num_dispatchers: int,
        quant_config: FusedMoEQuantConfig,
        allow_deep_gemm: bool = False,
    ):
        super().__init__(quant_config)

        self.batched_triton_experts = BatchedTritonExperts(
            max_num_tokens=max_num_tokens,
            num_dispatchers=num_dispatchers,
            quant_config=self.quant_config,
        )

        self.allow_deep_gemm = (allow_deep_gemm
                                and self.quant_config.use_fp8_w8a8 and
                                self.block_shape == deep_gemm_block_shape())

        self.batched_deep_gemm_experts = BatchedDeepGemmExperts(
            max_num_tokens=max_num_tokens,
            num_dispatchers=num_dispatchers,
            quant_config=self.quant_config,
        ) if self.allow_deep_gemm else None

        assert (self.batched_deep_gemm_experts is not None
                or self.batched_triton_experts is not None)

    @property
    def activation_formats(
        self
    ) -> tuple[mk.FusedMoEActivationFormat, mk.FusedMoEActivationFormat]:
        if self.batched_triton_experts is not None:
            assert (self.batched_deep_gemm_experts is None
                    or self.batched_deep_gemm_experts.activation_formats
                    == self.batched_triton_experts.activation_formats)
            return self.batched_triton_experts.activation_formats
        else:
            assert self.batched_deep_gemm_experts is not None
            return self.batched_deep_gemm_experts.activation_formats

    def supports_chunking(self) -> bool:
        bdge = self.batched_deep_gemm_experts
        bte = self.batched_triton_experts
        return ((bdge is None or bdge.supports_chunking())
                and (bte is None or bte.supports_chunking()))

    def supports_expert_map(self) -> bool:
        bdge = self.batched_deep_gemm_experts
        bte = self.batched_triton_experts
        return ((bdge is None or bdge.supports_expert_map())
                and (bte is None or bte.supports_expert_map()))

    def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
        bdge = self.batched_deep_gemm_experts
        bte = self.batched_triton_experts
        bdge_war = bdge.finalize_weight_and_reduce_impl() if bdge else None
        bte_war = bte.finalize_weight_and_reduce_impl() if bte else None
        is_bdge_war = bdge_war is not None
        is_bte_war = bte_war is not None

        if is_bdge_war and is_bte_war:
            assert bdge_war == bte_war, (
                "Both implementations should agree on WeightAndReduce impls. "
                f"Got bdge_war: {bdge_war}, and bte_war: {bte_war}")

        if bdge_war is not None:
            return bdge_war

        assert bte_war is not None
        return bte_war

    def workspace_shapes(
        self,
        a: torch.Tensor,
        aq: torch.Tensor,
        M: int,
        N: int,
        K: int,
        topk: int,
        global_num_experts: int,
        local_num_experts: int,
        expert_tokens_metadata: Optional[mk.ExpertTokensMetadata],
    ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
        # Note: the deep gemm workspaces are strictly larger than the triton
        # workspaces so we can be pessimistic here and allocate for DeepGemm
        # even if we fall back to triton later, e.g. if expert maps are set.
        if self.allow_deep_gemm:
            assert self.batched_deep_gemm_experts is not None
            return self.batched_deep_gemm_experts.workspace_shapes(
                a, aq, M, N, K, topk, global_num_experts, local_num_experts,
                expert_tokens_metadata)
        else:
            assert self.batched_triton_experts is not None
            return self.batched_triton_experts.workspace_shapes(
                a, aq, M, N, K, topk, global_num_experts, local_num_experts,
                expert_tokens_metadata)

    def apply(
        self,
        output: torch.Tensor,
        hidden_states: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        activation: str,
        global_num_experts: int,
        expert_map: Optional[torch.Tensor],
        a1q_scale: Optional[torch.Tensor],
        a2_scale: Optional[torch.Tensor],
        workspace13: torch.Tensor,
        workspace2: torch.Tensor,
        expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
        apply_router_weight_on_input: bool,
    ):
        experts = (self.batched_deep_gemm_experts
                   if self.allow_deep_gemm else self.batched_triton_experts)
        assert experts is not None
        experts.apply(output, hidden_states, w1, w2, topk_weights, topk_ids,
                      activation, global_num_experts, expert_map, a1q_scale,
                      a2_scale, workspace13, workspace2, expert_tokens_meta,
                      apply_router_weight_on_input)

activation_formats property

allow_deep_gemm instance-attribute

allow_deep_gemm = (
    allow_deep_gemm
    and use_fp8_w8a8
    and block_shape == deep_gemm_block_shape()
)

batched_deep_gemm_experts instance-attribute

batched_deep_gemm_experts = (
    BatchedDeepGemmExperts(
        max_num_tokens=max_num_tokens,
        num_dispatchers=num_dispatchers,
        quant_config=quant_config,
    )
    if allow_deep_gemm
    else None
)

batched_triton_experts instance-attribute

batched_triton_experts = BatchedTritonExperts(
    max_num_tokens=max_num_tokens,
    num_dispatchers=num_dispatchers,
    quant_config=quant_config,
)

__init__

__init__(
    max_num_tokens: int,
    num_dispatchers: int,
    quant_config: FusedMoEQuantConfig,
    allow_deep_gemm: bool = False,
)
Source code in vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py
def __init__(
    self,
    max_num_tokens: int,
    num_dispatchers: int,
    quant_config: FusedMoEQuantConfig,
    allow_deep_gemm: bool = False,
):
    super().__init__(quant_config)

    self.batched_triton_experts = BatchedTritonExperts(
        max_num_tokens=max_num_tokens,
        num_dispatchers=num_dispatchers,
        quant_config=self.quant_config,
    )

    self.allow_deep_gemm = (allow_deep_gemm
                            and self.quant_config.use_fp8_w8a8 and
                            self.block_shape == deep_gemm_block_shape())

    self.batched_deep_gemm_experts = BatchedDeepGemmExperts(
        max_num_tokens=max_num_tokens,
        num_dispatchers=num_dispatchers,
        quant_config=self.quant_config,
    ) if self.allow_deep_gemm else None

    assert (self.batched_deep_gemm_experts is not None
            or self.batched_triton_experts is not None)

apply

apply(
    output: Tensor,
    hidden_states: Tensor,
    w1: Tensor,
    w2: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    activation: str,
    global_num_experts: int,
    expert_map: Optional[Tensor],
    a1q_scale: Optional[Tensor],
    a2_scale: Optional[Tensor],
    workspace13: Tensor,
    workspace2: Tensor,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
)
Source code in vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py
def apply(
    self,
    output: torch.Tensor,
    hidden_states: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    activation: str,
    global_num_experts: int,
    expert_map: Optional[torch.Tensor],
    a1q_scale: Optional[torch.Tensor],
    a2_scale: Optional[torch.Tensor],
    workspace13: torch.Tensor,
    workspace2: torch.Tensor,
    expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
):
    experts = (self.batched_deep_gemm_experts
               if self.allow_deep_gemm else self.batched_triton_experts)
    assert experts is not None
    experts.apply(output, hidden_states, w1, w2, topk_weights, topk_ids,
                  activation, global_num_experts, expert_map, a1q_scale,
                  a2_scale, workspace13, workspace2, expert_tokens_meta,
                  apply_router_weight_on_input)

finalize_weight_and_reduce_impl

finalize_weight_and_reduce_impl() -> TopKWeightAndReduce
Source code in vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py
def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
    bdge = self.batched_deep_gemm_experts
    bte = self.batched_triton_experts
    bdge_war = bdge.finalize_weight_and_reduce_impl() if bdge else None
    bte_war = bte.finalize_weight_and_reduce_impl() if bte else None
    is_bdge_war = bdge_war is not None
    is_bte_war = bte_war is not None

    if is_bdge_war and is_bte_war:
        assert bdge_war == bte_war, (
            "Both implementations should agree on WeightAndReduce impls. "
            f"Got bdge_war: {bdge_war}, and bte_war: {bte_war}")

    if bdge_war is not None:
        return bdge_war

    assert bte_war is not None
    return bte_war

supports_chunking

supports_chunking() -> bool
Source code in vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py
def supports_chunking(self) -> bool:
    bdge = self.batched_deep_gemm_experts
    bte = self.batched_triton_experts
    return ((bdge is None or bdge.supports_chunking())
            and (bte is None or bte.supports_chunking()))

supports_expert_map

supports_expert_map() -> bool
Source code in vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py
def supports_expert_map(self) -> bool:
    bdge = self.batched_deep_gemm_experts
    bte = self.batched_triton_experts
    return ((bdge is None or bdge.supports_expert_map())
            and (bte is None or bte.supports_expert_map()))

workspace_shapes

workspace_shapes(
    a: Tensor,
    aq: Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_metadata: Optional[ExpertTokensMetadata],
) -> tuple[
    tuple[int, ...], tuple[int, ...], tuple[int, ...], dtype
]
Source code in vllm/model_executor/layers/fused_moe/batched_triton_or_deep_gemm_moe.py
def workspace_shapes(
    self,
    a: torch.Tensor,
    aq: torch.Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_metadata: Optional[mk.ExpertTokensMetadata],
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
    # Note: the deep gemm workspaces are strictly larger than the triton
    # workspaces so we can be pessimistic here and allocate for DeepGemm
    # even if we fall back to triton later, e.g. if expert maps are set.
    if self.allow_deep_gemm:
        assert self.batched_deep_gemm_experts is not None
        return self.batched_deep_gemm_experts.workspace_shapes(
            a, aq, M, N, K, topk, global_num_experts, local_num_experts,
            expert_tokens_metadata)
    else:
        assert self.batched_triton_experts is not None
        return self.batched_triton_experts.workspace_shapes(
            a, aq, M, N, K, topk, global_num_experts, local_num_experts,
            expert_tokens_metadata)

CutlassBatchedExpertsFp8

Bases: CutlassExpertsFp8Base

Source code in vllm/model_executor/layers/fused_moe/cutlass_moe.py
class CutlassBatchedExpertsFp8(CutlassExpertsFp8Base):

    def __init__(
        self,
        max_experts_per_worker: int,
        num_dispatchers: int,
        out_dtype: Optional[torch.dtype],
        ab_strides1: torch.Tensor,
        ab_strides2: torch.Tensor,
        c_strides1: torch.Tensor,
        c_strides2: torch.Tensor,
        quant_config: FusedMoEQuantConfig,
    ):
        super().__init__(
            out_dtype,
            ab_strides1,
            ab_strides2,
            c_strides1,
            c_strides2,
            quant_config,
        )
        assert max_experts_per_worker > 0
        self.max_experts_per_worker = max_experts_per_worker
        self.num_dispatchers = num_dispatchers

    @property
    def activation_formats(
        self
    ) -> tuple[mk.FusedMoEActivationFormat, mk.FusedMoEActivationFormat]:
        return (mk.FusedMoEActivationFormat.BatchedExperts,
                mk.FusedMoEActivationFormat.BatchedExperts)

    def supports_chunking(self) -> bool:
        return False

    def supports_expert_map(self) -> bool:
        return False

    # TODO(bnell): maybe remove need for passing aq to workspace_shapes
    def workspace_shapes(
        self,
        a: torch.Tensor,
        aq: torch.Tensor,
        M: int,
        N: int,
        K: int,
        topk: int,
        global_num_experts: int,
        local_num_experts: int,
        expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
    ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
        padded_M = aq.size(1)
        num_dp = self.num_dispatchers
        assert num_dp is not None
        workspace1 = (self.max_experts_per_worker, padded_M * num_dp,
                      max(N, K))
        workspace2 = (self.max_experts_per_worker, padded_M * num_dp,
                      max(N // 2, K))
        output = (self.max_experts_per_worker, padded_M, K)
        return (workspace1, workspace2, output,
                self.out_dtype if self.out_dtype is not None else a.dtype)

activation_formats property

max_experts_per_worker instance-attribute

max_experts_per_worker = max_experts_per_worker

num_dispatchers instance-attribute

num_dispatchers = num_dispatchers

__init__

__init__(
    max_experts_per_worker: int,
    num_dispatchers: int,
    out_dtype: Optional[dtype],
    ab_strides1: Tensor,
    ab_strides2: Tensor,
    c_strides1: Tensor,
    c_strides2: Tensor,
    quant_config: FusedMoEQuantConfig,
)
Source code in vllm/model_executor/layers/fused_moe/cutlass_moe.py
def __init__(
    self,
    max_experts_per_worker: int,
    num_dispatchers: int,
    out_dtype: Optional[torch.dtype],
    ab_strides1: torch.Tensor,
    ab_strides2: torch.Tensor,
    c_strides1: torch.Tensor,
    c_strides2: torch.Tensor,
    quant_config: FusedMoEQuantConfig,
):
    super().__init__(
        out_dtype,
        ab_strides1,
        ab_strides2,
        c_strides1,
        c_strides2,
        quant_config,
    )
    assert max_experts_per_worker > 0
    self.max_experts_per_worker = max_experts_per_worker
    self.num_dispatchers = num_dispatchers

supports_chunking

supports_chunking() -> bool
Source code in vllm/model_executor/layers/fused_moe/cutlass_moe.py
def supports_chunking(self) -> bool:
    return False

supports_expert_map

supports_expert_map() -> bool
Source code in vllm/model_executor/layers/fused_moe/cutlass_moe.py
def supports_expert_map(self) -> bool:
    return False

workspace_shapes

workspace_shapes(
    a: Tensor,
    aq: Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
) -> tuple[
    tuple[int, ...], tuple[int, ...], tuple[int, ...], dtype
]
Source code in vllm/model_executor/layers/fused_moe/cutlass_moe.py
def workspace_shapes(
    self,
    a: torch.Tensor,
    aq: torch.Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
    padded_M = aq.size(1)
    num_dp = self.num_dispatchers
    assert num_dp is not None
    workspace1 = (self.max_experts_per_worker, padded_M * num_dp,
                  max(N, K))
    workspace2 = (self.max_experts_per_worker, padded_M * num_dp,
                  max(N // 2, K))
    output = (self.max_experts_per_worker, padded_M, K)
    return (workspace1, workspace2, output,
            self.out_dtype if self.out_dtype is not None else a.dtype)

CutlassExpertsFp8

Bases: CutlassExpertsFp8Base

Source code in vllm/model_executor/layers/fused_moe/cutlass_moe.py
class CutlassExpertsFp8(CutlassExpertsFp8Base):

    def __init__(
        self,
        out_dtype: Optional[torch.dtype],
        ab_strides1: torch.Tensor,
        ab_strides2: torch.Tensor,
        c_strides1: torch.Tensor,
        c_strides2: torch.Tensor,
        quant_config: FusedMoEQuantConfig,
    ):
        super().__init__(
            out_dtype,
            ab_strides1,
            ab_strides2,
            c_strides1,
            c_strides2,
            quant_config,
        )

    @property
    def activation_formats(
        self
    ) -> tuple[mk.FusedMoEActivationFormat, mk.FusedMoEActivationFormat]:
        return (mk.FusedMoEActivationFormat.Standard,
                mk.FusedMoEActivationFormat.Standard)

    def supports_chunking(self) -> bool:
        return True

    def supports_expert_map(self) -> bool:
        return True

    def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
        # topk weights and reduction are fused in moe_unpermute cuda kernel
        return TopKWeightAndReduceNoOP()

    def workspace_shapes(
        self,
        a: torch.Tensor,
        aq: torch.Tensor,
        M: int,
        N: int,
        K: int,
        topk: int,
        global_num_experts: int,
        local_num_experts: int,
        expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
    ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
        workspace1 = (M * topk, max(N, K))
        workspace2 = (M * topk, max(N // 2, K))
        output = (M, K)
        return (workspace1, workspace2, output,
                self.out_dtype if self.out_dtype is not None else a.dtype)

activation_formats property

__init__

__init__(
    out_dtype: Optional[dtype],
    ab_strides1: Tensor,
    ab_strides2: Tensor,
    c_strides1: Tensor,
    c_strides2: Tensor,
    quant_config: FusedMoEQuantConfig,
)
Source code in vllm/model_executor/layers/fused_moe/cutlass_moe.py
def __init__(
    self,
    out_dtype: Optional[torch.dtype],
    ab_strides1: torch.Tensor,
    ab_strides2: torch.Tensor,
    c_strides1: torch.Tensor,
    c_strides2: torch.Tensor,
    quant_config: FusedMoEQuantConfig,
):
    super().__init__(
        out_dtype,
        ab_strides1,
        ab_strides2,
        c_strides1,
        c_strides2,
        quant_config,
    )

finalize_weight_and_reduce_impl

finalize_weight_and_reduce_impl() -> TopKWeightAndReduce
Source code in vllm/model_executor/layers/fused_moe/cutlass_moe.py
def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
    # topk weights and reduction are fused in moe_unpermute cuda kernel
    return TopKWeightAndReduceNoOP()

supports_chunking

supports_chunking() -> bool
Source code in vllm/model_executor/layers/fused_moe/cutlass_moe.py
def supports_chunking(self) -> bool:
    return True

supports_expert_map

supports_expert_map() -> bool
Source code in vllm/model_executor/layers/fused_moe/cutlass_moe.py
def supports_expert_map(self) -> bool:
    return True

workspace_shapes

workspace_shapes(
    a: Tensor,
    aq: Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
) -> tuple[
    tuple[int, ...], tuple[int, ...], tuple[int, ...], dtype
]
Source code in vllm/model_executor/layers/fused_moe/cutlass_moe.py
def workspace_shapes(
    self,
    a: torch.Tensor,
    aq: torch.Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
    workspace1 = (M * topk, max(N, K))
    workspace2 = (M * topk, max(N // 2, K))
    output = (M, K)
    return (workspace1, workspace2, output,
            self.out_dtype if self.out_dtype is not None else a.dtype)

DeepGemmExperts

Bases: FusedMoEPermuteExpertsUnpermute

Source code in vllm/model_executor/layers/fused_moe/deep_gemm_moe.py
class DeepGemmExperts(mk.FusedMoEPermuteExpertsUnpermute):

    def __init__(self, quant_config: FusedMoEQuantConfig):
        super().__init__(quant_config)
        assert quant_config.block_shape == deep_gemm_block_shape()
        assert quant_config.quant_dtype == torch.float8_e4m3fn
        assert not quant_config.per_act_token_quant
        assert not quant_config.per_out_ch_quant

    @property
    def activation_formats(
        self
    ) -> tuple[mk.FusedMoEActivationFormat, mk.FusedMoEActivationFormat]:
        return (mk.FusedMoEActivationFormat.Standard,
                mk.FusedMoEActivationFormat.Standard)

    def supports_chunking(self) -> bool:
        return True

    def supports_expert_map(self) -> bool:
        return True

    def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
        return TopKWeightAndReduceNoOP()

    def workspace_shapes(
        self,
        a: torch.Tensor,
        aq: torch.Tensor,
        M: int,
        N: int,
        K: int,
        topk: int,
        global_num_experts: int,
        local_num_experts: int,
        expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
    ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
        assert self.block_shape is not None
        block_m = self.block_shape[0]
        M_sum = compute_aligned_M(M, topk, local_num_experts, block_m,
                                  expert_tokens_meta)
        assert M_sum % block_m == 0

        workspace1 = (M_sum, max(N, K))
        workspace2 = (M_sum, max(N // 2, K))
        output = (M, K)
        return (workspace1, workspace2, output, a.dtype)

    def apply(
        self,
        output: torch.Tensor,
        hidden_states: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        activation: str,
        global_num_experts: int,
        expert_map: Optional[torch.Tensor],
        a1q_scale: Optional[torch.Tensor],
        a2_scale: Optional[torch.Tensor],
        workspace13: torch.Tensor,
        workspace2: torch.Tensor,
        expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
        apply_router_weight_on_input: bool,
    ):
        assert a1q_scale is not None
        assert a2_scale is None
        assert self.block_shape is not None
        assert self.w1_scale is not None
        assert self.w2_scale is not None

        a1q = hidden_states
        _, N, K = w1.size()

        local_num_experts = w1.size(0)
        if global_num_experts == -1:
            global_num_experts = local_num_experts

        assert w2.size(1) == K

        M_sum = compute_aligned_M(M=topk_ids.size(0),
                                  num_topk=topk_ids.size(1),
                                  local_num_experts=local_num_experts,
                                  alignment=deep_gemm_block_shape()[0],
                                  expert_tokens_meta=expert_tokens_meta)

        a1q_perm = _resize_cache(workspace2.view(dtype=torch.float8_e4m3fn),
                                 (M_sum, K))
        mm1_out = _resize_cache(workspace13, (M_sum, N))
        act_out = _resize_cache(workspace2, (M_sum, N // 2))
        quant_out = _resize_cache(workspace13.view(dtype=torch.float8_e4m3fn),
                                  (M_sum, N // 2))
        mm2_out = _resize_cache(workspace2, (M_sum, K))

        a1q, a1q_scale, expert_ids, inv_perm = deepgemm_moe_permute(
            aq=a1q,
            aq_scale=a1q_scale,
            topk_ids=topk_ids,
            local_num_experts=local_num_experts,
            expert_map=expert_map,
            expert_tokens_meta=expert_tokens_meta,
            aq_out=a1q_perm)
        assert a1q.size(0) == M_sum

        m_grouped_fp8_gemm_nt_contiguous((a1q, a1q_scale), (w1, self.w1_scale),
                                         mm1_out, expert_ids)

        self.activation(activation, act_out, mm1_out.view(-1, N))

        a2q_scale: Optional[torch.Tensor] = None
        a2q, a2q_scale = per_token_group_quant_fp8(act_out,
                                                   self.block_shape[1],
                                                   column_major_scales=True,
                                                   out_q=quant_out)

        m_grouped_fp8_gemm_nt_contiguous((a2q, a2q_scale), (w2, self.w2_scale),
                                         mm2_out, expert_ids)

        if apply_router_weight_on_input:
            topk_weights = torch.ones_like(topk_weights)

        deepgemm_unpermute_and_reduce(a=mm2_out,
                                      topk_ids=topk_ids,
                                      topk_weights=topk_weights,
                                      inv_perm=inv_perm,
                                      expert_map=expert_map,
                                      output=output)

activation_formats property

__init__

__init__(quant_config: FusedMoEQuantConfig)
Source code in vllm/model_executor/layers/fused_moe/deep_gemm_moe.py
def __init__(self, quant_config: FusedMoEQuantConfig):
    super().__init__(quant_config)
    assert quant_config.block_shape == deep_gemm_block_shape()
    assert quant_config.quant_dtype == torch.float8_e4m3fn
    assert not quant_config.per_act_token_quant
    assert not quant_config.per_out_ch_quant

apply

apply(
    output: Tensor,
    hidden_states: Tensor,
    w1: Tensor,
    w2: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    activation: str,
    global_num_experts: int,
    expert_map: Optional[Tensor],
    a1q_scale: Optional[Tensor],
    a2_scale: Optional[Tensor],
    workspace13: Tensor,
    workspace2: Tensor,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
)
Source code in vllm/model_executor/layers/fused_moe/deep_gemm_moe.py
def apply(
    self,
    output: torch.Tensor,
    hidden_states: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    activation: str,
    global_num_experts: int,
    expert_map: Optional[torch.Tensor],
    a1q_scale: Optional[torch.Tensor],
    a2_scale: Optional[torch.Tensor],
    workspace13: torch.Tensor,
    workspace2: torch.Tensor,
    expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
):
    assert a1q_scale is not None
    assert a2_scale is None
    assert self.block_shape is not None
    assert self.w1_scale is not None
    assert self.w2_scale is not None

    a1q = hidden_states
    _, N, K = w1.size()

    local_num_experts = w1.size(0)
    if global_num_experts == -1:
        global_num_experts = local_num_experts

    assert w2.size(1) == K

    M_sum = compute_aligned_M(M=topk_ids.size(0),
                              num_topk=topk_ids.size(1),
                              local_num_experts=local_num_experts,
                              alignment=deep_gemm_block_shape()[0],
                              expert_tokens_meta=expert_tokens_meta)

    a1q_perm = _resize_cache(workspace2.view(dtype=torch.float8_e4m3fn),
                             (M_sum, K))
    mm1_out = _resize_cache(workspace13, (M_sum, N))
    act_out = _resize_cache(workspace2, (M_sum, N // 2))
    quant_out = _resize_cache(workspace13.view(dtype=torch.float8_e4m3fn),
                              (M_sum, N // 2))
    mm2_out = _resize_cache(workspace2, (M_sum, K))

    a1q, a1q_scale, expert_ids, inv_perm = deepgemm_moe_permute(
        aq=a1q,
        aq_scale=a1q_scale,
        topk_ids=topk_ids,
        local_num_experts=local_num_experts,
        expert_map=expert_map,
        expert_tokens_meta=expert_tokens_meta,
        aq_out=a1q_perm)
    assert a1q.size(0) == M_sum

    m_grouped_fp8_gemm_nt_contiguous((a1q, a1q_scale), (w1, self.w1_scale),
                                     mm1_out, expert_ids)

    self.activation(activation, act_out, mm1_out.view(-1, N))

    a2q_scale: Optional[torch.Tensor] = None
    a2q, a2q_scale = per_token_group_quant_fp8(act_out,
                                               self.block_shape[1],
                                               column_major_scales=True,
                                               out_q=quant_out)

    m_grouped_fp8_gemm_nt_contiguous((a2q, a2q_scale), (w2, self.w2_scale),
                                     mm2_out, expert_ids)

    if apply_router_weight_on_input:
        topk_weights = torch.ones_like(topk_weights)

    deepgemm_unpermute_and_reduce(a=mm2_out,
                                  topk_ids=topk_ids,
                                  topk_weights=topk_weights,
                                  inv_perm=inv_perm,
                                  expert_map=expert_map,
                                  output=output)

finalize_weight_and_reduce_impl

finalize_weight_and_reduce_impl() -> TopKWeightAndReduce
Source code in vllm/model_executor/layers/fused_moe/deep_gemm_moe.py
def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
    return TopKWeightAndReduceNoOP()

supports_chunking

supports_chunking() -> bool
Source code in vllm/model_executor/layers/fused_moe/deep_gemm_moe.py
def supports_chunking(self) -> bool:
    return True

supports_expert_map

supports_expert_map() -> bool
Source code in vllm/model_executor/layers/fused_moe/deep_gemm_moe.py
def supports_expert_map(self) -> bool:
    return True

workspace_shapes

workspace_shapes(
    a: Tensor,
    aq: Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
) -> tuple[
    tuple[int, ...], tuple[int, ...], tuple[int, ...], dtype
]
Source code in vllm/model_executor/layers/fused_moe/deep_gemm_moe.py
def workspace_shapes(
    self,
    a: torch.Tensor,
    aq: torch.Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
    assert self.block_shape is not None
    block_m = self.block_shape[0]
    M_sum = compute_aligned_M(M, topk, local_num_experts, block_m,
                              expert_tokens_meta)
    assert M_sum % block_m == 0

    workspace1 = (M_sum, max(N, K))
    workspace2 = (M_sum, max(N // 2, K))
    output = (M, K)
    return (workspace1, workspace2, output, a.dtype)

FusedMoE

Bases: CustomOp

FusedMoE layer for MoE models.

This layer contains both MergedColumnParallel weights (gate_up_proj / w13) and RowParallelLinear weights (down_proj/ w2).

Note: Mixtral uses w1, w2, and w3 for gate, up, and down_proj. We copy that naming convention here and handle any remapping in the load_weights function in each model implementation.

Parameters:

Name Type Description Default
num_experts int

Number of experts in the model

required
top_k int

Number of experts selected for each token

required
hidden_size int

Input hidden state size of the transformer

required
intermediate_size int

Intermediate size of the experts

required
params_dtype Optional[dtype]

Data type for the parameters.

None
reduce_results bool

Whether to all all_reduce on the output of the layer

False
renormalize bool

Whether to renormalize the logits in the fused_moe kernel

True
quant_config Optional[QuantizationConfig]

Quantization configure.

None
enable_eplb bool

Whether to enable expert parallelism load balancer.

False
Source code in vllm/model_executor/layers/fused_moe/layer.py
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
@CustomOp.register("fused_moe")
class FusedMoE(CustomOp):
    """FusedMoE layer for MoE models.

    This layer contains both MergedColumnParallel weights (gate_up_proj /
    w13) and RowParallelLinear weights (down_proj/ w2).

    Note: Mixtral uses w1, w2, and w3 for gate, up, and down_proj. We
    copy that naming convention here and handle any remapping in the
    load_weights function in each model implementation.

    Args:
        num_experts: Number of experts in the model
        top_k: Number of experts selected for each token
        hidden_size: Input hidden state size of the transformer
        intermediate_size: Intermediate size of the experts
        params_dtype: Data type for the parameters.
        reduce_results: Whether to all all_reduce on the output of the layer
        renormalize: Whether to renormalize the logits in the fused_moe kernel
        quant_config: Quantization configure.
        enable_eplb: Whether to enable expert parallelism load balancer.
    """

    def __init__(
        self,
        num_experts: int,  # Global number of experts
        top_k: int,
        hidden_size: int,
        intermediate_size: int,
        params_dtype: Optional[torch.dtype] = None,
        reduce_results: bool = False,
        renormalize: bool = True,
        use_grouped_topk: bool = False,
        num_expert_group: Optional[int] = None,
        topk_group: Optional[int] = None,
        quant_config: Optional[QuantizationConfig] = None,
        tp_size: Optional[int] = None,
        ep_size: Optional[int] = None,
        dp_size: Optional[int] = None,
        prefix: str = "",
        custom_routing_function: Optional[Callable] = None,
        scoring_func: str = "softmax",
        routed_scaling_factor: float = 1.0,
        e_score_correction_bias: Optional[torch.Tensor] = None,
        apply_router_weight_on_input: bool = False,
        activation: str = "silu",
        enable_eplb: bool = False,
        num_redundant_experts: int = 0,
        has_bias: bool = False,
        is_sequence_parallel=False,
        zero_expert_num: Optional[int] = 0,
        zero_expert_type: Optional[str] = None,
    ):
        super().__init__()
        if params_dtype is None:
            params_dtype = torch.get_default_dtype()
        self.params_dtype = params_dtype

        vllm_config = get_current_vllm_config()

        # FIXME (varun): We should have a better way of inferring the activation
        # datatype. This works for now as the tensor datatype entering the MoE
        # operation is typically unquantized (i.e. float16/bfloat16).
        if vllm_config.model_config is not None:
            moe_in_dtype = vllm_config.model_config.dtype
        else:
            # TODO (bnell): This is a hack to get test_mixtral_moe to work
            # since model_config is not set in the pytest test.
            moe_in_dtype = params_dtype

        tp_size_ = (tp_size if tp_size is not None else
                    get_tensor_model_parallel_world_size())
        dp_size_ = (dp_size
                    if dp_size is not None else get_dp_group().world_size)

        self.is_sequence_parallel = is_sequence_parallel
        self.sp_size = tp_size_ if is_sequence_parallel else 1

        self.moe_parallel_config: FusedMoEParallelConfig = (
            FusedMoEParallelConfig.make(
                tp_size_=tp_size_,
                dp_size_=dp_size_,
                vllm_parallel_config=vllm_config.parallel_config))

        self.global_num_experts = num_experts + num_redundant_experts
        self.zero_expert_num = zero_expert_num
        self.zero_expert_type = zero_expert_type

        # Round up hidden size if needed.
        hidden_size = maybe_roundup_hidden_size(hidden_size, moe_in_dtype,
                                                quant_config,
                                                self.moe_parallel_config)

        # For smuggling this layer into the fused moe custom op
        compilation_config = vllm_config.compilation_config
        if prefix in compilation_config.static_forward_context:
            raise ValueError("Duplicate layer name: {}".format(prefix))
        compilation_config.static_forward_context[prefix] = self
        self.layer_name = prefix

        self.enable_eplb = enable_eplb
        self.expert_load_view: Optional[torch.Tensor] = None
        self.logical_to_physical_map: Optional[torch.Tensor] = None
        self.logical_replica_count: Optional[torch.Tensor] = None

        # Determine expert maps
        if self.use_ep:
            if self.enable_eplb:
                assert self.global_num_experts % self.ep_size == 0, \
                    "EPLB currently only supports even distribution of " \
                    "experts across ranks."
            else:
                assert num_redundant_experts == 0, \
                    "Redundant experts are only supported with EPLB."

            expert_placement_strategy = (
                vllm_config.parallel_config.expert_placement_strategy)
            if expert_placement_strategy == "round_robin":
                # TODO(Bruce): will support round robin expert placement with
                # EPLB enabled in the future.
                round_robin_supported = ((num_expert_group is not None
                                          and num_expert_group > 1)
                                         and num_redundant_experts == 0
                                         and not self.enable_eplb)

                if not round_robin_supported:
                    logger.warning(
                        "Round-robin expert placement is only supported for "
                        "models with multiple expert groups and no redundant "
                        "experts. Falling back to linear expert placement.")
                    expert_placement_strategy = "linear"

            self.expert_map: Optional[torch.Tensor]
            local_num_experts, expert_map = determine_expert_map(
                ep_size=self.ep_size,
                ep_rank=self.ep_rank,
                global_num_experts=self.global_num_experts,
                expert_placement_strategy=expert_placement_strategy,
            )
            self.local_num_experts = local_num_experts
            self.register_buffer("expert_map", expert_map)
            logger.info_once(
                "[EP Rank %s/%s] Expert parallelism is enabled. Expert "
                "placement strategy: %s. Local/global"
                " number of experts: %s/%s. Experts local to global index map:"
                " %s.", self.ep_rank, self.ep_size, expert_placement_strategy,
                self.local_num_experts, self.global_num_experts,
                get_compressed_expert_map(self.expert_map))
        else:
            self.local_num_experts, self.expert_map = (self.global_num_experts,
                                                       None)

        self.top_k = top_k

        assert intermediate_size % self.tp_size == 0
        self.hidden_size = hidden_size
        self.intermediate_size_per_partition = intermediate_size // self.tp_size
        self.reduce_results = reduce_results
        self.renormalize = renormalize
        self.use_grouped_topk = use_grouped_topk
        if self.use_grouped_topk:
            assert num_expert_group is not None and topk_group is not None
        self.num_expert_group = num_expert_group
        self.topk_group = topk_group
        self.custom_routing_function = custom_routing_function
        self.scoring_func = scoring_func
        self.routed_scaling_factor = routed_scaling_factor
        self.e_score_correction_bias = e_score_correction_bias
        self.apply_router_weight_on_input = apply_router_weight_on_input
        self.activation = activation

        if self.scoring_func != "softmax" and not self.use_grouped_topk:
            raise ValueError("Only softmax scoring function is supported for "
                             "non-grouped topk.")

        moe = FusedMoEConfig(
            num_experts=self.global_num_experts,
            experts_per_token=top_k,
            hidden_dim=hidden_size,
            num_local_experts=self.local_num_experts,
            moe_parallel_config=self.moe_parallel_config,
            in_dtype=moe_in_dtype,
            max_num_tokens=envs.VLLM_MOE_DP_CHUNK_SIZE,
            has_bias=has_bias,
        )
        self.moe_config = moe
        self.moe_quant_config: Optional[FusedMoEQuantConfig] = None
        self.quant_config = quant_config

        # Note: get_quant_method will look at the layer's local_num_experts
        # for heuristic purposes, so it must be initialized first.
        quant_method: Optional[QuantizeMethodBase] = None
        quant_method = (UnquantizedFusedMoEMethod(moe) if quant_config is None
                        else quant_config.get_quant_method(self, prefix))

        assert quant_method is not None
        assert isinstance(quant_method, FusedMoEMethodBase)
        self.quant_method = quant_method

        if self.enable_eplb:
            from vllm.model_executor.layers.quantization.fp8 import (
                Fp8MoEMethod)
            if not isinstance(quant_method,
                              (Fp8MoEMethod, UnquantizedFusedMoEMethod)):
                # TODO: Add support for additional quantization methods.
                # The implementation for other quantization methods does not
                # contain essential differences, but the current quant API
                # design causes duplicated work when extending to new
                # quantization methods, so I'm leaving it for now.
                # If you plan to add support for more quantization methods,
                # please refer to the implementation in `Fp8MoEMethod`.
                raise NotImplementedError("EPLB is only supported for FP8 "
                                          "quantization for now.")

        moe_quant_params = {
            "num_experts": self.local_num_experts,
            "hidden_size": hidden_size,
            "intermediate_size_per_partition":
            self.intermediate_size_per_partition,
            "params_dtype": params_dtype,
            "weight_loader": self.weight_loader,
        }
        # need full intermediate size pre-sharding for WNA16 act order
        if (self.quant_method.__class__.__name__
                in ("GPTQMarlinMoEMethod",
                    "CompressedTensorsWNA16MarlinMoEMethod",
                    "CompressedTensorsWNA16MoEMethod")):
            moe_quant_params["intermediate_size_full"] = intermediate_size

        self.quant_method.create_weights(layer=self, **moe_quant_params)

        # Chunked all2all staging tensor
        self.batched_hidden_states: Optional[torch.Tensor] = None
        self.batched_router_logits: Optional[torch.Tensor] = None

        # TODO(bnell): flashinfer uses non-batched format.
        # Does it really need a batched buffer?
        if (self.moe_parallel_config.use_pplx_kernels
                or self.moe_parallel_config.use_deepep_ll_kernels
                or self.moe_config.use_flashinfer_cutlass_kernels):
            if vllm_config.parallel_config.enable_dbo:
                self.batched_hidden_states = torch.zeros(
                    (2, moe.max_num_tokens, self.hidden_size),
                    dtype=moe.in_dtype,
                    device=torch.cuda.current_device())

                # Note here we use `num_experts` which is logical expert count
                self.batched_router_logits = torch.zeros(
                    (2, moe.max_num_tokens, num_experts),
                    dtype=moe.in_dtype,
                    device=torch.cuda.current_device())
            else:
                self.batched_hidden_states = torch.zeros(
                    (moe.max_num_tokens, self.hidden_size),
                    dtype=moe.in_dtype,
                    device=torch.cuda.current_device())

                # Note here we use `num_experts` which is logical expert count
                self.batched_router_logits = torch.zeros(
                    (moe.max_num_tokens, num_experts),
                    dtype=moe.in_dtype,
                    device=torch.cuda.current_device())

    @property
    def shared_experts(self) -> Optional[torch.nn.Module]:
        return None

    @property
    def tp_size(self):
        return self.moe_parallel_config.tp_size

    @property
    def dp_size(self):
        return self.moe_parallel_config.dp_size

    @property
    def ep_size(self):
        return self.moe_parallel_config.ep_size

    @property
    def tp_rank(self):
        return self.moe_parallel_config.tp_rank

    @property
    def dp_rank(self):
        return self.moe_parallel_config.dp_rank

    @property
    def ep_rank(self):
        return self.moe_parallel_config.ep_rank

    @property
    def use_ep(self):
        return self.moe_parallel_config.use_ep

    @property
    def use_pplx_kernels(self):
        return self.moe_parallel_config.use_pplx_kernels

    @property
    def use_deepep_ht_kernels(self):
        return self.moe_parallel_config.use_deepep_ht_kernels

    @property
    def use_deepep_ll_kernels(self):
        return self.moe_parallel_config.use_deepep_ll_kernels

    @property
    def use_flashinfer_cutlass_kernels(self):
        return (self.moe_quant_config is not None
                and self.moe_quant_config.quant_dtype == "nvfp4"
                and self.moe_config.use_flashinfer_cutlass_kernels)

    def update_expert_map(self):
        # ep_size and ep_rank should already be updated
        assert self.expert_map is not None
        with self.expert_map.device:
            local_num_experts, expert_map = determine_expert_map(
                ep_size=self.ep_size,
                ep_rank=self.ep_rank,
                global_num_experts=self.global_num_experts)
            self.local_num_experts = local_num_experts
            self.register_buffer("expert_map", expert_map)

    def _load_per_tensor_weight_scale(self, shard_id: str,
                                      param: torch.nn.Parameter,
                                      loaded_weight: torch.Tensor,
                                      expert_id: int):
        param_data = param.data
        # for per tensor weight quantization
        if shard_id in ("w1", "w3"):
            # We have to keep the weight scales of w1 and w3 because
            # we need to re-quantize w1/w3 weights after weight loading.
            idx = 0 if shard_id == "w1" else 1
            param_data[expert_id][idx] = loaded_weight
        # If we are in the row parallel case (down_proj)
        elif shard_id == "w2":
            param_data[expert_id] = loaded_weight

    def _load_combined_w13_weight_scale(self, shard_dim: int,
                                        loaded_weight: torch.Tensor,
                                        param: torch.Tensor, tp_rank: int):
        """
        Load w13 weight scales assuming that w1 weight scales and w3 weight
        scales are stored in the same loaded_weight tensor.
        """
        shard_size = param.shape[shard_dim]
        loaded_weight = loaded_weight.narrow(shard_dim, shard_size * tp_rank,
                                             shard_size)
        param.copy_(loaded_weight)

    def _load_model_weight_or_group_weight_scale(self,
                                                 shard_dim: int,
                                                 expert_data: torch.Tensor,
                                                 shard_id: str,
                                                 loaded_weight: torch.Tensor,
                                                 tp_rank: int,
                                                 load_full_w2: bool = False):
        """
        Load grouped weight scales for group quantization or model weights
            :param shard_dim: dimension to shard
            :param expert_data: parameter for a particular expert
            :param shard_id: either w1, w2, or w3
            :param loaded_weight: checkpoint weight to load into the param
            :param tp_rank: tensor parallel rank
            :param load_full_w2: whether or not the w2 loaded should be sharded.
        """
        if shard_id == "w2":
            # In the case where we have actorder/g_idx, we do not partition the
            # w2 scales, as indicated by `load_full` argument, for all tp cases
            self._load_w2(shard_dim=shard_dim,
                          loaded_weight=loaded_weight,
                          expert_data=expert_data,
                          tp_rank=tp_rank,
                          load_full=load_full_w2)
        elif shard_id in ("w1", "w3"):
            self._load_w13(shard_id=shard_id,
                           shard_dim=shard_dim,
                           loaded_weight=loaded_weight,
                           expert_data=expert_data,
                           tp_rank=tp_rank)

    def _load_per_channel_weight_scale(self, expert_data: torch.Tensor,
                                       shard_dim: int, shard_id: str,
                                       loaded_weight: torch.Tensor,
                                       tp_rank: int):
        # for per channel weight quantization
        if shard_id == "w2":
            expert_data.copy_(loaded_weight)
        elif shard_id in ("w1", "w3"):
            self._load_w13(shard_id=shard_id,
                           shard_dim=shard_dim,
                           loaded_weight=loaded_weight,
                           expert_data=expert_data,
                           tp_rank=tp_rank)

    def _load_w13(self,
                  expert_data: torch.Tensor,
                  shard_dim: int,
                  shard_id: str,
                  loaded_weight: torch.Tensor,
                  tp_rank: int,
                  load_full: bool = False):

        # Index the loaded weight for tp sharding.
        # gate_up_proj: "MergedColumnParallel", so tp sharding on output_dim
        shard_size = expert_data.shape[shard_dim] // 2
        if not load_full:
            loaded_weight = loaded_weight.narrow(shard_dim,
                                                 shard_size * tp_rank,
                                                 shard_size)
        # Narrow parameter and load.
        # w1, gate_proj: Load into first logical weight of w13.
        if shard_id == "w1":
            expert_data = expert_data.narrow(shard_dim, 0, shard_size)
        # w3, up_proj: Load into second logical weight of w13.
        else:
            assert shard_id == "w3"
            expert_data = expert_data.narrow(shard_dim, shard_size, shard_size)
        expert_data.copy_(loaded_weight)

    def _load_w2(self,
                 expert_data: torch.Tensor,
                 shard_dim: int,
                 loaded_weight: torch.Tensor,
                 tp_rank: int,
                 load_full: bool = False):

        # Index the loaded weight for tp sharding.
        # down_proj: "RowParallel" so tp sharding on input_dim
        # Narrow parameter and load.
        shard_size = expert_data.shape[shard_dim]
        if not load_full:
            loaded_weight = loaded_weight.narrow(shard_dim,
                                                 shard_size * tp_rank,
                                                 shard_size)
        # w2, down_proj: Load into only logical weight of w2.
        expert_data.copy_(loaded_weight)

    def _load_single_value(self, param: torch.nn.Parameter,
                           loaded_weight: torch.Tensor, expert_id: int):
        param_data = param.data

        # Input scales can be loaded directly and should be equal.
        param_data[expert_id] = loaded_weight

    def _load_g_idx(self, shard_id: str, expert_data: torch.Tensor,
                    shard_dim: int, loaded_weight: torch.Tensor, tp_rank: int):

        if shard_id == "w2":
            self._load_w2(shard_dim=shard_dim,
                          loaded_weight=loaded_weight,
                          expert_data=expert_data,
                          tp_rank=tp_rank)
        else:
            assert shard_id in ("w1", "w3")
            expert_data.copy_(loaded_weight)

    def _map_global_expert_id_to_local_expert_id(self, expert_id: int) -> int:
        if self.expert_map is None:
            return expert_id
        return self.expert_map[expert_id].item()

    @overload
    def weight_loader(self, param: torch.nn.Parameter,
                      loaded_weight: torch.Tensor, weight_name: str,
                      shard_id: str, expert_id: int,
                      return_success: Literal[False]) -> None:
        ...

    @overload
    def weight_loader(self, param: torch.nn.Parameter,
                      loaded_weight: torch.Tensor, weight_name: str,
                      shard_id: str, expert_id: int,
                      return_success: Literal[True]) -> bool:
        ...

    def weight_loader(self,
                      param: torch.nn.Parameter,
                      loaded_weight: torch.Tensor,
                      weight_name: str,
                      shard_id: str,
                      expert_id: int,
                      return_success: bool = False) -> Optional[bool]:

        if self.quant_config and self.quant_config.get_name() == "mxfp4":
            # (FIXME) for gpt-oss all experts are combined
            if "bias" in weight_name:
                dim1 = loaded_weight.shape[1]
                param.data[:, :dim1].copy_(loaded_weight)
            else:
                dim1 = loaded_weight.shape[1]
                dim2 = loaded_weight.shape[2]
                param.data[:, :dim1, :dim2].copy_(loaded_weight)
            return True if return_success else None

        expert_id = self._map_global_expert_id_to_local_expert_id(expert_id)
        if expert_id == -1:
            # Failed to load this param since it's not local to this rank
            return False if return_success else None
        # Hereafter, `expert_id` is local physical id

        quant_method_name = self.quant_method.__class__.__name__
        # compressed-tensors checkpoints with packed weights are stored flipped
        # TODO (mgoin): check self.quant_method.quant_config.quant_format
        # against known CompressionFormat enum values that have this quality
        if self.quant_method.__class__.__name__ in (
                "CompressedTensorsWNA16MarlinMoEMethod",
                "CompressedTensorsWNA16MoEMethod"):
            loaded_weight = loaded_weight.t().contiguous()

        if shard_id not in ("w1", "w2", "w3"):
            raise ValueError(f"shard_id must be ['w1','w2','w3'] but "
                             f"got {shard_id}.")

        # Fetch the dim to shard the parameter/loaded weight
        # based on the shard id. This will be whatever
        # dimension intermediate_size_per_partition is used.
        SHARD_ID_TO_SHARDED_DIM = {"w1": 0, "w2": 1, "w3": 0}

        is_gguf_weight = getattr(param, "is_gguf_weight", False)
        is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
        if is_gguf_weight_type:
            param.weight_type = loaded_weight.item()
            param.data.copy_(loaded_weight)
            return True if return_success else None

        # Case for BitsAndBytes
        use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
        if use_bitsandbytes_4bit:
            shard_dim = 0

            expert_data = param.data[expert_id]
            if shard_id == "w2":
                expert_data.copy_(loaded_weight)
            elif shard_id in ("w1", "w3"):
                # BNB inflight quantization has already sharded the weights
                full_load = True
                self._load_w13(
                    shard_id=shard_id,
                    shard_dim=shard_dim,
                    loaded_weight=loaded_weight,
                    expert_data=expert_data,
                    tp_rank=self.tp_rank,
                    load_full=full_load,
                )
            return True if return_success else None

        # is_transposed: if the dim to shard the weight
        # should be flipped. Required by GPTQ, compressed-tensors
        # should be whatever dimension intermediate_size_per_partition is
        is_transposed = getattr(param, "is_transposed", False)
        shard_dim = SHARD_ID_TO_SHARDED_DIM[shard_id]
        if is_transposed:
            shard_dim = int(not shard_dim)

        full_load = len(loaded_weight.shape) == 3
        if full_load:
            shard_dim += 1

        # Materialize GGUF UninitializedParameter
        if is_gguf_weight and isinstance(param, UninitializedParameter):
            final_shape = list(loaded_weight.shape)
            if shard_id in ["w1", "w3"]:
                final_shape[1] *= 2
            final_shape[shard_dim] = final_shape[shard_dim] // self.tp_size
            param.materialize(final_shape, dtype=loaded_weight.dtype)

        expert_data = param.data if full_load else param.data[expert_id]

        # Case input scale: input_scale loading is only supported for fp8
        if "input_scale" in weight_name:
            # this is needed for compressed-tensors only
            loaded_weight = loaded_weight.to(param.data.device)

            if ("compressed" in quant_method_name.lower()
                    and param.data[expert_id] != 1
                    and (param.data[expert_id] - loaded_weight).abs() > 1e-5):
                raise ValueError(
                    "input_scales of w1 and w3 of a layer "
                    f"must be equal. But got {param.data[expert_id]} "
                    f"vs. {loaded_weight}")

            self._load_single_value(param=param,
                                    loaded_weight=loaded_weight,
                                    expert_id=expert_id)
            return True if return_success else None

        # Case g_idx
        if "g_idx" in weight_name:
            self._load_g_idx(shard_dim=0,
                             shard_id=shard_id,
                             loaded_weight=loaded_weight,
                             expert_data=expert_data,
                             tp_rank=self.tp_rank)
            return True if return_success else None

        # TODO @dsikka: ModelOpt should follow the proper MoE loading pattern
        if "ModelOpt" in quant_method_name:
            # Determine per-tensor weight scale patterns based on variant
            # Use the dedicated method instead of brittle string matching
            uses_weight_scale_2 = self.quant_method.uses_weight_scale_2_pattern(
            )

            # Call _load_per_tensor_weight_scale() to load per-tensor (scalar)
            # weights scales.
            # Input scales are always per-tensor.
            # Weight scales: FP4 uses "weight_scale_2" and FP8 uses
            # "weight_scale" for per-tensor scales.
            is_per_tensor = ("weight_scale_2" in weight_name
                             if uses_weight_scale_2 else "weight_scale"
                             in weight_name) or "input_scale" in weight_name
            if is_per_tensor:
                self._load_per_tensor_weight_scale(
                    shard_id=shard_id,
                    param=param,
                    loaded_weight=loaded_weight,
                    expert_id=expert_id,
                )
                return True if return_success else None

            # If the weight is w13_weight_scale and w13_weight_scales are
            # combined into single loaded_weight, call
            # _load_combined_w13_weight_scale() to load it.
            # This is checked by comparing the hidden_out dims of the
            # loaded_weight and the param.
            if "w13_weight_scale" in weight_name:
                loaded_weight_hidden_out = loaded_weight.shape[-2]
                param_hidden_out = param.data.shape[-2] * self.tp_size
                if loaded_weight_hidden_out == param_hidden_out:
                    self._load_combined_w13_weight_scale(
                        shard_dim=shard_dim,
                        loaded_weight=loaded_weight,
                        param=param,
                        tp_rank=self.tp_rank,
                    )
                    return True if return_success else None

            # For other weights, call _load_model_weight_or_group_weight_scale()
            # to load it.
            if "weight" in weight_name:
                self._load_model_weight_or_group_weight_scale(
                    shard_id=shard_id,
                    shard_dim=shard_dim,
                    loaded_weight=loaded_weight,
                    expert_data=expert_data,
                    tp_rank=self.tp_rank)
            return True if return_success else None

        # Case weight scales, zero_points and offset, weight/input global scales
        if ("scale" in weight_name or "zero" in weight_name
                or "offset" in weight_name):
            # load the weight scales and zp based on the quantization scheme
            # supported weight scales/zp can be found in
            # FusedMoeWeightScaleSupported
            # TODO @dsikka: once hardened, refactor to use vLLM Parameters
            # specific to each case
            quant_method = getattr(param, "quant_method", None)
            if quant_method == FusedMoeWeightScaleSupported.CHANNEL.value:
                self._load_per_channel_weight_scale(
                    shard_id=shard_id,
                    shard_dim=shard_dim,
                    loaded_weight=loaded_weight,
                    expert_data=expert_data,
                    tp_rank=self.tp_rank)
            elif quant_method in [
                    FusedMoeWeightScaleSupported.GROUP.value,
                    FusedMoeWeightScaleSupported.BLOCK.value,
            ]:
                self._load_model_weight_or_group_weight_scale(
                    shard_id=shard_id,
                    shard_dim=shard_dim,
                    loaded_weight=loaded_weight,
                    expert_data=expert_data,
                    tp_rank=self.tp_rank,
                    load_full_w2=getattr(param, "load_full_w2", False))
            elif quant_method == FusedMoeWeightScaleSupported.TENSOR.value:
                self._load_per_tensor_weight_scale(shard_id=shard_id,
                                                   param=param,
                                                   loaded_weight=loaded_weight,
                                                   expert_id=expert_id)
            else:
                WEIGHT_SCALE_SUPPORTED = [
                    e.value for e in FusedMoeWeightScaleSupported
                ]
                raise ValueError(
                    f"quant method must be one of {WEIGHT_SCALE_SUPPORTED}")
            return True if return_success else None

        # Case weight_shape
        if "weight_shape" in weight_name:
            # only required by compressed-tensors
            self._load_single_value(param=param,
                                    loaded_weight=loaded_weight,
                                    expert_id=expert_id)
            return True if return_success else None

        # Case model weights
        if "weight" in weight_name:
            self._load_model_weight_or_group_weight_scale(
                shard_id=shard_id,
                shard_dim=shard_dim,
                loaded_weight=loaded_weight,
                expert_data=expert_data,
                tp_rank=self.tp_rank)
            return True if return_success else None

        return False if return_success else None

    def get_expert_weights(self) -> Iterable[torch.Tensor]:
        weights = list(self.named_parameters())
        assert all(weight.is_contiguous() for _, weight in weights)

        # Filter out the non-expert weights.
        # `e_score_correction_bias` is a bias for each logical expert,
        # with shape (num_logical_experts,), not an expert weight.
        NON_EXPERT_WEIGHTS = {
            "e_score_correction_bias",
        }

        return [
            weight.view(self.local_num_experts, -1) for name, weight in weights
            if name not in NON_EXPERT_WEIGHTS and weight.shape != torch.Size(
                []) and not name.startswith("_shared_experts.")
        ]

    def set_eplb_state(
        self,
        moe_layer_idx: int,
        expert_load_view: torch.Tensor,
        logical_to_physical_map: torch.Tensor,
        logical_replica_count: torch.Tensor,
    ) -> None:
        """
        Register the EPLB state in this layer.

        This is used later in forward pass, where we get the expert mapping
        and record the load metrics in `expert_load_view`.
        """
        self.expert_load_view = expert_load_view[moe_layer_idx]
        self.logical_to_physical_map = logical_to_physical_map[moe_layer_idx]
        self.logical_replica_count = logical_replica_count[moe_layer_idx]

    def ensure_moe_quant_config(self):
        if self.quant_method.moe_quant_config is None:
            self.quant_method.moe_quant_config = (
                self.quant_method.get_fused_moe_quant_config(self))

    @staticmethod
    def select_experts(
        hidden_states: torch.Tensor,
        router_logits: torch.Tensor,
        top_k: int,
        use_grouped_topk: bool,
        renormalize: bool,
        topk_group: Optional[int] = None,
        num_expert_group: Optional[int] = None,
        custom_routing_function: Optional[Callable] = None,
        scoring_func: str = "softmax",
        routed_scaling_factor: float = 1.0,
        e_score_correction_bias: Optional[torch.Tensor] = None,
        indices_type: Optional[torch.dtype] = None,
        enable_eplb: bool = False,
        expert_map: Optional[torch.Tensor] = None,
        expert_load_view: Optional[torch.Tensor] = None,
        logical_to_physical_map: Optional[torch.Tensor] = None,
        logical_replica_count: Optional[torch.Tensor] = None,
        global_num_experts: Optional[int] = None,
        zero_expert_num: Optional[int] = None,
        zero_expert_type: Optional[str] = None,
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Route the input hidden states to the top-k experts based on the
        router logits.

        Returns:
                (topk_weights, topk_ids, zero_expert_result) 
                (tuple[torch.Tensor, torch.Tensor, torch.Tensor]):
                The weights, expert ids, and zero expert computation result.

            **Compatibility**: When EPLB is not enabled, the returned ids are
            equivalent to global logical ids, so should be compatible with
            plain MoE implementations without redundant experts.
        """
        from vllm.model_executor.layers.fused_moe.fused_moe import (
            fused_topk, fused_topk_bias)

        # Check if we should use a routing simulation strategy
        routing_strategy = envs.VLLM_MOE_ROUTING_SIMULATION_STRATEGY
        if routing_strategy != "":
            topk_weights, topk_ids = RoutingSimulator.simulate_routing(
                hidden_states=hidden_states,
                router_logits=router_logits,
                strategy_name=routing_strategy,
                top_k=top_k,
                indices_type=indices_type)

        # DeepSeekv2 uses grouped_top_k
        if use_grouped_topk:
            assert topk_group is not None
            assert num_expert_group is not None
            topk_weights, topk_ids = grouped_topk(
                hidden_states=hidden_states,
                gating_output=router_logits,
                topk=top_k,
                renormalize=renormalize,
                num_expert_group=num_expert_group,
                topk_group=topk_group,
                scoring_func=scoring_func,
                routed_scaling_factor=routed_scaling_factor,
                e_score_correction_bias=e_score_correction_bias)
            if indices_type is not None:
                topk_ids = topk_ids.to(dtype=indices_type)
        elif e_score_correction_bias is not None:
            topk_weights, topk_ids = fused_topk_bias(
                hidden_states=hidden_states,
                gating_output=router_logits,
                e_score_correction_bias=e_score_correction_bias.data,
                topk=top_k,
                renormalize=renormalize,
            )
            if routed_scaling_factor is not None:
                topk_weights *= routed_scaling_factor
        elif custom_routing_function is None:
            topk_weights, topk_ids, token_expert_indices = fused_topk(
                hidden_states=hidden_states,
                gating_output=router_logits,
                topk=top_k,
                renormalize=renormalize,
                indices_type=indices_type,
            )
        else:
            topk_weights, topk_ids = custom_routing_function(
                hidden_states=hidden_states,
                gating_output=router_logits,
                topk=top_k,
                renormalize=renormalize)
            if indices_type is not None:
                topk_ids = topk_ids.to(dtype=indices_type)

        if enable_eplb:
            assert expert_load_view is not None
            assert logical_to_physical_map is not None
            assert logical_replica_count is not None

            topk_ids = eplb_map_to_physical_and_record(
                topk_ids=topk_ids,
                expert_load_view=expert_load_view,
                logical_to_physical_map=logical_to_physical_map,
                logical_replica_count=logical_replica_count,
                indices_type=indices_type,
            )

        assert topk_ids.dtype == indices_type or indices_type is None

        # Compute zero expert result if needed
        if (zero_expert_num is not None and zero_expert_num > 0
                and zero_expert_type is not None
                and global_num_experts is not None):
            zero_expert_result = zero_experts_compute_triton(
                expert_indices=topk_ids,
                expert_scales=topk_weights,
                num_experts=global_num_experts,
                zero_expert_type=zero_expert_type,
                hidden_states=hidden_states,
            )
        else:
            zero_expert_result = None
        return topk_weights, topk_ids, zero_expert_result

    def must_reduce_shared_expert_outputs(self) -> bool:
        """
        The shared_experts are typically computed using the RowParallelLinear
        layer. The result of this function is typically used as
        the reduce_results argument to the module.
        When just tensor-parallel is used, it is not required to reduce
        the shared_experts results immediately. Instead we reduce at the
        once at the end of the MoE op. (Refer to DeepSeekV2MoE module)
        With EP and all2all kernels - this is no longer viable as all
        GPU ranks in DP, produce the complete set of hidden_states.
        Therefore it is required that we reduce the shared_experts output
        early.
        """
        return (self.use_pplx_kernels or self.use_deepep_ht_kernels
                or self.use_deepep_ll_kernels)

    def maybe_all_reduce_tensor_model_parallel(
            self, final_hidden_states: torch.Tensor):
        """
        The pplx combine kernel reduces across GPU ranks by default.
        """
        if (self.use_pplx_kernels or self.use_deepep_ht_kernels
                or self.use_deepep_ll_kernels):
            return final_hidden_states
        else:
            return tensor_model_parallel_all_reduce(final_hidden_states)

    def forward_native(
        self,
        hidden_states: torch.Tensor,
        router_logits: torch.Tensor,
    ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        og_hidden_states = hidden_states.shape[-1]
        if self.hidden_size != og_hidden_states:
            hidden_states = F.pad(hidden_states,
                                  (0, self.hidden_size - og_hidden_states),
                                  mode='constant',
                                  value=0.0)

        if self.shared_experts is None:
            if current_platform.is_tpu():
                # TODO: Once the OOM issue for the TPU backend is resolved, we
                # will switch to using the moe_forward custom op.
                fused_output = self.forward_impl(hidden_states, router_logits)
                assert not isinstance(fused_output, tuple)
            else:
                fused_output = torch.ops.vllm.moe_forward(
                    hidden_states, router_logits, self.layer_name)
            return fused_output[..., :og_hidden_states]
        else:
            if current_platform.is_tpu():
                # TODO: Once the OOM issue for the TPU backend is resolved, we
                # will switch to using the moe_forward custom op.
                shared_output, fused_output = self.forward_impl(
                    hidden_states, router_logits)
            else:
                shared_output, fused_output = torch.ops.vllm.moe_forward_shared(
                    hidden_states, router_logits, self.layer_name)
            return (shared_output[..., :og_hidden_states],
                    fused_output[..., :og_hidden_states])

    def forward_cuda(
        self,
        hidden_states: torch.Tensor,
        router_logits: torch.Tensor,
    ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        return self.forward_native(hidden_states, router_logits)

    def forward_impl_chunked(
        self,
        full_hidden_states: torch.Tensor,
        full_router_logits: torch.Tensor,
    ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        assert self.batched_hidden_states is not None
        assert self.batched_router_logits is not None
        assert self.batched_hidden_states.dtype == full_hidden_states.dtype
        assert self.batched_router_logits.dtype == full_router_logits.dtype
        # Check size compatibility.
        assert (
            self.batched_hidden_states.size(-1) == full_hidden_states.size(-1))
        assert (
            self.batched_router_logits.size(-1) == full_router_logits.size(-1))

        self.ensure_moe_quant_config()

        full_fused_final_hidden_states = torch.empty_like(full_hidden_states)
        if self.shared_experts is not None:
            full_shared_final_hidden_states = torch.empty_like(
                full_hidden_states)

        def process_chunk(chunk_start, chunk_end, skip_result_store=False):
            chunk_size = chunk_end - chunk_start
            hidden_states = full_hidden_states[chunk_start:chunk_end, :]
            router_logits = full_router_logits[chunk_start:chunk_end, :]

            assert self.batched_hidden_states is not None
            assert self.batched_router_logits is not None
            # This is only true when DBO has been enabled in the config.
            # Both tensors will have an outer dimension for the ubatch id
            if self.batched_hidden_states.dim() == 3:
                assert self.batched_router_logits.dim() == 3
                batch_buffer_idx = dbo_current_ubatch_id()
                batched_hidden_states = self.batched_hidden_states[
                    batch_buffer_idx, :]
                batched_router_logits = self.batched_router_logits[
                    batch_buffer_idx, :]
            else:
                batched_hidden_states = self.batched_hidden_states
                batched_router_logits = self.batched_router_logits

            assert (batched_hidden_states.size(0)  # type: ignore
                    >= chunk_size)
            assert (batched_router_logits.size(0)  # type: ignore 
                    >= chunk_size)
            staged_hidden_states = batched_hidden_states[:
                                                         chunk_size, :]  # type: ignore
            staged_router_logits = batched_router_logits[:
                                                         chunk_size, :]  # type: ignore
            staged_hidden_states.copy_(hidden_states, non_blocking=True)
            staged_router_logits.copy_(router_logits, non_blocking=True)

            # Matrix multiply.
            final_hidden_states = self.quant_method.apply(
                layer=self,
                x=staged_hidden_states,
                router_logits=staged_router_logits,
                top_k=self.top_k,
                renormalize=self.renormalize,
                use_grouped_topk=self.use_grouped_topk,
                global_num_experts=self.global_num_experts,
                expert_map=self.expert_map,
                topk_group=self.topk_group,
                num_expert_group=self.num_expert_group,
                custom_routing_function=self.custom_routing_function,
                scoring_func=self.scoring_func,
                routed_scaling_factor=self.routed_scaling_factor,
                e_score_correction_bias=self.e_score_correction_bias,
                activation=self.activation,
                enable_eplb=self.enable_eplb,
                expert_load_view=self.expert_load_view,
                logical_to_physical_map=self.logical_to_physical_map,
                logical_replica_count=self.logical_replica_count,
            )

            assert self.shared_experts is None or isinstance(
                final_hidden_states, tuple)

            if self.zero_expert_num is not None and self.zero_expert_num > 0:
                assert isinstance(final_hidden_states, tuple)
                assert self.shared_experts is None
                final_hidden_states, zero_expert_result = final_hidden_states
                if zero_expert_result is not None:
                    final_hidden_states += zero_expert_result

            if not skip_result_store:
                if self.shared_experts is None:
                    full_fused_final_hidden_states[
                        chunk_start:chunk_end, :].copy_(final_hidden_states,
                                                        non_blocking=True)
                else:
                    full_shared_final_hidden_states[
                        chunk_start:chunk_end, :].copy_(final_hidden_states[0],
                                                        non_blocking=True)
                    full_fused_final_hidden_states[
                        chunk_start:chunk_end, :].copy_(final_hidden_states[1],
                                                        non_blocking=True)

        ctx = get_forward_context()
        # flashinfer_cutlass_kernels can handle: optional DP + TP/EP
        max_tokens_across_dispatchers = ctx.dp_metadata.max_tokens_across_dp_cpu
        moe_dp_chunk_size_per_rank = self.moe_config.max_num_tokens

        # If the input to the MoE is sequence parallel then divide by sp_size
        # to find the maximum number of tokens for any individual dispatcher.
        if self.is_sequence_parallel:
            max_tokens_across_dispatchers = cdiv(max_tokens_across_dispatchers,
                                                 self.sp_size)

        num_tokens = full_hidden_states.size(0)
        for chunk_idx, chunk_start_ in enumerate(
                range(0, max_tokens_across_dispatchers,
                      moe_dp_chunk_size_per_rank)):
            chunk_start = chunk_start_
            chunk_end = min(chunk_start + moe_dp_chunk_size_per_rank,
                            max_tokens_across_dispatchers)
            # clamp start and end
            chunk_start = min(chunk_start, num_tokens - 1)
            chunk_end = min(chunk_end, num_tokens)
            with ctx.dp_metadata.chunked_sizes(self.sp_size,
                                               moe_dp_chunk_size_per_rank,
                                               chunk_idx):
                process_chunk(chunk_start,
                              chunk_end,
                              skip_result_store=chunk_start_ >= num_tokens)

        if self.shared_experts is None:
            return full_fused_final_hidden_states
        else:
            return (full_shared_final_hidden_states,
                    full_fused_final_hidden_states)

    def forward_impl(
        self,
        hidden_states: torch.Tensor,
        router_logits: torch.Tensor,
    ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        assert self.quant_method is not None

        self.ensure_moe_quant_config()

        # Route to the chunked forward path using the FlashInfer Cutlass kernel
        # only when data parallelism (DP) is enabled.
        _use_flashinfer_cutlass_kernels = (self.dp_size > 1 and
                                           self.use_flashinfer_cutlass_kernels)

        if (self.moe_parallel_config.use_pplx_kernels
                or self.moe_parallel_config.use_deepep_ll_kernels
                or _use_flashinfer_cutlass_kernels):
            return self.forward_impl_chunked(hidden_states, router_logits)

        do_naive_dispatch_combine: bool = (
            self.dp_size > 1
            and not self.moe_parallel_config.use_deepep_ht_kernels
            and not self.moe_config.use_flashinfer_cutlass_kernels)

        # If there are shared experts but we are not using a modular kernel, the
        # shared experts must be called here
        if (not isinstance(self.quant_method.fused_experts,
                           FusedMoEModularKernel)
                and self.shared_experts is not None):
            shared_output = self.shared_experts(hidden_states)
        else:
            shared_output = None

        ctx = get_forward_context()
        sp_ctx = ctx.dp_metadata.sp_local_sizes(
            self.sp_size) if ctx.dp_metadata else nullcontext()

        with sp_ctx:
            if do_naive_dispatch_combine:
                hidden_states, router_logits = get_ep_group().dispatch(
                    hidden_states, router_logits, self.is_sequence_parallel)

            # Matrix multiply.
            final_hidden_states = self.quant_method.apply(
                layer=self,
                x=hidden_states,
                router_logits=router_logits,
                top_k=self.top_k,
                renormalize=self.renormalize,
                use_grouped_topk=self.use_grouped_topk,
                global_num_experts=self.global_num_experts,
                expert_map=self.expert_map,
                topk_group=self.topk_group,
                num_expert_group=self.num_expert_group,
                custom_routing_function=self.custom_routing_function,
                scoring_func=self.scoring_func,
                routed_scaling_factor=self.routed_scaling_factor,
                e_score_correction_bias=self.e_score_correction_bias,
                activation=self.activation,
                apply_router_weight_on_input=self.apply_router_weight_on_input,
                enable_eplb=self.enable_eplb,
                expert_load_view=self.expert_load_view,
                logical_to_physical_map=self.logical_to_physical_map,
                logical_replica_count=self.logical_replica_count,
            )

            if shared_output is not None:
                assert not isinstance(final_hidden_states, tuple)
                assert self.shared_experts is not None
                final_hidden_states = (
                    shared_output,
                    final_hidden_states,
                )
            elif self.zero_expert_num is not None and self.zero_expert_num > 0:
                assert isinstance(final_hidden_states, tuple)
                final_hidden_states, zero_expert_result = final_hidden_states

            def reduce_output(states: torch.Tensor,
                              do_combine: bool = True) -> torch.Tensor:
                if do_naive_dispatch_combine and do_combine:
                    states = get_ep_group().combine(states,
                                                    self.is_sequence_parallel)

                if (not self.is_sequence_parallel and self.reduce_results
                        and (self.tp_size > 1 or self.ep_size > 1)):
                    states = self.maybe_all_reduce_tensor_model_parallel(
                        states)

                return states

            if self.shared_experts is not None:
                return (
                    reduce_output(final_hidden_states[0], do_combine=False),
                    reduce_output(final_hidden_states[1]),
                )
            elif self.zero_expert_num is not None and self.zero_expert_num > 0:
                assert isinstance(final_hidden_states, torch.Tensor)
                return reduce_output(final_hidden_states) + zero_expert_result
            else:
                return reduce_output(final_hidden_states)

    @classmethod
    def make_expert_params_mapping(
            cls,
            ckpt_gate_proj_name: str,
            ckpt_down_proj_name: str,
            ckpt_up_proj_name: str,
            num_experts: int,
            num_redundant_experts: int = 0) -> list[tuple[str, str, int, str]]:

        num_physical_experts = num_experts + num_redundant_experts

        # In the returned mapping:
        # - `expert_id` is the physical expert id
        # - `weight_name` contains the weight name of the logical expert
        # So that we should map the expert id to logical in `weight_name`
        physical_to_logical_map = \
            EplbState.build_initial_global_physical_to_logical_map(
            num_experts, num_redundant_experts)

        return [
            # (param_name, weight_name, expert_id, shard_id)
            ("experts.w13_" if weight_name
             in [ckpt_gate_proj_name, ckpt_up_proj_name] else "experts.w2_",
             f"experts.{physical_to_logical_map[expert_id]}.{weight_name}.",
             expert_id, shard_id) for expert_id in range(num_physical_experts)
            for shard_id, weight_name in [
                ("w1", ckpt_gate_proj_name),
                ("w2", ckpt_down_proj_name),
                ("w3", ckpt_up_proj_name),
            ]
        ]

    def extra_repr(self) -> str:

        s = (
            f"global_num_experts={self.global_num_experts}, "
            f"local_num_experts={self.local_num_experts}, "
            f"top_k={self.top_k}, "
            f"intermediate_size_per_partition={self.intermediate_size_per_partition}, "  # noqa: E501
            f"tp_size={self.tp_size},\n"
            f"ep_size={self.ep_size}, "
            f"reduce_results={self.reduce_results}, "
            f"renormalize={self.renormalize}, "
            f"use_grouped_topk={self.use_grouped_topk}")

        if self.use_grouped_topk:
            s += f", num_expert_group={self.num_expert_group}, topk_group={self.topk_group}"  # noqa: E501

        s += f", scoring_func='{self.scoring_func}', activation='{self.activation}'"  # noqa: E501

        return s

activation instance-attribute

activation = activation

apply_router_weight_on_input instance-attribute

apply_router_weight_on_input = apply_router_weight_on_input

batched_hidden_states instance-attribute

batched_hidden_states: Optional[Tensor] = None

batched_router_logits instance-attribute

batched_router_logits: Optional[Tensor] = None

custom_routing_function instance-attribute

custom_routing_function = custom_routing_function

dp_rank property

dp_rank

dp_size property

dp_size

e_score_correction_bias instance-attribute

e_score_correction_bias = e_score_correction_bias

enable_eplb instance-attribute

enable_eplb = enable_eplb

ep_rank property

ep_rank

ep_size property

ep_size

expert_load_view instance-attribute

expert_load_view: Optional[Tensor] = None

expert_map instance-attribute

expert_map: Optional[Tensor]

global_num_experts instance-attribute

global_num_experts = num_experts + num_redundant_experts

hidden_size instance-attribute

hidden_size = hidden_size

intermediate_size_per_partition instance-attribute

intermediate_size_per_partition = (
    intermediate_size // tp_size
)

is_sequence_parallel instance-attribute

is_sequence_parallel = is_sequence_parallel

layer_name instance-attribute

layer_name = prefix

local_num_experts instance-attribute

local_num_experts = local_num_experts

logical_replica_count instance-attribute

logical_replica_count: Optional[Tensor] = None

logical_to_physical_map instance-attribute

logical_to_physical_map: Optional[Tensor] = None

moe_config instance-attribute

moe_config = moe

moe_parallel_config instance-attribute

moe_parallel_config: FusedMoEParallelConfig = make(
    tp_size_=tp_size_,
    dp_size_=dp_size_,
    vllm_parallel_config=parallel_config,
)

moe_quant_config instance-attribute

moe_quant_config: Optional[FusedMoEQuantConfig] = None

num_expert_group instance-attribute

num_expert_group = num_expert_group

params_dtype instance-attribute

params_dtype = params_dtype

quant_config instance-attribute

quant_config = quant_config

quant_method instance-attribute

quant_method = quant_method

reduce_results instance-attribute

reduce_results = reduce_results

renormalize instance-attribute

renormalize = renormalize

routed_scaling_factor instance-attribute

routed_scaling_factor = routed_scaling_factor

scoring_func instance-attribute

scoring_func = scoring_func

shared_experts property

shared_experts: Optional[Module]

sp_size instance-attribute

sp_size = tp_size_ if is_sequence_parallel else 1

top_k instance-attribute

top_k = top_k

topk_group instance-attribute

topk_group = topk_group

tp_rank property

tp_rank

tp_size property

tp_size

use_deepep_ht_kernels property

use_deepep_ht_kernels

use_deepep_ll_kernels property

use_deepep_ll_kernels

use_ep property

use_ep

use_flashinfer_cutlass_kernels property

use_flashinfer_cutlass_kernels

use_grouped_topk instance-attribute

use_grouped_topk = use_grouped_topk

use_pplx_kernels property

use_pplx_kernels

zero_expert_num instance-attribute

zero_expert_num = zero_expert_num

zero_expert_type instance-attribute

zero_expert_type = zero_expert_type

__init__

__init__(
    num_experts: int,
    top_k: int,
    hidden_size: int,
    intermediate_size: int,
    params_dtype: Optional[dtype] = None,
    reduce_results: bool = False,
    renormalize: bool = True,
    use_grouped_topk: bool = False,
    num_expert_group: Optional[int] = None,
    topk_group: Optional[int] = None,
    quant_config: Optional[QuantizationConfig] = None,
    tp_size: Optional[int] = None,
    ep_size: Optional[int] = None,
    dp_size: Optional[int] = None,
    prefix: str = "",
    custom_routing_function: Optional[Callable] = None,
    scoring_func: str = "softmax",
    routed_scaling_factor: float = 1.0,
    e_score_correction_bias: Optional[Tensor] = None,
    apply_router_weight_on_input: bool = False,
    activation: str = "silu",
    enable_eplb: bool = False,
    num_redundant_experts: int = 0,
    has_bias: bool = False,
    is_sequence_parallel=False,
    zero_expert_num: Optional[int] = 0,
    zero_expert_type: Optional[str] = None,
)
Source code in vllm/model_executor/layers/fused_moe/layer.py
def __init__(
    self,
    num_experts: int,  # Global number of experts
    top_k: int,
    hidden_size: int,
    intermediate_size: int,
    params_dtype: Optional[torch.dtype] = None,
    reduce_results: bool = False,
    renormalize: bool = True,
    use_grouped_topk: bool = False,
    num_expert_group: Optional[int] = None,
    topk_group: Optional[int] = None,
    quant_config: Optional[QuantizationConfig] = None,
    tp_size: Optional[int] = None,
    ep_size: Optional[int] = None,
    dp_size: Optional[int] = None,
    prefix: str = "",
    custom_routing_function: Optional[Callable] = None,
    scoring_func: str = "softmax",
    routed_scaling_factor: float = 1.0,
    e_score_correction_bias: Optional[torch.Tensor] = None,
    apply_router_weight_on_input: bool = False,
    activation: str = "silu",
    enable_eplb: bool = False,
    num_redundant_experts: int = 0,
    has_bias: bool = False,
    is_sequence_parallel=False,
    zero_expert_num: Optional[int] = 0,
    zero_expert_type: Optional[str] = None,
):
    super().__init__()
    if params_dtype is None:
        params_dtype = torch.get_default_dtype()
    self.params_dtype = params_dtype

    vllm_config = get_current_vllm_config()

    # FIXME (varun): We should have a better way of inferring the activation
    # datatype. This works for now as the tensor datatype entering the MoE
    # operation is typically unquantized (i.e. float16/bfloat16).
    if vllm_config.model_config is not None:
        moe_in_dtype = vllm_config.model_config.dtype
    else:
        # TODO (bnell): This is a hack to get test_mixtral_moe to work
        # since model_config is not set in the pytest test.
        moe_in_dtype = params_dtype

    tp_size_ = (tp_size if tp_size is not None else
                get_tensor_model_parallel_world_size())
    dp_size_ = (dp_size
                if dp_size is not None else get_dp_group().world_size)

    self.is_sequence_parallel = is_sequence_parallel
    self.sp_size = tp_size_ if is_sequence_parallel else 1

    self.moe_parallel_config: FusedMoEParallelConfig = (
        FusedMoEParallelConfig.make(
            tp_size_=tp_size_,
            dp_size_=dp_size_,
            vllm_parallel_config=vllm_config.parallel_config))

    self.global_num_experts = num_experts + num_redundant_experts
    self.zero_expert_num = zero_expert_num
    self.zero_expert_type = zero_expert_type

    # Round up hidden size if needed.
    hidden_size = maybe_roundup_hidden_size(hidden_size, moe_in_dtype,
                                            quant_config,
                                            self.moe_parallel_config)

    # For smuggling this layer into the fused moe custom op
    compilation_config = vllm_config.compilation_config
    if prefix in compilation_config.static_forward_context:
        raise ValueError("Duplicate layer name: {}".format(prefix))
    compilation_config.static_forward_context[prefix] = self
    self.layer_name = prefix

    self.enable_eplb = enable_eplb
    self.expert_load_view: Optional[torch.Tensor] = None
    self.logical_to_physical_map: Optional[torch.Tensor] = None
    self.logical_replica_count: Optional[torch.Tensor] = None

    # Determine expert maps
    if self.use_ep:
        if self.enable_eplb:
            assert self.global_num_experts % self.ep_size == 0, \
                "EPLB currently only supports even distribution of " \
                "experts across ranks."
        else:
            assert num_redundant_experts == 0, \
                "Redundant experts are only supported with EPLB."

        expert_placement_strategy = (
            vllm_config.parallel_config.expert_placement_strategy)
        if expert_placement_strategy == "round_robin":
            # TODO(Bruce): will support round robin expert placement with
            # EPLB enabled in the future.
            round_robin_supported = ((num_expert_group is not None
                                      and num_expert_group > 1)
                                     and num_redundant_experts == 0
                                     and not self.enable_eplb)

            if not round_robin_supported:
                logger.warning(
                    "Round-robin expert placement is only supported for "
                    "models with multiple expert groups and no redundant "
                    "experts. Falling back to linear expert placement.")
                expert_placement_strategy = "linear"

        self.expert_map: Optional[torch.Tensor]
        local_num_experts, expert_map = determine_expert_map(
            ep_size=self.ep_size,
            ep_rank=self.ep_rank,
            global_num_experts=self.global_num_experts,
            expert_placement_strategy=expert_placement_strategy,
        )
        self.local_num_experts = local_num_experts
        self.register_buffer("expert_map", expert_map)
        logger.info_once(
            "[EP Rank %s/%s] Expert parallelism is enabled. Expert "
            "placement strategy: %s. Local/global"
            " number of experts: %s/%s. Experts local to global index map:"
            " %s.", self.ep_rank, self.ep_size, expert_placement_strategy,
            self.local_num_experts, self.global_num_experts,
            get_compressed_expert_map(self.expert_map))
    else:
        self.local_num_experts, self.expert_map = (self.global_num_experts,
                                                   None)

    self.top_k = top_k

    assert intermediate_size % self.tp_size == 0
    self.hidden_size = hidden_size
    self.intermediate_size_per_partition = intermediate_size // self.tp_size
    self.reduce_results = reduce_results
    self.renormalize = renormalize
    self.use_grouped_topk = use_grouped_topk
    if self.use_grouped_topk:
        assert num_expert_group is not None and topk_group is not None
    self.num_expert_group = num_expert_group
    self.topk_group = topk_group
    self.custom_routing_function = custom_routing_function
    self.scoring_func = scoring_func
    self.routed_scaling_factor = routed_scaling_factor
    self.e_score_correction_bias = e_score_correction_bias
    self.apply_router_weight_on_input = apply_router_weight_on_input
    self.activation = activation

    if self.scoring_func != "softmax" and not self.use_grouped_topk:
        raise ValueError("Only softmax scoring function is supported for "
                         "non-grouped topk.")

    moe = FusedMoEConfig(
        num_experts=self.global_num_experts,
        experts_per_token=top_k,
        hidden_dim=hidden_size,
        num_local_experts=self.local_num_experts,
        moe_parallel_config=self.moe_parallel_config,
        in_dtype=moe_in_dtype,
        max_num_tokens=envs.VLLM_MOE_DP_CHUNK_SIZE,
        has_bias=has_bias,
    )
    self.moe_config = moe
    self.moe_quant_config: Optional[FusedMoEQuantConfig] = None
    self.quant_config = quant_config

    # Note: get_quant_method will look at the layer's local_num_experts
    # for heuristic purposes, so it must be initialized first.
    quant_method: Optional[QuantizeMethodBase] = None
    quant_method = (UnquantizedFusedMoEMethod(moe) if quant_config is None
                    else quant_config.get_quant_method(self, prefix))

    assert quant_method is not None
    assert isinstance(quant_method, FusedMoEMethodBase)
    self.quant_method = quant_method

    if self.enable_eplb:
        from vllm.model_executor.layers.quantization.fp8 import (
            Fp8MoEMethod)
        if not isinstance(quant_method,
                          (Fp8MoEMethod, UnquantizedFusedMoEMethod)):
            # TODO: Add support for additional quantization methods.
            # The implementation for other quantization methods does not
            # contain essential differences, but the current quant API
            # design causes duplicated work when extending to new
            # quantization methods, so I'm leaving it for now.
            # If you plan to add support for more quantization methods,
            # please refer to the implementation in `Fp8MoEMethod`.
            raise NotImplementedError("EPLB is only supported for FP8 "
                                      "quantization for now.")

    moe_quant_params = {
        "num_experts": self.local_num_experts,
        "hidden_size": hidden_size,
        "intermediate_size_per_partition":
        self.intermediate_size_per_partition,
        "params_dtype": params_dtype,
        "weight_loader": self.weight_loader,
    }
    # need full intermediate size pre-sharding for WNA16 act order
    if (self.quant_method.__class__.__name__
            in ("GPTQMarlinMoEMethod",
                "CompressedTensorsWNA16MarlinMoEMethod",
                "CompressedTensorsWNA16MoEMethod")):
        moe_quant_params["intermediate_size_full"] = intermediate_size

    self.quant_method.create_weights(layer=self, **moe_quant_params)

    # Chunked all2all staging tensor
    self.batched_hidden_states: Optional[torch.Tensor] = None
    self.batched_router_logits: Optional[torch.Tensor] = None

    # TODO(bnell): flashinfer uses non-batched format.
    # Does it really need a batched buffer?
    if (self.moe_parallel_config.use_pplx_kernels
            or self.moe_parallel_config.use_deepep_ll_kernels
            or self.moe_config.use_flashinfer_cutlass_kernels):
        if vllm_config.parallel_config.enable_dbo:
            self.batched_hidden_states = torch.zeros(
                (2, moe.max_num_tokens, self.hidden_size),
                dtype=moe.in_dtype,
                device=torch.cuda.current_device())

            # Note here we use `num_experts` which is logical expert count
            self.batched_router_logits = torch.zeros(
                (2, moe.max_num_tokens, num_experts),
                dtype=moe.in_dtype,
                device=torch.cuda.current_device())
        else:
            self.batched_hidden_states = torch.zeros(
                (moe.max_num_tokens, self.hidden_size),
                dtype=moe.in_dtype,
                device=torch.cuda.current_device())

            # Note here we use `num_experts` which is logical expert count
            self.batched_router_logits = torch.zeros(
                (moe.max_num_tokens, num_experts),
                dtype=moe.in_dtype,
                device=torch.cuda.current_device())

_load_combined_w13_weight_scale

_load_combined_w13_weight_scale(
    shard_dim: int,
    loaded_weight: Tensor,
    param: Tensor,
    tp_rank: int,
)

Load w13 weight scales assuming that w1 weight scales and w3 weight scales are stored in the same loaded_weight tensor.

Source code in vllm/model_executor/layers/fused_moe/layer.py
def _load_combined_w13_weight_scale(self, shard_dim: int,
                                    loaded_weight: torch.Tensor,
                                    param: torch.Tensor, tp_rank: int):
    """
    Load w13 weight scales assuming that w1 weight scales and w3 weight
    scales are stored in the same loaded_weight tensor.
    """
    shard_size = param.shape[shard_dim]
    loaded_weight = loaded_weight.narrow(shard_dim, shard_size * tp_rank,
                                         shard_size)
    param.copy_(loaded_weight)

_load_g_idx

_load_g_idx(
    shard_id: str,
    expert_data: Tensor,
    shard_dim: int,
    loaded_weight: Tensor,
    tp_rank: int,
)
Source code in vllm/model_executor/layers/fused_moe/layer.py
def _load_g_idx(self, shard_id: str, expert_data: torch.Tensor,
                shard_dim: int, loaded_weight: torch.Tensor, tp_rank: int):

    if shard_id == "w2":
        self._load_w2(shard_dim=shard_dim,
                      loaded_weight=loaded_weight,
                      expert_data=expert_data,
                      tp_rank=tp_rank)
    else:
        assert shard_id in ("w1", "w3")
        expert_data.copy_(loaded_weight)

_load_model_weight_or_group_weight_scale

_load_model_weight_or_group_weight_scale(
    shard_dim: int,
    expert_data: Tensor,
    shard_id: str,
    loaded_weight: Tensor,
    tp_rank: int,
    load_full_w2: bool = False,
)

Load grouped weight scales for group quantization or model weights :param shard_dim: dimension to shard :param expert_data: parameter for a particular expert :param shard_id: either w1, w2, or w3 :param loaded_weight: checkpoint weight to load into the param :param tp_rank: tensor parallel rank :param load_full_w2: whether or not the w2 loaded should be sharded.

Source code in vllm/model_executor/layers/fused_moe/layer.py
def _load_model_weight_or_group_weight_scale(self,
                                             shard_dim: int,
                                             expert_data: torch.Tensor,
                                             shard_id: str,
                                             loaded_weight: torch.Tensor,
                                             tp_rank: int,
                                             load_full_w2: bool = False):
    """
    Load grouped weight scales for group quantization or model weights
        :param shard_dim: dimension to shard
        :param expert_data: parameter for a particular expert
        :param shard_id: either w1, w2, or w3
        :param loaded_weight: checkpoint weight to load into the param
        :param tp_rank: tensor parallel rank
        :param load_full_w2: whether or not the w2 loaded should be sharded.
    """
    if shard_id == "w2":
        # In the case where we have actorder/g_idx, we do not partition the
        # w2 scales, as indicated by `load_full` argument, for all tp cases
        self._load_w2(shard_dim=shard_dim,
                      loaded_weight=loaded_weight,
                      expert_data=expert_data,
                      tp_rank=tp_rank,
                      load_full=load_full_w2)
    elif shard_id in ("w1", "w3"):
        self._load_w13(shard_id=shard_id,
                       shard_dim=shard_dim,
                       loaded_weight=loaded_weight,
                       expert_data=expert_data,
                       tp_rank=tp_rank)

_load_per_channel_weight_scale

_load_per_channel_weight_scale(
    expert_data: Tensor,
    shard_dim: int,
    shard_id: str,
    loaded_weight: Tensor,
    tp_rank: int,
)
Source code in vllm/model_executor/layers/fused_moe/layer.py
def _load_per_channel_weight_scale(self, expert_data: torch.Tensor,
                                   shard_dim: int, shard_id: str,
                                   loaded_weight: torch.Tensor,
                                   tp_rank: int):
    # for per channel weight quantization
    if shard_id == "w2":
        expert_data.copy_(loaded_weight)
    elif shard_id in ("w1", "w3"):
        self._load_w13(shard_id=shard_id,
                       shard_dim=shard_dim,
                       loaded_weight=loaded_weight,
                       expert_data=expert_data,
                       tp_rank=tp_rank)

_load_per_tensor_weight_scale

_load_per_tensor_weight_scale(
    shard_id: str,
    param: Parameter,
    loaded_weight: Tensor,
    expert_id: int,
)
Source code in vllm/model_executor/layers/fused_moe/layer.py
def _load_per_tensor_weight_scale(self, shard_id: str,
                                  param: torch.nn.Parameter,
                                  loaded_weight: torch.Tensor,
                                  expert_id: int):
    param_data = param.data
    # for per tensor weight quantization
    if shard_id in ("w1", "w3"):
        # We have to keep the weight scales of w1 and w3 because
        # we need to re-quantize w1/w3 weights after weight loading.
        idx = 0 if shard_id == "w1" else 1
        param_data[expert_id][idx] = loaded_weight
    # If we are in the row parallel case (down_proj)
    elif shard_id == "w2":
        param_data[expert_id] = loaded_weight

_load_single_value

_load_single_value(
    param: Parameter, loaded_weight: Tensor, expert_id: int
)
Source code in vllm/model_executor/layers/fused_moe/layer.py
def _load_single_value(self, param: torch.nn.Parameter,
                       loaded_weight: torch.Tensor, expert_id: int):
    param_data = param.data

    # Input scales can be loaded directly and should be equal.
    param_data[expert_id] = loaded_weight

_load_w13

_load_w13(
    expert_data: Tensor,
    shard_dim: int,
    shard_id: str,
    loaded_weight: Tensor,
    tp_rank: int,
    load_full: bool = False,
)
Source code in vllm/model_executor/layers/fused_moe/layer.py
def _load_w13(self,
              expert_data: torch.Tensor,
              shard_dim: int,
              shard_id: str,
              loaded_weight: torch.Tensor,
              tp_rank: int,
              load_full: bool = False):

    # Index the loaded weight for tp sharding.
    # gate_up_proj: "MergedColumnParallel", so tp sharding on output_dim
    shard_size = expert_data.shape[shard_dim] // 2
    if not load_full:
        loaded_weight = loaded_weight.narrow(shard_dim,
                                             shard_size * tp_rank,
                                             shard_size)
    # Narrow parameter and load.
    # w1, gate_proj: Load into first logical weight of w13.
    if shard_id == "w1":
        expert_data = expert_data.narrow(shard_dim, 0, shard_size)
    # w3, up_proj: Load into second logical weight of w13.
    else:
        assert shard_id == "w3"
        expert_data = expert_data.narrow(shard_dim, shard_size, shard_size)
    expert_data.copy_(loaded_weight)

_load_w2

_load_w2(
    expert_data: Tensor,
    shard_dim: int,
    loaded_weight: Tensor,
    tp_rank: int,
    load_full: bool = False,
)
Source code in vllm/model_executor/layers/fused_moe/layer.py
def _load_w2(self,
             expert_data: torch.Tensor,
             shard_dim: int,
             loaded_weight: torch.Tensor,
             tp_rank: int,
             load_full: bool = False):

    # Index the loaded weight for tp sharding.
    # down_proj: "RowParallel" so tp sharding on input_dim
    # Narrow parameter and load.
    shard_size = expert_data.shape[shard_dim]
    if not load_full:
        loaded_weight = loaded_weight.narrow(shard_dim,
                                             shard_size * tp_rank,
                                             shard_size)
    # w2, down_proj: Load into only logical weight of w2.
    expert_data.copy_(loaded_weight)

_map_global_expert_id_to_local_expert_id

_map_global_expert_id_to_local_expert_id(
    expert_id: int,
) -> int
Source code in vllm/model_executor/layers/fused_moe/layer.py
def _map_global_expert_id_to_local_expert_id(self, expert_id: int) -> int:
    if self.expert_map is None:
        return expert_id
    return self.expert_map[expert_id].item()

ensure_moe_quant_config

ensure_moe_quant_config()
Source code in vllm/model_executor/layers/fused_moe/layer.py
def ensure_moe_quant_config(self):
    if self.quant_method.moe_quant_config is None:
        self.quant_method.moe_quant_config = (
            self.quant_method.get_fused_moe_quant_config(self))

extra_repr

extra_repr() -> str
Source code in vllm/model_executor/layers/fused_moe/layer.py
def extra_repr(self) -> str:

    s = (
        f"global_num_experts={self.global_num_experts}, "
        f"local_num_experts={self.local_num_experts}, "
        f"top_k={self.top_k}, "
        f"intermediate_size_per_partition={self.intermediate_size_per_partition}, "  # noqa: E501
        f"tp_size={self.tp_size},\n"
        f"ep_size={self.ep_size}, "
        f"reduce_results={self.reduce_results}, "
        f"renormalize={self.renormalize}, "
        f"use_grouped_topk={self.use_grouped_topk}")

    if self.use_grouped_topk:
        s += f", num_expert_group={self.num_expert_group}, topk_group={self.topk_group}"  # noqa: E501

    s += f", scoring_func='{self.scoring_func}', activation='{self.activation}'"  # noqa: E501

    return s

forward_cuda

forward_cuda(
    hidden_states: Tensor, router_logits: Tensor
) -> Union[Tensor, tuple[Tensor, Tensor]]
Source code in vllm/model_executor/layers/fused_moe/layer.py
def forward_cuda(
    self,
    hidden_states: torch.Tensor,
    router_logits: torch.Tensor,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
    return self.forward_native(hidden_states, router_logits)

forward_impl

forward_impl(
    hidden_states: Tensor, router_logits: Tensor
) -> Union[Tensor, tuple[Tensor, Tensor]]
Source code in vllm/model_executor/layers/fused_moe/layer.py
def forward_impl(
    self,
    hidden_states: torch.Tensor,
    router_logits: torch.Tensor,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
    assert self.quant_method is not None

    self.ensure_moe_quant_config()

    # Route to the chunked forward path using the FlashInfer Cutlass kernel
    # only when data parallelism (DP) is enabled.
    _use_flashinfer_cutlass_kernels = (self.dp_size > 1 and
                                       self.use_flashinfer_cutlass_kernels)

    if (self.moe_parallel_config.use_pplx_kernels
            or self.moe_parallel_config.use_deepep_ll_kernels
            or _use_flashinfer_cutlass_kernels):
        return self.forward_impl_chunked(hidden_states, router_logits)

    do_naive_dispatch_combine: bool = (
        self.dp_size > 1
        and not self.moe_parallel_config.use_deepep_ht_kernels
        and not self.moe_config.use_flashinfer_cutlass_kernels)

    # If there are shared experts but we are not using a modular kernel, the
    # shared experts must be called here
    if (not isinstance(self.quant_method.fused_experts,
                       FusedMoEModularKernel)
            and self.shared_experts is not None):
        shared_output = self.shared_experts(hidden_states)
    else:
        shared_output = None

    ctx = get_forward_context()
    sp_ctx = ctx.dp_metadata.sp_local_sizes(
        self.sp_size) if ctx.dp_metadata else nullcontext()

    with sp_ctx:
        if do_naive_dispatch_combine:
            hidden_states, router_logits = get_ep_group().dispatch(
                hidden_states, router_logits, self.is_sequence_parallel)

        # Matrix multiply.
        final_hidden_states = self.quant_method.apply(
            layer=self,
            x=hidden_states,
            router_logits=router_logits,
            top_k=self.top_k,
            renormalize=self.renormalize,
            use_grouped_topk=self.use_grouped_topk,
            global_num_experts=self.global_num_experts,
            expert_map=self.expert_map,
            topk_group=self.topk_group,
            num_expert_group=self.num_expert_group,
            custom_routing_function=self.custom_routing_function,
            scoring_func=self.scoring_func,
            routed_scaling_factor=self.routed_scaling_factor,
            e_score_correction_bias=self.e_score_correction_bias,
            activation=self.activation,
            apply_router_weight_on_input=self.apply_router_weight_on_input,
            enable_eplb=self.enable_eplb,
            expert_load_view=self.expert_load_view,
            logical_to_physical_map=self.logical_to_physical_map,
            logical_replica_count=self.logical_replica_count,
        )

        if shared_output is not None:
            assert not isinstance(final_hidden_states, tuple)
            assert self.shared_experts is not None
            final_hidden_states = (
                shared_output,
                final_hidden_states,
            )
        elif self.zero_expert_num is not None and self.zero_expert_num > 0:
            assert isinstance(final_hidden_states, tuple)
            final_hidden_states, zero_expert_result = final_hidden_states

        def reduce_output(states: torch.Tensor,
                          do_combine: bool = True) -> torch.Tensor:
            if do_naive_dispatch_combine and do_combine:
                states = get_ep_group().combine(states,
                                                self.is_sequence_parallel)

            if (not self.is_sequence_parallel and self.reduce_results
                    and (self.tp_size > 1 or self.ep_size > 1)):
                states = self.maybe_all_reduce_tensor_model_parallel(
                    states)

            return states

        if self.shared_experts is not None:
            return (
                reduce_output(final_hidden_states[0], do_combine=False),
                reduce_output(final_hidden_states[1]),
            )
        elif self.zero_expert_num is not None and self.zero_expert_num > 0:
            assert isinstance(final_hidden_states, torch.Tensor)
            return reduce_output(final_hidden_states) + zero_expert_result
        else:
            return reduce_output(final_hidden_states)

forward_impl_chunked

forward_impl_chunked(
    full_hidden_states: Tensor, full_router_logits: Tensor
) -> Union[Tensor, tuple[Tensor, Tensor]]
Source code in vllm/model_executor/layers/fused_moe/layer.py
def forward_impl_chunked(
    self,
    full_hidden_states: torch.Tensor,
    full_router_logits: torch.Tensor,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
    assert self.batched_hidden_states is not None
    assert self.batched_router_logits is not None
    assert self.batched_hidden_states.dtype == full_hidden_states.dtype
    assert self.batched_router_logits.dtype == full_router_logits.dtype
    # Check size compatibility.
    assert (
        self.batched_hidden_states.size(-1) == full_hidden_states.size(-1))
    assert (
        self.batched_router_logits.size(-1) == full_router_logits.size(-1))

    self.ensure_moe_quant_config()

    full_fused_final_hidden_states = torch.empty_like(full_hidden_states)
    if self.shared_experts is not None:
        full_shared_final_hidden_states = torch.empty_like(
            full_hidden_states)

    def process_chunk(chunk_start, chunk_end, skip_result_store=False):
        chunk_size = chunk_end - chunk_start
        hidden_states = full_hidden_states[chunk_start:chunk_end, :]
        router_logits = full_router_logits[chunk_start:chunk_end, :]

        assert self.batched_hidden_states is not None
        assert self.batched_router_logits is not None
        # This is only true when DBO has been enabled in the config.
        # Both tensors will have an outer dimension for the ubatch id
        if self.batched_hidden_states.dim() == 3:
            assert self.batched_router_logits.dim() == 3
            batch_buffer_idx = dbo_current_ubatch_id()
            batched_hidden_states = self.batched_hidden_states[
                batch_buffer_idx, :]
            batched_router_logits = self.batched_router_logits[
                batch_buffer_idx, :]
        else:
            batched_hidden_states = self.batched_hidden_states
            batched_router_logits = self.batched_router_logits

        assert (batched_hidden_states.size(0)  # type: ignore
                >= chunk_size)
        assert (batched_router_logits.size(0)  # type: ignore 
                >= chunk_size)
        staged_hidden_states = batched_hidden_states[:
                                                     chunk_size, :]  # type: ignore
        staged_router_logits = batched_router_logits[:
                                                     chunk_size, :]  # type: ignore
        staged_hidden_states.copy_(hidden_states, non_blocking=True)
        staged_router_logits.copy_(router_logits, non_blocking=True)

        # Matrix multiply.
        final_hidden_states = self.quant_method.apply(
            layer=self,
            x=staged_hidden_states,
            router_logits=staged_router_logits,
            top_k=self.top_k,
            renormalize=self.renormalize,
            use_grouped_topk=self.use_grouped_topk,
            global_num_experts=self.global_num_experts,
            expert_map=self.expert_map,
            topk_group=self.topk_group,
            num_expert_group=self.num_expert_group,
            custom_routing_function=self.custom_routing_function,
            scoring_func=self.scoring_func,
            routed_scaling_factor=self.routed_scaling_factor,
            e_score_correction_bias=self.e_score_correction_bias,
            activation=self.activation,
            enable_eplb=self.enable_eplb,
            expert_load_view=self.expert_load_view,
            logical_to_physical_map=self.logical_to_physical_map,
            logical_replica_count=self.logical_replica_count,
        )

        assert self.shared_experts is None or isinstance(
            final_hidden_states, tuple)

        if self.zero_expert_num is not None and self.zero_expert_num > 0:
            assert isinstance(final_hidden_states, tuple)
            assert self.shared_experts is None
            final_hidden_states, zero_expert_result = final_hidden_states
            if zero_expert_result is not None:
                final_hidden_states += zero_expert_result

        if not skip_result_store:
            if self.shared_experts is None:
                full_fused_final_hidden_states[
                    chunk_start:chunk_end, :].copy_(final_hidden_states,
                                                    non_blocking=True)
            else:
                full_shared_final_hidden_states[
                    chunk_start:chunk_end, :].copy_(final_hidden_states[0],
                                                    non_blocking=True)
                full_fused_final_hidden_states[
                    chunk_start:chunk_end, :].copy_(final_hidden_states[1],
                                                    non_blocking=True)

    ctx = get_forward_context()
    # flashinfer_cutlass_kernels can handle: optional DP + TP/EP
    max_tokens_across_dispatchers = ctx.dp_metadata.max_tokens_across_dp_cpu
    moe_dp_chunk_size_per_rank = self.moe_config.max_num_tokens

    # If the input to the MoE is sequence parallel then divide by sp_size
    # to find the maximum number of tokens for any individual dispatcher.
    if self.is_sequence_parallel:
        max_tokens_across_dispatchers = cdiv(max_tokens_across_dispatchers,
                                             self.sp_size)

    num_tokens = full_hidden_states.size(0)
    for chunk_idx, chunk_start_ in enumerate(
            range(0, max_tokens_across_dispatchers,
                  moe_dp_chunk_size_per_rank)):
        chunk_start = chunk_start_
        chunk_end = min(chunk_start + moe_dp_chunk_size_per_rank,
                        max_tokens_across_dispatchers)
        # clamp start and end
        chunk_start = min(chunk_start, num_tokens - 1)
        chunk_end = min(chunk_end, num_tokens)
        with ctx.dp_metadata.chunked_sizes(self.sp_size,
                                           moe_dp_chunk_size_per_rank,
                                           chunk_idx):
            process_chunk(chunk_start,
                          chunk_end,
                          skip_result_store=chunk_start_ >= num_tokens)

    if self.shared_experts is None:
        return full_fused_final_hidden_states
    else:
        return (full_shared_final_hidden_states,
                full_fused_final_hidden_states)

forward_native

forward_native(
    hidden_states: Tensor, router_logits: Tensor
) -> Union[Tensor, tuple[Tensor, Tensor]]
Source code in vllm/model_executor/layers/fused_moe/layer.py
def forward_native(
    self,
    hidden_states: torch.Tensor,
    router_logits: torch.Tensor,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
    og_hidden_states = hidden_states.shape[-1]
    if self.hidden_size != og_hidden_states:
        hidden_states = F.pad(hidden_states,
                              (0, self.hidden_size - og_hidden_states),
                              mode='constant',
                              value=0.0)

    if self.shared_experts is None:
        if current_platform.is_tpu():
            # TODO: Once the OOM issue for the TPU backend is resolved, we
            # will switch to using the moe_forward custom op.
            fused_output = self.forward_impl(hidden_states, router_logits)
            assert not isinstance(fused_output, tuple)
        else:
            fused_output = torch.ops.vllm.moe_forward(
                hidden_states, router_logits, self.layer_name)
        return fused_output[..., :og_hidden_states]
    else:
        if current_platform.is_tpu():
            # TODO: Once the OOM issue for the TPU backend is resolved, we
            # will switch to using the moe_forward custom op.
            shared_output, fused_output = self.forward_impl(
                hidden_states, router_logits)
        else:
            shared_output, fused_output = torch.ops.vllm.moe_forward_shared(
                hidden_states, router_logits, self.layer_name)
        return (shared_output[..., :og_hidden_states],
                fused_output[..., :og_hidden_states])

get_expert_weights

get_expert_weights() -> Iterable[Tensor]
Source code in vllm/model_executor/layers/fused_moe/layer.py
def get_expert_weights(self) -> Iterable[torch.Tensor]:
    weights = list(self.named_parameters())
    assert all(weight.is_contiguous() for _, weight in weights)

    # Filter out the non-expert weights.
    # `e_score_correction_bias` is a bias for each logical expert,
    # with shape (num_logical_experts,), not an expert weight.
    NON_EXPERT_WEIGHTS = {
        "e_score_correction_bias",
    }

    return [
        weight.view(self.local_num_experts, -1) for name, weight in weights
        if name not in NON_EXPERT_WEIGHTS and weight.shape != torch.Size(
            []) and not name.startswith("_shared_experts.")
    ]

make_expert_params_mapping classmethod

make_expert_params_mapping(
    ckpt_gate_proj_name: str,
    ckpt_down_proj_name: str,
    ckpt_up_proj_name: str,
    num_experts: int,
    num_redundant_experts: int = 0,
) -> list[tuple[str, str, int, str]]
Source code in vllm/model_executor/layers/fused_moe/layer.py
@classmethod
def make_expert_params_mapping(
        cls,
        ckpt_gate_proj_name: str,
        ckpt_down_proj_name: str,
        ckpt_up_proj_name: str,
        num_experts: int,
        num_redundant_experts: int = 0) -> list[tuple[str, str, int, str]]:

    num_physical_experts = num_experts + num_redundant_experts

    # In the returned mapping:
    # - `expert_id` is the physical expert id
    # - `weight_name` contains the weight name of the logical expert
    # So that we should map the expert id to logical in `weight_name`
    physical_to_logical_map = \
        EplbState.build_initial_global_physical_to_logical_map(
        num_experts, num_redundant_experts)

    return [
        # (param_name, weight_name, expert_id, shard_id)
        ("experts.w13_" if weight_name
         in [ckpt_gate_proj_name, ckpt_up_proj_name] else "experts.w2_",
         f"experts.{physical_to_logical_map[expert_id]}.{weight_name}.",
         expert_id, shard_id) for expert_id in range(num_physical_experts)
        for shard_id, weight_name in [
            ("w1", ckpt_gate_proj_name),
            ("w2", ckpt_down_proj_name),
            ("w3", ckpt_up_proj_name),
        ]
    ]

maybe_all_reduce_tensor_model_parallel

maybe_all_reduce_tensor_model_parallel(
    final_hidden_states: Tensor,
)

The pplx combine kernel reduces across GPU ranks by default.

Source code in vllm/model_executor/layers/fused_moe/layer.py
def maybe_all_reduce_tensor_model_parallel(
        self, final_hidden_states: torch.Tensor):
    """
    The pplx combine kernel reduces across GPU ranks by default.
    """
    if (self.use_pplx_kernels or self.use_deepep_ht_kernels
            or self.use_deepep_ll_kernels):
        return final_hidden_states
    else:
        return tensor_model_parallel_all_reduce(final_hidden_states)

must_reduce_shared_expert_outputs

must_reduce_shared_expert_outputs() -> bool

The shared_experts are typically computed using the RowParallelLinear layer. The result of this function is typically used as the reduce_results argument to the module. When just tensor-parallel is used, it is not required to reduce the shared_experts results immediately. Instead we reduce at the once at the end of the MoE op. (Refer to DeepSeekV2MoE module) With EP and all2all kernels - this is no longer viable as all GPU ranks in DP, produce the complete set of hidden_states. Therefore it is required that we reduce the shared_experts output early.

Source code in vllm/model_executor/layers/fused_moe/layer.py
def must_reduce_shared_expert_outputs(self) -> bool:
    """
    The shared_experts are typically computed using the RowParallelLinear
    layer. The result of this function is typically used as
    the reduce_results argument to the module.
    When just tensor-parallel is used, it is not required to reduce
    the shared_experts results immediately. Instead we reduce at the
    once at the end of the MoE op. (Refer to DeepSeekV2MoE module)
    With EP and all2all kernels - this is no longer viable as all
    GPU ranks in DP, produce the complete set of hidden_states.
    Therefore it is required that we reduce the shared_experts output
    early.
    """
    return (self.use_pplx_kernels or self.use_deepep_ht_kernels
            or self.use_deepep_ll_kernels)

select_experts staticmethod

select_experts(
    hidden_states: Tensor,
    router_logits: Tensor,
    top_k: int,
    use_grouped_topk: bool,
    renormalize: bool,
    topk_group: Optional[int] = None,
    num_expert_group: Optional[int] = None,
    custom_routing_function: Optional[Callable] = None,
    scoring_func: str = "softmax",
    routed_scaling_factor: float = 1.0,
    e_score_correction_bias: Optional[Tensor] = None,
    indices_type: Optional[dtype] = None,
    enable_eplb: bool = False,
    expert_map: Optional[Tensor] = None,
    expert_load_view: Optional[Tensor] = None,
    logical_to_physical_map: Optional[Tensor] = None,
    logical_replica_count: Optional[Tensor] = None,
    global_num_experts: Optional[int] = None,
    zero_expert_num: Optional[int] = None,
    zero_expert_type: Optional[str] = None,
) -> tuple[Tensor, Tensor, Tensor]

Route the input hidden states to the top-k experts based on the router logits.

Returns:

Type Description
Tensor

(topk_weights, topk_ids, zero_expert_result)

tuple[Tensor, Tensor, Tensor]
Tensor

The weights, expert ids, and zero expert computation result.

**Compatibility**: When EPLB is not enabled, the returned ids are
equivalent to global logical ids, so should be compatible with
plain MoE implementations without redundant experts.
Source code in vllm/model_executor/layers/fused_moe/layer.py
@staticmethod
def select_experts(
    hidden_states: torch.Tensor,
    router_logits: torch.Tensor,
    top_k: int,
    use_grouped_topk: bool,
    renormalize: bool,
    topk_group: Optional[int] = None,
    num_expert_group: Optional[int] = None,
    custom_routing_function: Optional[Callable] = None,
    scoring_func: str = "softmax",
    routed_scaling_factor: float = 1.0,
    e_score_correction_bias: Optional[torch.Tensor] = None,
    indices_type: Optional[torch.dtype] = None,
    enable_eplb: bool = False,
    expert_map: Optional[torch.Tensor] = None,
    expert_load_view: Optional[torch.Tensor] = None,
    logical_to_physical_map: Optional[torch.Tensor] = None,
    logical_replica_count: Optional[torch.Tensor] = None,
    global_num_experts: Optional[int] = None,
    zero_expert_num: Optional[int] = None,
    zero_expert_type: Optional[str] = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    """
    Route the input hidden states to the top-k experts based on the
    router logits.

    Returns:
            (topk_weights, topk_ids, zero_expert_result) 
            (tuple[torch.Tensor, torch.Tensor, torch.Tensor]):
            The weights, expert ids, and zero expert computation result.

        **Compatibility**: When EPLB is not enabled, the returned ids are
        equivalent to global logical ids, so should be compatible with
        plain MoE implementations without redundant experts.
    """
    from vllm.model_executor.layers.fused_moe.fused_moe import (
        fused_topk, fused_topk_bias)

    # Check if we should use a routing simulation strategy
    routing_strategy = envs.VLLM_MOE_ROUTING_SIMULATION_STRATEGY
    if routing_strategy != "":
        topk_weights, topk_ids = RoutingSimulator.simulate_routing(
            hidden_states=hidden_states,
            router_logits=router_logits,
            strategy_name=routing_strategy,
            top_k=top_k,
            indices_type=indices_type)

    # DeepSeekv2 uses grouped_top_k
    if use_grouped_topk:
        assert topk_group is not None
        assert num_expert_group is not None
        topk_weights, topk_ids = grouped_topk(
            hidden_states=hidden_states,
            gating_output=router_logits,
            topk=top_k,
            renormalize=renormalize,
            num_expert_group=num_expert_group,
            topk_group=topk_group,
            scoring_func=scoring_func,
            routed_scaling_factor=routed_scaling_factor,
            e_score_correction_bias=e_score_correction_bias)
        if indices_type is not None:
            topk_ids = topk_ids.to(dtype=indices_type)
    elif e_score_correction_bias is not None:
        topk_weights, topk_ids = fused_topk_bias(
            hidden_states=hidden_states,
            gating_output=router_logits,
            e_score_correction_bias=e_score_correction_bias.data,
            topk=top_k,
            renormalize=renormalize,
        )
        if routed_scaling_factor is not None:
            topk_weights *= routed_scaling_factor
    elif custom_routing_function is None:
        topk_weights, topk_ids, token_expert_indices = fused_topk(
            hidden_states=hidden_states,
            gating_output=router_logits,
            topk=top_k,
            renormalize=renormalize,
            indices_type=indices_type,
        )
    else:
        topk_weights, topk_ids = custom_routing_function(
            hidden_states=hidden_states,
            gating_output=router_logits,
            topk=top_k,
            renormalize=renormalize)
        if indices_type is not None:
            topk_ids = topk_ids.to(dtype=indices_type)

    if enable_eplb:
        assert expert_load_view is not None
        assert logical_to_physical_map is not None
        assert logical_replica_count is not None

        topk_ids = eplb_map_to_physical_and_record(
            topk_ids=topk_ids,
            expert_load_view=expert_load_view,
            logical_to_physical_map=logical_to_physical_map,
            logical_replica_count=logical_replica_count,
            indices_type=indices_type,
        )

    assert topk_ids.dtype == indices_type or indices_type is None

    # Compute zero expert result if needed
    if (zero_expert_num is not None and zero_expert_num > 0
            and zero_expert_type is not None
            and global_num_experts is not None):
        zero_expert_result = zero_experts_compute_triton(
            expert_indices=topk_ids,
            expert_scales=topk_weights,
            num_experts=global_num_experts,
            zero_expert_type=zero_expert_type,
            hidden_states=hidden_states,
        )
    else:
        zero_expert_result = None
    return topk_weights, topk_ids, zero_expert_result

set_eplb_state

set_eplb_state(
    moe_layer_idx: int,
    expert_load_view: Tensor,
    logical_to_physical_map: Tensor,
    logical_replica_count: Tensor,
) -> None

Register the EPLB state in this layer.

This is used later in forward pass, where we get the expert mapping and record the load metrics in expert_load_view.

Source code in vllm/model_executor/layers/fused_moe/layer.py
def set_eplb_state(
    self,
    moe_layer_idx: int,
    expert_load_view: torch.Tensor,
    logical_to_physical_map: torch.Tensor,
    logical_replica_count: torch.Tensor,
) -> None:
    """
    Register the EPLB state in this layer.

    This is used later in forward pass, where we get the expert mapping
    and record the load metrics in `expert_load_view`.
    """
    self.expert_load_view = expert_load_view[moe_layer_idx]
    self.logical_to_physical_map = logical_to_physical_map[moe_layer_idx]
    self.logical_replica_count = logical_replica_count[moe_layer_idx]

update_expert_map

update_expert_map()
Source code in vllm/model_executor/layers/fused_moe/layer.py
def update_expert_map(self):
    # ep_size and ep_rank should already be updated
    assert self.expert_map is not None
    with self.expert_map.device:
        local_num_experts, expert_map = determine_expert_map(
            ep_size=self.ep_size,
            ep_rank=self.ep_rank,
            global_num_experts=self.global_num_experts)
        self.local_num_experts = local_num_experts
        self.register_buffer("expert_map", expert_map)

weight_loader

weight_loader(
    param: Parameter,
    loaded_weight: Tensor,
    weight_name: str,
    shard_id: str,
    expert_id: int,
    return_success: Literal[False],
) -> None
weight_loader(
    param: Parameter,
    loaded_weight: Tensor,
    weight_name: str,
    shard_id: str,
    expert_id: int,
    return_success: Literal[True],
) -> bool
weight_loader(
    param: Parameter,
    loaded_weight: Tensor,
    weight_name: str,
    shard_id: str,
    expert_id: int,
    return_success: bool = False,
) -> Optional[bool]
Source code in vllm/model_executor/layers/fused_moe/layer.py
def weight_loader(self,
                  param: torch.nn.Parameter,
                  loaded_weight: torch.Tensor,
                  weight_name: str,
                  shard_id: str,
                  expert_id: int,
                  return_success: bool = False) -> Optional[bool]:

    if self.quant_config and self.quant_config.get_name() == "mxfp4":
        # (FIXME) for gpt-oss all experts are combined
        if "bias" in weight_name:
            dim1 = loaded_weight.shape[1]
            param.data[:, :dim1].copy_(loaded_weight)
        else:
            dim1 = loaded_weight.shape[1]
            dim2 = loaded_weight.shape[2]
            param.data[:, :dim1, :dim2].copy_(loaded_weight)
        return True if return_success else None

    expert_id = self._map_global_expert_id_to_local_expert_id(expert_id)
    if expert_id == -1:
        # Failed to load this param since it's not local to this rank
        return False if return_success else None
    # Hereafter, `expert_id` is local physical id

    quant_method_name = self.quant_method.__class__.__name__
    # compressed-tensors checkpoints with packed weights are stored flipped
    # TODO (mgoin): check self.quant_method.quant_config.quant_format
    # against known CompressionFormat enum values that have this quality
    if self.quant_method.__class__.__name__ in (
            "CompressedTensorsWNA16MarlinMoEMethod",
            "CompressedTensorsWNA16MoEMethod"):
        loaded_weight = loaded_weight.t().contiguous()

    if shard_id not in ("w1", "w2", "w3"):
        raise ValueError(f"shard_id must be ['w1','w2','w3'] but "
                         f"got {shard_id}.")

    # Fetch the dim to shard the parameter/loaded weight
    # based on the shard id. This will be whatever
    # dimension intermediate_size_per_partition is used.
    SHARD_ID_TO_SHARDED_DIM = {"w1": 0, "w2": 1, "w3": 0}

    is_gguf_weight = getattr(param, "is_gguf_weight", False)
    is_gguf_weight_type = getattr(param, "is_gguf_weight_type", False)
    if is_gguf_weight_type:
        param.weight_type = loaded_weight.item()
        param.data.copy_(loaded_weight)
        return True if return_success else None

    # Case for BitsAndBytes
    use_bitsandbytes_4bit = getattr(param, "use_bitsandbytes_4bit", False)
    if use_bitsandbytes_4bit:
        shard_dim = 0

        expert_data = param.data[expert_id]
        if shard_id == "w2":
            expert_data.copy_(loaded_weight)
        elif shard_id in ("w1", "w3"):
            # BNB inflight quantization has already sharded the weights
            full_load = True
            self._load_w13(
                shard_id=shard_id,
                shard_dim=shard_dim,
                loaded_weight=loaded_weight,
                expert_data=expert_data,
                tp_rank=self.tp_rank,
                load_full=full_load,
            )
        return True if return_success else None

    # is_transposed: if the dim to shard the weight
    # should be flipped. Required by GPTQ, compressed-tensors
    # should be whatever dimension intermediate_size_per_partition is
    is_transposed = getattr(param, "is_transposed", False)
    shard_dim = SHARD_ID_TO_SHARDED_DIM[shard_id]
    if is_transposed:
        shard_dim = int(not shard_dim)

    full_load = len(loaded_weight.shape) == 3
    if full_load:
        shard_dim += 1

    # Materialize GGUF UninitializedParameter
    if is_gguf_weight and isinstance(param, UninitializedParameter):
        final_shape = list(loaded_weight.shape)
        if shard_id in ["w1", "w3"]:
            final_shape[1] *= 2
        final_shape[shard_dim] = final_shape[shard_dim] // self.tp_size
        param.materialize(final_shape, dtype=loaded_weight.dtype)

    expert_data = param.data if full_load else param.data[expert_id]

    # Case input scale: input_scale loading is only supported for fp8
    if "input_scale" in weight_name:
        # this is needed for compressed-tensors only
        loaded_weight = loaded_weight.to(param.data.device)

        if ("compressed" in quant_method_name.lower()
                and param.data[expert_id] != 1
                and (param.data[expert_id] - loaded_weight).abs() > 1e-5):
            raise ValueError(
                "input_scales of w1 and w3 of a layer "
                f"must be equal. But got {param.data[expert_id]} "
                f"vs. {loaded_weight}")

        self._load_single_value(param=param,
                                loaded_weight=loaded_weight,
                                expert_id=expert_id)
        return True if return_success else None

    # Case g_idx
    if "g_idx" in weight_name:
        self._load_g_idx(shard_dim=0,
                         shard_id=shard_id,
                         loaded_weight=loaded_weight,
                         expert_data=expert_data,
                         tp_rank=self.tp_rank)
        return True if return_success else None

    # TODO @dsikka: ModelOpt should follow the proper MoE loading pattern
    if "ModelOpt" in quant_method_name:
        # Determine per-tensor weight scale patterns based on variant
        # Use the dedicated method instead of brittle string matching
        uses_weight_scale_2 = self.quant_method.uses_weight_scale_2_pattern(
        )

        # Call _load_per_tensor_weight_scale() to load per-tensor (scalar)
        # weights scales.
        # Input scales are always per-tensor.
        # Weight scales: FP4 uses "weight_scale_2" and FP8 uses
        # "weight_scale" for per-tensor scales.
        is_per_tensor = ("weight_scale_2" in weight_name
                         if uses_weight_scale_2 else "weight_scale"
                         in weight_name) or "input_scale" in weight_name
        if is_per_tensor:
            self._load_per_tensor_weight_scale(
                shard_id=shard_id,
                param=param,
                loaded_weight=loaded_weight,
                expert_id=expert_id,
            )
            return True if return_success else None

        # If the weight is w13_weight_scale and w13_weight_scales are
        # combined into single loaded_weight, call
        # _load_combined_w13_weight_scale() to load it.
        # This is checked by comparing the hidden_out dims of the
        # loaded_weight and the param.
        if "w13_weight_scale" in weight_name:
            loaded_weight_hidden_out = loaded_weight.shape[-2]
            param_hidden_out = param.data.shape[-2] * self.tp_size
            if loaded_weight_hidden_out == param_hidden_out:
                self._load_combined_w13_weight_scale(
                    shard_dim=shard_dim,
                    loaded_weight=loaded_weight,
                    param=param,
                    tp_rank=self.tp_rank,
                )
                return True if return_success else None

        # For other weights, call _load_model_weight_or_group_weight_scale()
        # to load it.
        if "weight" in weight_name:
            self._load_model_weight_or_group_weight_scale(
                shard_id=shard_id,
                shard_dim=shard_dim,
                loaded_weight=loaded_weight,
                expert_data=expert_data,
                tp_rank=self.tp_rank)
        return True if return_success else None

    # Case weight scales, zero_points and offset, weight/input global scales
    if ("scale" in weight_name or "zero" in weight_name
            or "offset" in weight_name):
        # load the weight scales and zp based on the quantization scheme
        # supported weight scales/zp can be found in
        # FusedMoeWeightScaleSupported
        # TODO @dsikka: once hardened, refactor to use vLLM Parameters
        # specific to each case
        quant_method = getattr(param, "quant_method", None)
        if quant_method == FusedMoeWeightScaleSupported.CHANNEL.value:
            self._load_per_channel_weight_scale(
                shard_id=shard_id,
                shard_dim=shard_dim,
                loaded_weight=loaded_weight,
                expert_data=expert_data,
                tp_rank=self.tp_rank)
        elif quant_method in [
                FusedMoeWeightScaleSupported.GROUP.value,
                FusedMoeWeightScaleSupported.BLOCK.value,
        ]:
            self._load_model_weight_or_group_weight_scale(
                shard_id=shard_id,
                shard_dim=shard_dim,
                loaded_weight=loaded_weight,
                expert_data=expert_data,
                tp_rank=self.tp_rank,
                load_full_w2=getattr(param, "load_full_w2", False))
        elif quant_method == FusedMoeWeightScaleSupported.TENSOR.value:
            self._load_per_tensor_weight_scale(shard_id=shard_id,
                                               param=param,
                                               loaded_weight=loaded_weight,
                                               expert_id=expert_id)
        else:
            WEIGHT_SCALE_SUPPORTED = [
                e.value for e in FusedMoeWeightScaleSupported
            ]
            raise ValueError(
                f"quant method must be one of {WEIGHT_SCALE_SUPPORTED}")
        return True if return_success else None

    # Case weight_shape
    if "weight_shape" in weight_name:
        # only required by compressed-tensors
        self._load_single_value(param=param,
                                loaded_weight=loaded_weight,
                                expert_id=expert_id)
        return True if return_success else None

    # Case model weights
    if "weight" in weight_name:
        self._load_model_weight_or_group_weight_scale(
            shard_id=shard_id,
            shard_dim=shard_dim,
            loaded_weight=loaded_weight,
            expert_data=expert_data,
            tp_rank=self.tp_rank)
        return True if return_success else None

    return False if return_success else None

FusedMoEActivationFormat

Bases: Enum

The standard activation format (num_tokens, hidden dim).

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
class FusedMoEActivationFormat(Enum):
    """
    The standard activation format (num_tokens, hidden dim).
    """
    Standard = "standard",
    """
    The batched experts format (num experts, max tokens per expert, hidden dim)
    """
    BatchedExperts = "batched_experts",

BatchedExperts class-attribute instance-attribute

BatchedExperts = ('batched_experts',)

Standard class-attribute instance-attribute

Standard = ('standard',)

The batched experts format (num experts, max tokens per expert, hidden dim)

FusedMoEConfig dataclass

Source code in vllm/model_executor/layers/fused_moe/config.py
@dataclass
class FusedMoEConfig:
    num_experts: int
    experts_per_token: int
    hidden_dim: int

    num_local_experts: int
    moe_parallel_config: FusedMoEParallelConfig

    # The activation type.
    in_dtype: torch.dtype

    max_num_tokens: int = envs.VLLM_MOE_DP_CHUNK_SIZE

    has_bias: bool = False

    def __post_init__(self):
        if self.dp_size > 1:
            logger.debug_once("Using FusedMoEConfig::max_num_tokens=%d",
                              self.max_num_tokens)

        assert self.max_num_tokens > 0

    @property
    def tp_size(self):
        return self.moe_parallel_config.tp_size

    @property
    def dp_size(self):
        return self.moe_parallel_config.dp_size

    @property
    def ep_size(self):
        return self.moe_parallel_config.ep_size

    @property
    def tp_rank(self):
        return self.moe_parallel_config.tp_rank

    @property
    def dp_rank(self):
        return self.moe_parallel_config.dp_rank

    @property
    def ep_rank(self):
        return self.moe_parallel_config.ep_rank

    @property
    def use_ep(self):
        return self.moe_parallel_config.use_ep

    @property
    def use_pplx_kernels(self):
        return self.moe_parallel_config.use_pplx_kernels

    @property
    def use_deepep_ht_kernels(self):
        return self.moe_parallel_config.use_deepep_ht_kernels

    @property
    def use_deepep_ll_kernels(self):
        return self.moe_parallel_config.use_deepep_ll_kernels

    @property
    def use_flashinfer_cutlass_kernels(self):
        """
        Whether to use FlashInfer cutlass kernels for NVFP4 MoE.
        """
        return (envs.VLLM_USE_FLASHINFER_MOE_FP4
                and has_flashinfer_cutlass_fused_moe()
                and envs.VLLM_FLASHINFER_MOE_BACKEND == "throughput")

dp_rank property

dp_rank

dp_size property

dp_size

ep_rank property

ep_rank

ep_size property

ep_size

experts_per_token instance-attribute

experts_per_token: int

has_bias class-attribute instance-attribute

has_bias: bool = False

hidden_dim instance-attribute

hidden_dim: int

in_dtype instance-attribute

in_dtype: dtype

max_num_tokens class-attribute instance-attribute

max_num_tokens: int = VLLM_MOE_DP_CHUNK_SIZE

moe_parallel_config instance-attribute

moe_parallel_config: FusedMoEParallelConfig

num_experts instance-attribute

num_experts: int

num_local_experts instance-attribute

num_local_experts: int

tp_rank property

tp_rank

tp_size property

tp_size

use_deepep_ht_kernels property

use_deepep_ht_kernels

use_deepep_ll_kernels property

use_deepep_ll_kernels

use_ep property

use_ep

use_flashinfer_cutlass_kernels property

use_flashinfer_cutlass_kernels

Whether to use FlashInfer cutlass kernels for NVFP4 MoE.

use_pplx_kernels property

use_pplx_kernels

__init__

__init__(
    num_experts: int,
    experts_per_token: int,
    hidden_dim: int,
    num_local_experts: int,
    moe_parallel_config: FusedMoEParallelConfig,
    in_dtype: dtype,
    max_num_tokens: int = VLLM_MOE_DP_CHUNK_SIZE,
    has_bias: bool = False,
) -> None

__post_init__

__post_init__()
Source code in vllm/model_executor/layers/fused_moe/config.py
def __post_init__(self):
    if self.dp_size > 1:
        logger.debug_once("Using FusedMoEConfig::max_num_tokens=%d",
                          self.max_num_tokens)

    assert self.max_num_tokens > 0

FusedMoEMethodBase

Bases: QuantizeMethodBase

Source code in vllm/model_executor/layers/fused_moe/layer.py
class FusedMoEMethodBase(QuantizeMethodBase):

    def __init__(self, moe: FusedMoEConfig):
        super().__init__()
        self.moe = moe
        self.moe_quant_config: Optional[FusedMoEQuantConfig] = None
        self.fused_experts: Optional[FusedMoEModularKernel] = None
        self.topk_indices_dtype = None

    @abstractmethod
    def create_weights(self, layer: torch.nn.Module, num_experts: int,
                       hidden_size: int, intermediate_size_per_partition: int,
                       params_dtype: torch.dtype, **extra_weight_attrs):
        raise NotImplementedError

    def uses_weight_scale_2_pattern(self) -> bool:
        """
        Returns True if this quantization method uses 'weight_scale_2' pattern
        for per-tensor weight scales (e.g., FP4 variants), False otherwise.

        This method should be overridden by subclasses that use the
        'weight_scale_2' pattern instead of the standard 'weight_scale' pattern.
        """
        return False

    @staticmethod
    def _maybe_make_prepare_finalize(
        moe: FusedMoEConfig,
        quant_config: Optional[FusedMoEQuantConfig],
    ) -> Optional[FusedMoEPrepareAndFinalize]:
        all2all_manager = get_ep_group().device_communicator.all2all_manager
        assert all2all_manager is not None

        prepare_finalize: Optional[FusedMoEPrepareAndFinalize] = None

        # TODO: could allow this now
        assert not moe.use_flashinfer_cutlass_kernels, \
            "Must be created in modelopt.py"

        if moe.use_pplx_kernels:
            assert quant_config is not None

            hidden_dim_bytes, hidden_scale_bytes = pplx_hidden_dim_scale_bytes(
                moe.max_num_tokens,
                moe.hidden_dim,
                moe.in_dtype,
                quant_config.quant_dtype,
                per_act_token_quant=quant_config.per_act_token_quant,
                block_shape=quant_config.block_shape,
            )

            all_to_all_args = dict(
                max_num_tokens=moe.max_num_tokens,
                num_experts=moe.num_experts,
                experts_per_token=moe.experts_per_token,  # topk
                rank=all2all_manager.rank,
                world_size=all2all_manager.world_size,
                # dp_size actually means tp_size, bug in pplx kernels
                dp_size=all2all_manager.tp_group.world_size,
                hidden_dim=moe.hidden_dim,
                hidden_dim_bytes=hidden_dim_bytes,
                hidden_dim_scale_bytes=hidden_scale_bytes,
            )

            num_dispatchers = (all2all_manager.world_size //
                               all2all_manager.tp_group.world_size)

            # Intranode pplx a2a takes a group name while internode does not.
            if not all2all_manager.internode:
                all_to_all_args[
                    "group_name"] = all2all_manager.cpu_group.group_name

            handle = all2all_manager.get_handle(all_to_all_args)

            prepare_finalize = PplxPrepareAndFinalize(
                handle,
                max_num_tokens=moe.max_num_tokens,
                num_local_experts=moe.num_local_experts,
                num_dispatchers=num_dispatchers,
            )
        elif moe.use_deepep_ht_kernels:
            assert moe.dp_size == all2all_manager.dp_world_size

            all_to_all_args = dict()
            handle = all2all_manager.get_handle(all_to_all_args)
            prepare_finalize = DeepEPHTPrepareAndFinalize(
                handle,
                num_dispatchers=all2all_manager.world_size,
                dp_size=all2all_manager.dp_world_size,
                rank_expert_offset=all2all_manager.rank *
                moe.num_local_experts,
            )

        elif moe.use_deepep_ll_kernels:
            assert quant_config is not None
            all_to_all_args = dict(
                max_num_tokens_per_dp_rank=moe.max_num_tokens,
                token_hidden_size=moe.hidden_dim,
                num_ep_ranks=all2all_manager.world_size,
                num_global_experts=moe.num_experts,
                num_local_experts=moe.num_experts //
                all2all_manager.world_size)
            handle = all2all_manager.get_handle(all_to_all_args)

            # Note: We may want to use FP8 dispatch just to reduce
            # data movement.
            use_fp8_dispatch = (
                quant_config.quant_dtype == current_platform.fp8_dtype()
                and quant_config.block_shape == DEEPEP_QUANT_BLOCK_SHAPE)

            prepare_finalize = DeepEPLLPrepareAndFinalize(
                handle,
                max_tokens_per_rank=moe.max_num_tokens,
                num_dispatchers=all2all_manager.world_size,
                use_fp8_dispatch=use_fp8_dispatch,
            )

        return prepare_finalize

    def maybe_make_prepare_finalize(
            self) -> Optional[FusedMoEPrepareAndFinalize]:
        if self.moe.moe_parallel_config.use_all2all_kernels:
            return FusedMoEMethodBase._maybe_make_prepare_finalize(
                self.moe, self.moe_quant_config)
        else:
            return None

    # Note: init_prepare_finalize should only be called by
    # prepare_communication_buffer_for_model.
    def init_prepare_finalize(self, layer: torch.nn.Module):
        assert self.moe is not None

        # We must get the quant config here so that the layer is
        # completely initialized, i.e. all weights loaded and post
        # processed.
        self.moe_quant_config = self.get_fused_moe_quant_config(layer)

        prepare_finalize = self.maybe_make_prepare_finalize()

        if prepare_finalize is not None:
            logger.debug("%s for %s(%s)", prepare_finalize.__class__.__name__,
                         self, id(self))
            assert self.topk_indices_dtype is None
            assert self.fused_experts is None, \
                f"Attempt to override experts for {id(self)}!"
            self.topk_indices_dtype = prepare_finalize.topk_indices_dtype()
            experts = self.select_gemm_impl(prepare_finalize, layer)
            self.fused_experts = FusedMoEModularKernel(
                prepare_finalize,
                experts,
                layer.shared_experts,
            )

    def select_gemm_impl(
        self,
        prepare_finalize: FusedMoEPrepareAndFinalize,
        layer: torch.nn.Module,
    ) -> FusedMoEPermuteExpertsUnpermute:
        # based on the all2all implementation, select the appropriate
        # gemm implementation
        raise NotImplementedError(
            f"{self.__class__.__name__} must select appropriate gemm "
            "implementation based on the prepare_finalize")

    @abstractmethod
    def get_fused_moe_quant_config(
            self, layer: torch.nn.Module) -> Optional[FusedMoEQuantConfig]:
        raise NotImplementedError

    @abstractmethod
    def apply(
        self,
        layer: torch.nn.Module,
        x: torch.Tensor,
        router_logits: torch.Tensor,
        top_k: int,
        renormalize: bool,
        use_grouped_topk: bool = False,
        topk_group: Optional[int] = None,
        num_expert_group: Optional[int] = None,
        global_num_experts: int = -1,
        expert_map: Optional[torch.Tensor] = None,
        custom_routing_function: Optional[Callable] = None,
        scoring_func: str = "softmax",
        routed_scaling_factor: float = 1.0,
        e_score_correction_bias: Optional[torch.Tensor] = None,
        apply_router_weight_on_input: bool = False,
        activation: str = "silu",
        enable_eplb: bool = False,
        expert_load_view: Optional[torch.Tensor] = None,
        logical_to_physical_map: Optional[torch.Tensor] = None,
        logical_replica_count: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
        raise NotImplementedError

fused_experts instance-attribute

fused_experts: Optional[FusedMoEModularKernel] = None

moe instance-attribute

moe = moe

moe_quant_config instance-attribute

moe_quant_config: Optional[FusedMoEQuantConfig] = None

topk_indices_dtype instance-attribute

topk_indices_dtype = None

__init__

__init__(moe: FusedMoEConfig)
Source code in vllm/model_executor/layers/fused_moe/layer.py
def __init__(self, moe: FusedMoEConfig):
    super().__init__()
    self.moe = moe
    self.moe_quant_config: Optional[FusedMoEQuantConfig] = None
    self.fused_experts: Optional[FusedMoEModularKernel] = None
    self.topk_indices_dtype = None

_maybe_make_prepare_finalize staticmethod

_maybe_make_prepare_finalize(
    moe: FusedMoEConfig,
    quant_config: Optional[FusedMoEQuantConfig],
) -> Optional[FusedMoEPrepareAndFinalize]
Source code in vllm/model_executor/layers/fused_moe/layer.py
@staticmethod
def _maybe_make_prepare_finalize(
    moe: FusedMoEConfig,
    quant_config: Optional[FusedMoEQuantConfig],
) -> Optional[FusedMoEPrepareAndFinalize]:
    all2all_manager = get_ep_group().device_communicator.all2all_manager
    assert all2all_manager is not None

    prepare_finalize: Optional[FusedMoEPrepareAndFinalize] = None

    # TODO: could allow this now
    assert not moe.use_flashinfer_cutlass_kernels, \
        "Must be created in modelopt.py"

    if moe.use_pplx_kernels:
        assert quant_config is not None

        hidden_dim_bytes, hidden_scale_bytes = pplx_hidden_dim_scale_bytes(
            moe.max_num_tokens,
            moe.hidden_dim,
            moe.in_dtype,
            quant_config.quant_dtype,
            per_act_token_quant=quant_config.per_act_token_quant,
            block_shape=quant_config.block_shape,
        )

        all_to_all_args = dict(
            max_num_tokens=moe.max_num_tokens,
            num_experts=moe.num_experts,
            experts_per_token=moe.experts_per_token,  # topk
            rank=all2all_manager.rank,
            world_size=all2all_manager.world_size,
            # dp_size actually means tp_size, bug in pplx kernels
            dp_size=all2all_manager.tp_group.world_size,
            hidden_dim=moe.hidden_dim,
            hidden_dim_bytes=hidden_dim_bytes,
            hidden_dim_scale_bytes=hidden_scale_bytes,
        )

        num_dispatchers = (all2all_manager.world_size //
                           all2all_manager.tp_group.world_size)

        # Intranode pplx a2a takes a group name while internode does not.
        if not all2all_manager.internode:
            all_to_all_args[
                "group_name"] = all2all_manager.cpu_group.group_name

        handle = all2all_manager.get_handle(all_to_all_args)

        prepare_finalize = PplxPrepareAndFinalize(
            handle,
            max_num_tokens=moe.max_num_tokens,
            num_local_experts=moe.num_local_experts,
            num_dispatchers=num_dispatchers,
        )
    elif moe.use_deepep_ht_kernels:
        assert moe.dp_size == all2all_manager.dp_world_size

        all_to_all_args = dict()
        handle = all2all_manager.get_handle(all_to_all_args)
        prepare_finalize = DeepEPHTPrepareAndFinalize(
            handle,
            num_dispatchers=all2all_manager.world_size,
            dp_size=all2all_manager.dp_world_size,
            rank_expert_offset=all2all_manager.rank *
            moe.num_local_experts,
        )

    elif moe.use_deepep_ll_kernels:
        assert quant_config is not None
        all_to_all_args = dict(
            max_num_tokens_per_dp_rank=moe.max_num_tokens,
            token_hidden_size=moe.hidden_dim,
            num_ep_ranks=all2all_manager.world_size,
            num_global_experts=moe.num_experts,
            num_local_experts=moe.num_experts //
            all2all_manager.world_size)
        handle = all2all_manager.get_handle(all_to_all_args)

        # Note: We may want to use FP8 dispatch just to reduce
        # data movement.
        use_fp8_dispatch = (
            quant_config.quant_dtype == current_platform.fp8_dtype()
            and quant_config.block_shape == DEEPEP_QUANT_BLOCK_SHAPE)

        prepare_finalize = DeepEPLLPrepareAndFinalize(
            handle,
            max_tokens_per_rank=moe.max_num_tokens,
            num_dispatchers=all2all_manager.world_size,
            use_fp8_dispatch=use_fp8_dispatch,
        )

    return prepare_finalize

apply abstractmethod

apply(
    layer: Module,
    x: Tensor,
    router_logits: Tensor,
    top_k: int,
    renormalize: bool,
    use_grouped_topk: bool = False,
    topk_group: Optional[int] = None,
    num_expert_group: Optional[int] = None,
    global_num_experts: int = -1,
    expert_map: Optional[Tensor] = None,
    custom_routing_function: Optional[Callable] = None,
    scoring_func: str = "softmax",
    routed_scaling_factor: float = 1.0,
    e_score_correction_bias: Optional[Tensor] = None,
    apply_router_weight_on_input: bool = False,
    activation: str = "silu",
    enable_eplb: bool = False,
    expert_load_view: Optional[Tensor] = None,
    logical_to_physical_map: Optional[Tensor] = None,
    logical_replica_count: Optional[Tensor] = None,
) -> Union[Tensor, tuple[Tensor, Tensor]]
Source code in vllm/model_executor/layers/fused_moe/layer.py
@abstractmethod
def apply(
    self,
    layer: torch.nn.Module,
    x: torch.Tensor,
    router_logits: torch.Tensor,
    top_k: int,
    renormalize: bool,
    use_grouped_topk: bool = False,
    topk_group: Optional[int] = None,
    num_expert_group: Optional[int] = None,
    global_num_experts: int = -1,
    expert_map: Optional[torch.Tensor] = None,
    custom_routing_function: Optional[Callable] = None,
    scoring_func: str = "softmax",
    routed_scaling_factor: float = 1.0,
    e_score_correction_bias: Optional[torch.Tensor] = None,
    apply_router_weight_on_input: bool = False,
    activation: str = "silu",
    enable_eplb: bool = False,
    expert_load_view: Optional[torch.Tensor] = None,
    logical_to_physical_map: Optional[torch.Tensor] = None,
    logical_replica_count: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
    raise NotImplementedError

create_weights abstractmethod

create_weights(
    layer: Module,
    num_experts: int,
    hidden_size: int,
    intermediate_size_per_partition: int,
    params_dtype: dtype,
    **extra_weight_attrs,
)
Source code in vllm/model_executor/layers/fused_moe/layer.py
@abstractmethod
def create_weights(self, layer: torch.nn.Module, num_experts: int,
                   hidden_size: int, intermediate_size_per_partition: int,
                   params_dtype: torch.dtype, **extra_weight_attrs):
    raise NotImplementedError

get_fused_moe_quant_config abstractmethod

get_fused_moe_quant_config(
    layer: Module,
) -> Optional[FusedMoEQuantConfig]
Source code in vllm/model_executor/layers/fused_moe/layer.py
@abstractmethod
def get_fused_moe_quant_config(
        self, layer: torch.nn.Module) -> Optional[FusedMoEQuantConfig]:
    raise NotImplementedError

init_prepare_finalize

init_prepare_finalize(layer: Module)
Source code in vllm/model_executor/layers/fused_moe/layer.py
def init_prepare_finalize(self, layer: torch.nn.Module):
    assert self.moe is not None

    # We must get the quant config here so that the layer is
    # completely initialized, i.e. all weights loaded and post
    # processed.
    self.moe_quant_config = self.get_fused_moe_quant_config(layer)

    prepare_finalize = self.maybe_make_prepare_finalize()

    if prepare_finalize is not None:
        logger.debug("%s for %s(%s)", prepare_finalize.__class__.__name__,
                     self, id(self))
        assert self.topk_indices_dtype is None
        assert self.fused_experts is None, \
            f"Attempt to override experts for {id(self)}!"
        self.topk_indices_dtype = prepare_finalize.topk_indices_dtype()
        experts = self.select_gemm_impl(prepare_finalize, layer)
        self.fused_experts = FusedMoEModularKernel(
            prepare_finalize,
            experts,
            layer.shared_experts,
        )

maybe_make_prepare_finalize

maybe_make_prepare_finalize() -> Optional[
    FusedMoEPrepareAndFinalize
]
Source code in vllm/model_executor/layers/fused_moe/layer.py
def maybe_make_prepare_finalize(
        self) -> Optional[FusedMoEPrepareAndFinalize]:
    if self.moe.moe_parallel_config.use_all2all_kernels:
        return FusedMoEMethodBase._maybe_make_prepare_finalize(
            self.moe, self.moe_quant_config)
    else:
        return None

select_gemm_impl

select_gemm_impl(
    prepare_finalize: FusedMoEPrepareAndFinalize,
    layer: Module,
) -> FusedMoEPermuteExpertsUnpermute
Source code in vllm/model_executor/layers/fused_moe/layer.py
def select_gemm_impl(
    self,
    prepare_finalize: FusedMoEPrepareAndFinalize,
    layer: torch.nn.Module,
) -> FusedMoEPermuteExpertsUnpermute:
    # based on the all2all implementation, select the appropriate
    # gemm implementation
    raise NotImplementedError(
        f"{self.__class__.__name__} must select appropriate gemm "
        "implementation based on the prepare_finalize")

uses_weight_scale_2_pattern

uses_weight_scale_2_pattern() -> bool

Returns True if this quantization method uses 'weight_scale_2' pattern for per-tensor weight scales (e.g., FP4 variants), False otherwise.

This method should be overridden by subclasses that use the 'weight_scale_2' pattern instead of the standard 'weight_scale' pattern.

Source code in vllm/model_executor/layers/fused_moe/layer.py
def uses_weight_scale_2_pattern(self) -> bool:
    """
    Returns True if this quantization method uses 'weight_scale_2' pattern
    for per-tensor weight scales (e.g., FP4 variants), False otherwise.

    This method should be overridden by subclasses that use the
    'weight_scale_2' pattern instead of the standard 'weight_scale' pattern.
    """
    return False

FusedMoEPermuteExpertsUnpermute

Bases: ABC

An abstract base class for the [Permute-Experts-Unpermute] step described above.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
class FusedMoEPermuteExpertsUnpermute(ABC):
    """
    An abstract base class for the [Permute-Experts-Unpermute] step described
    above.
    """

    def __init__(
        self,
        quant_config: FusedMoEQuantConfig,
    ):
        """
        quant_config: Quantization parameters for this experts instance.
        """
        self.quant_config = quant_config

    @property
    @abstractmethod
    def activation_formats(
            self) -> tuple[FusedMoEActivationFormat, FusedMoEActivationFormat]:
        """
        A property which is a tuple of the input and output activation formats
        for the 'apply' method.
        """
        raise NotImplementedError

    #
    # Various helpers for accessing quantization parameters from the
    # quant_config.
    #

    @property
    def quant_dtype(self) -> Optional[torch.dtype]:
        return self.quant_config.quant_dtype

    @property
    def block_shape(self) -> Optional[list[int]]:
        return self.quant_config.block_shape

    @property
    def per_act_token_quant(self) -> bool:
        return self.quant_config.per_act_token_quant

    @property
    def per_out_ch_quant(self) -> bool:
        return self.quant_config.per_out_ch_quant

    @property
    def a1_scale(self) -> Optional[torch.Tensor]:
        return self.quant_config.a1_scale

    @property
    def a2_scale(self) -> Optional[torch.Tensor]:
        return self.quant_config.a2_scale

    @property
    def a1_gscale(self) -> Optional[torch.Tensor]:
        return self.quant_config.a1_gscale

    @property
    def a2_gscale(self) -> Optional[torch.Tensor]:
        return self.quant_config.a2_gscale

    @property
    def w1_scale(self) -> Optional[torch.Tensor]:
        return self.quant_config.w1_scale

    @property
    def w2_scale(self) -> Optional[torch.Tensor]:
        return self.quant_config.w2_scale

    @property
    def w1_zp(self) -> Optional[torch.Tensor]:
        return self.quant_config.w1_zp

    @property
    def w2_zp(self) -> Optional[torch.Tensor]:
        return self.quant_config.w2_zp

    @property
    def w1_bias(self) -> Optional[torch.Tensor]:
        return self.quant_config.w1_bias

    @property
    def w2_bias(self) -> Optional[torch.Tensor]:
        return self.quant_config.w2_bias

    @property
    def g1_alphas(self) -> Optional[torch.Tensor]:
        return self.quant_config.g1_alphas

    @property
    def g2_alphas(self) -> Optional[torch.Tensor]:
        return self.quant_config.g2_alphas

    # TODO (bnell): make this return a CHUNK_SIZE or None instead?
    @abstractmethod
    def supports_chunking(self) -> bool:
        """
        A flag indicating whether or not this class supports activation
        chunking.
        """
        raise NotImplementedError

    @abstractmethod
    def supports_expert_map(self) -> bool:
        """
        A flag indicating whether or not this class supports expert maps
        """
        raise NotImplementedError

    @abstractmethod
    def workspace_shapes(
        self,
        a: torch.Tensor,
        aq: torch.Tensor,
        M: int,
        N: int,
        K: int,
        topk: int,
        global_num_experts: int,
        local_num_experts: int,
        expert_tokens_meta: Optional[ExpertTokensMetadata],
    ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
        """
        Compute the shapes for the temporary and final outputs of the two gemms
        and activation in the fused expert function.  Since the gemms are
        independent, the workspace for the first gemm can be shared with the
        workspace for the last gemm.

        Returns a tuple of:
        - workspace13 shape tuple: must be large enough to hold the
          result of either expert gemm.
        - workspace2 shape tuple: must be large enough to hold the
          result of the activation function.
        - output shape tuple: must be exact size of the final gemm output.
        - Workspace type: The dtype to use for the workspace tensors.
        - Note: in order for activation chunking to work, the first dimension
          of each tuple must be the number of tokens.
        """
        raise NotImplementedError

    def activation(self, activation: str, output: torch.Tensor,
                   input: torch.Tensor) -> None:
        assert output.size(-1) * 2 == input.size(-1)
        if activation == "silu":
            torch.ops._C.silu_and_mul(output, input)
        elif activation == "gelu":
            torch.ops._C.gelu_and_mul(output, input)
        else:
            raise ValueError(f"Unsupported FusedMoe activation: {activation}")

    def enable_chunking(self):
        return envs.VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING and \
          self.supports_chunking()

    def finalize_weight_and_reduce_impl(self) -> TopKWeightAndReduce:
        raise NotImplementedError

    @abstractmethod
    def apply(
        self,
        output: torch.Tensor,
        hidden_states: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        activation: str,
        global_num_experts: int,
        expert_map: Optional[torch.Tensor],
        a1q_scale: Optional[torch.Tensor],
        a2_scale: Optional[torch.Tensor],
        workspace13: torch.Tensor,
        workspace2: torch.Tensor,
        expert_tokens_meta: Optional[ExpertTokensMetadata],
        apply_router_weight_on_input: bool,
    ):
        """
        This function computes the intermediate result of a Mixture of Experts
        (MoE) layer using two sets of weights, w1 and w2.

        Parameters:
        - output: (torch.Tensor): The unweighted, unreduced output tensor.
        - hidden_states: (torch.Tensor): The (quantized) input tensor to the MoE
          layer.
        - w1 (torch.Tensor): The first set of expert weights.
        - w2 (torch.Tensor): The second set of expert weights.
        - topk_weights: A map of row to expert weights. Some implementations
          choose to do weight application.
        - topk_ids (torch.Tensor): A map of row to expert id.
        - activation (str): The activation function to apply after the first
          MoE layer.
        - global_num_experts (int): The total number of experts in the global
          expert space.
        - expert_map (Optional[torch.Tensor]):  A tensor mapping expert indices
          from the global expert space to the local expert space of the expert
          parallel shard.
        - a1q_scale (Optional[torch.Tensor]): Optional quantized scale to be
          used for a1.  Result of quantization from prepare/finalize and not
          from the FusedMoEQuantConfig.
        - workspace13 (torch.Tensor): A scratch tensor used for gemm outputs
          must be large enough to hold output of either MoE gemm.
        - workspace2 (torch.Tensor): A scratch tensor used for the activation
          function.
        - expert_tokens_meta (Optional[ExpertTokensMetadata]) - An optional
          ExpertTokensMetadata object containing gpu/cpu tensors
          as big as the number of local experts with the information about the
          number of tokens assigned to each local expert.
        - apply_router_weight_on_input: True if router weights are already
          applied on the input. This is relevant if the implementation
          chooses to do weight application.
        """
        raise NotImplementedError

a1_gscale property

a1_gscale: Optional[Tensor]

a1_scale property

a1_scale: Optional[Tensor]

a2_gscale property

a2_gscale: Optional[Tensor]

a2_scale property

a2_scale: Optional[Tensor]

activation_formats abstractmethod property

A property which is a tuple of the input and output activation formats for the 'apply' method.

block_shape property

block_shape: Optional[list[int]]

g1_alphas property

g1_alphas: Optional[Tensor]

g2_alphas property

g2_alphas: Optional[Tensor]

per_act_token_quant property

per_act_token_quant: bool

per_out_ch_quant property

per_out_ch_quant: bool

quant_config instance-attribute

quant_config = quant_config

quant_dtype property

quant_dtype: Optional[dtype]

w1_bias property

w1_bias: Optional[Tensor]

w1_scale property

w1_scale: Optional[Tensor]

w1_zp property

w1_zp: Optional[Tensor]

w2_bias property

w2_bias: Optional[Tensor]

w2_scale property

w2_scale: Optional[Tensor]

w2_zp property

w2_zp: Optional[Tensor]

__init__

__init__(quant_config: FusedMoEQuantConfig)

quant_config: Quantization parameters for this experts instance.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def __init__(
    self,
    quant_config: FusedMoEQuantConfig,
):
    """
    quant_config: Quantization parameters for this experts instance.
    """
    self.quant_config = quant_config

activation

activation(
    activation: str, output: Tensor, input: Tensor
) -> None
Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def activation(self, activation: str, output: torch.Tensor,
               input: torch.Tensor) -> None:
    assert output.size(-1) * 2 == input.size(-1)
    if activation == "silu":
        torch.ops._C.silu_and_mul(output, input)
    elif activation == "gelu":
        torch.ops._C.gelu_and_mul(output, input)
    else:
        raise ValueError(f"Unsupported FusedMoe activation: {activation}")

apply abstractmethod

apply(
    output: Tensor,
    hidden_states: Tensor,
    w1: Tensor,
    w2: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    activation: str,
    global_num_experts: int,
    expert_map: Optional[Tensor],
    a1q_scale: Optional[Tensor],
    a2_scale: Optional[Tensor],
    workspace13: Tensor,
    workspace2: Tensor,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
)

This function computes the intermediate result of a Mixture of Experts (MoE) layer using two sets of weights, w1 and w2.

Parameters: - output: (torch.Tensor): The unweighted, unreduced output tensor. - hidden_states: (torch.Tensor): The (quantized) input tensor to the MoE layer. - w1 (torch.Tensor): The first set of expert weights. - w2 (torch.Tensor): The second set of expert weights. - topk_weights: A map of row to expert weights. Some implementations choose to do weight application. - topk_ids (torch.Tensor): A map of row to expert id. - activation (str): The activation function to apply after the first MoE layer. - global_num_experts (int): The total number of experts in the global expert space. - expert_map (Optional[torch.Tensor]): A tensor mapping expert indices from the global expert space to the local expert space of the expert parallel shard. - a1q_scale (Optional[torch.Tensor]): Optional quantized scale to be used for a1. Result of quantization from prepare/finalize and not from the FusedMoEQuantConfig. - workspace13 (torch.Tensor): A scratch tensor used for gemm outputs must be large enough to hold output of either MoE gemm. - workspace2 (torch.Tensor): A scratch tensor used for the activation function. - expert_tokens_meta (Optional[ExpertTokensMetadata]) - An optional ExpertTokensMetadata object containing gpu/cpu tensors as big as the number of local experts with the information about the number of tokens assigned to each local expert. - apply_router_weight_on_input: True if router weights are already applied on the input. This is relevant if the implementation chooses to do weight application.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def apply(
    self,
    output: torch.Tensor,
    hidden_states: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    activation: str,
    global_num_experts: int,
    expert_map: Optional[torch.Tensor],
    a1q_scale: Optional[torch.Tensor],
    a2_scale: Optional[torch.Tensor],
    workspace13: torch.Tensor,
    workspace2: torch.Tensor,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
):
    """
    This function computes the intermediate result of a Mixture of Experts
    (MoE) layer using two sets of weights, w1 and w2.

    Parameters:
    - output: (torch.Tensor): The unweighted, unreduced output tensor.
    - hidden_states: (torch.Tensor): The (quantized) input tensor to the MoE
      layer.
    - w1 (torch.Tensor): The first set of expert weights.
    - w2 (torch.Tensor): The second set of expert weights.
    - topk_weights: A map of row to expert weights. Some implementations
      choose to do weight application.
    - topk_ids (torch.Tensor): A map of row to expert id.
    - activation (str): The activation function to apply after the first
      MoE layer.
    - global_num_experts (int): The total number of experts in the global
      expert space.
    - expert_map (Optional[torch.Tensor]):  A tensor mapping expert indices
      from the global expert space to the local expert space of the expert
      parallel shard.
    - a1q_scale (Optional[torch.Tensor]): Optional quantized scale to be
      used for a1.  Result of quantization from prepare/finalize and not
      from the FusedMoEQuantConfig.
    - workspace13 (torch.Tensor): A scratch tensor used for gemm outputs
      must be large enough to hold output of either MoE gemm.
    - workspace2 (torch.Tensor): A scratch tensor used for the activation
      function.
    - expert_tokens_meta (Optional[ExpertTokensMetadata]) - An optional
      ExpertTokensMetadata object containing gpu/cpu tensors
      as big as the number of local experts with the information about the
      number of tokens assigned to each local expert.
    - apply_router_weight_on_input: True if router weights are already
      applied on the input. This is relevant if the implementation
      chooses to do weight application.
    """
    raise NotImplementedError

enable_chunking

enable_chunking()
Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def enable_chunking(self):
    return envs.VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING and \
      self.supports_chunking()

finalize_weight_and_reduce_impl

finalize_weight_and_reduce_impl() -> TopKWeightAndReduce
Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def finalize_weight_and_reduce_impl(self) -> TopKWeightAndReduce:
    raise NotImplementedError

supports_chunking abstractmethod

supports_chunking() -> bool

A flag indicating whether or not this class supports activation chunking.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def supports_chunking(self) -> bool:
    """
    A flag indicating whether or not this class supports activation
    chunking.
    """
    raise NotImplementedError

supports_expert_map abstractmethod

supports_expert_map() -> bool

A flag indicating whether or not this class supports expert maps

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def supports_expert_map(self) -> bool:
    """
    A flag indicating whether or not this class supports expert maps
    """
    raise NotImplementedError

workspace_shapes abstractmethod

workspace_shapes(
    a: Tensor,
    aq: Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
) -> tuple[
    tuple[int, ...], tuple[int, ...], tuple[int, ...], dtype
]

Compute the shapes for the temporary and final outputs of the two gemms and activation in the fused expert function. Since the gemms are independent, the workspace for the first gemm can be shared with the workspace for the last gemm.

Returns a tuple of: - workspace13 shape tuple: must be large enough to hold the result of either expert gemm. - workspace2 shape tuple: must be large enough to hold the result of the activation function. - output shape tuple: must be exact size of the final gemm output. - Workspace type: The dtype to use for the workspace tensors. - Note: in order for activation chunking to work, the first dimension of each tuple must be the number of tokens.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def workspace_shapes(
    self,
    a: torch.Tensor,
    aq: torch.Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
    """
    Compute the shapes for the temporary and final outputs of the two gemms
    and activation in the fused expert function.  Since the gemms are
    independent, the workspace for the first gemm can be shared with the
    workspace for the last gemm.

    Returns a tuple of:
    - workspace13 shape tuple: must be large enough to hold the
      result of either expert gemm.
    - workspace2 shape tuple: must be large enough to hold the
      result of the activation function.
    - output shape tuple: must be exact size of the final gemm output.
    - Workspace type: The dtype to use for the workspace tensors.
    - Note: in order for activation chunking to work, the first dimension
      of each tuple must be the number of tokens.
    """
    raise NotImplementedError

FusedMoEPrepareAndFinalize

Bases: ABC

An abstract base class for the [Quantize-Prepare] and [Finalize] steps described above.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
class FusedMoEPrepareAndFinalize(ABC):
    """
    An abstract base class for the [Quantize-Prepare] and [Finalize] steps
    described above.
    """

    @abstractmethod
    def prepare(
        self,
        a1: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        num_experts: int,
        expert_map: Optional[torch.Tensor],
        apply_router_weight_on_input: bool,
        quant_config: FusedMoEQuantConfig,
    ) -> PrepareResultType:
        """
        Perform any quantization (and/or) dispatching needed for this kernel.
        - a1: The (unquantized) input to the MoE layer.
        - topk_ids: The topk ids.
        - topk_weights: The topk weights.
        - num_experts: The total number of experts in the global expert space.
        - expert_map: A tensor mapping expert indices from the global expert
          space to the local expert space of the expert parallel shard.
        - apply_router_weight_on_input: When True, apply the weights to the
          activations, before quantization + dispatching.
        - quant_config: Quantization info provided by the fused experts.

        Returns a tuple of:
        - quantized + dispatched a.
        - Optional quantized + dispatched a1_scales.
        - Optional ExpertTokensMetadata containing gpu/cpu tensors
          as big as the number of local experts with the information about the
          number of tokens assigned to each local expert.
        - Optional dispatched expert topk IDs
        - Optional dispatched expert topk weight
        """
        raise NotImplementedError

    def supports_async(self) -> bool:
        """
        Indicates whether or not this class implements prepare_async and
        finalize_async.
        """
        return False

    def prepare_async(
        self,
        a1: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        num_experts: int,
        expert_map: Optional[torch.Tensor],
        apply_router_weight_on_input: bool,
        quant_config: FusedMoEQuantConfig,
    ) -> Union[tuple[Callable, ReceiverType], ReceiverType]:
        """
        Perform any quantization (and/or) dispatching needed for this kernel
        but do not wait for results from other workers.
        - a1: The (unquantized) input to the MoE layer.
        - a1_scale: Optional scales for a1
        - a2_scale: Optional scales for the second MoE gemm.  Required to make
          sure the quantization is consistent for both gemms.
        - topk_ids: The topk ids.
        - topk_weights: The topk weights.
        - num_experts: The total number of experts in the global expert space.
        - expert_map: A tensor mapping expert indices from the global expert
          space to the local expert space of the expert parallel shard.
        - apply_router_weight_on_input: When True, apply the weights to the
          activations, before quantization + dispatching.

        Returns a callback or a hook callback pair that when invoked waits for 
        results from other workers and has the same return signature as 
        `prepare`, if a hook is returned this is more lightweight check that
        the recv is complete without doing extra work (used by DBO, will be 
        refactored in the very near future)

        e.g.

        ret = obj.prepare_async(...)

        if isinstance(ret, tuple):
            hook, receiver = ret
            hook()

        if hook is not None:
        a, a_scales, expert_meta, topk_ids, topk_weights = receiver()

        is equivalent to:

        a, a_scales, expert_meta, topk_ids, topk_weights = obj.prepare(...)
        """
        raise NotImplementedError

    @abstractmethod
    def finalize(
        self,
        output: torch.Tensor,
        fused_expert_output: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        apply_router_weight_on_input: bool,
        weight_and_reduce_impl: TopKWeightAndReduce,
    ) -> None:
        """
        Perform any combine plus apply weights and perform a reduction on the
        fused experts output.
        - output: The output tensor, written in place.  Must be (M, K) shape.
        - fused_expert_output: The unweighted, unreduced output of the fused
          experts, it will have (M, topk, K) shape.
        - topk_weights: The weights to be applied to the fused_experts_output.
        - topk_ids: The topk_ids.
        - apply_router_weight_on_input: When False, apply the weights to
          fused_expert_output.
        - weight_and_reduce_impl: An optional TopKWeightAndReduce
          implementation.
        """
        raise NotImplementedError

    def finalize_async(
        self,
        output: torch.Tensor,
        fused_expert_output: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        apply_router_weight_on_input: bool,
        weight_and_reduce_impl: TopKWeightAndReduce,
    ) -> Union[tuple[Callable, Callable], Callable]:
        """
        Perform any combine plus apply weights and perform a reduction on the
        fused experts output but do not wait for results from other workers.
        - output: The output tensor, written in place.  Must be (M, K) shape.
        - fused_expert_output: The unweighted, unreduced output of the fused
          experts, it will have (M, topk, K) shape.
        - topk_weights: The weights to be applied to the fused_experts_output.
        - topk_ids: The topk_ids.
        - apply_router_weight_on_input: When False, apply the weights to
          fused_expert_output.
        - weight_and_reduce_impl: An optional TopKWeightAndReduce
          implementation.

        Returns a callback or a hook callback pair that when invoked waits for 
        results from other workers and has the same return signature as 
        `finalize`, if a hook is returned this is more lightweight check that
        the recv is complete without doing extra work (used by DBO, will be 
        refactored in the very near future)

        ret = obj.finalize_async(output, ...)
        ... output not valid yet ...
        if isinstance(ret, tuple):
            hook, receiver = ret
            hook()
        receiver()
        ... output valid here ...

        is equivalent to:

        obj.finalize(output, ...)
        """
        raise NotImplementedError

    @property
    @abstractmethod
    def activation_format(self) -> FusedMoEActivationFormat:
        """
        A property indicating the output format of the activations for the
        'prepare' method.
        """
        raise NotImplementedError

    @abstractmethod
    def topk_indices_dtype(self) -> Optional[torch.dtype]:
        """
        The PrepareFinalize All2All implementations generally constrain the
        dtype of the topk_ids they support. This function returns the
        required topk indices dtype so it can be respected.
        Return None if there are no such restrictions.
        """
        raise NotImplementedError

    @abstractmethod
    def max_num_tokens_per_rank(self) -> Optional[int]:
        """
        Some PrepareFinalize All2All implementations are batched. Meaning,
        they can process only as set of tokens at a time. This
        function returns the batch size i.e the maximum number of tokens
        the implementation can process at a time.
        Return None if there are no such restrictions.
        """
        raise NotImplementedError

    @abstractmethod
    def num_dispatchers(self) -> int:
        raise NotImplementedError

activation_format abstractmethod property

activation_format: FusedMoEActivationFormat

A property indicating the output format of the activations for the 'prepare' method.

finalize abstractmethod

finalize(
    output: Tensor,
    fused_expert_output: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    apply_router_weight_on_input: bool,
    weight_and_reduce_impl: TopKWeightAndReduce,
) -> None

Perform any combine plus apply weights and perform a reduction on the fused experts output. - output: The output tensor, written in place. Must be (M, K) shape. - fused_expert_output: The unweighted, unreduced output of the fused experts, it will have (M, topk, K) shape. - topk_weights: The weights to be applied to the fused_experts_output. - topk_ids: The topk_ids. - apply_router_weight_on_input: When False, apply the weights to fused_expert_output. - weight_and_reduce_impl: An optional TopKWeightAndReduce implementation.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def finalize(
    self,
    output: torch.Tensor,
    fused_expert_output: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    apply_router_weight_on_input: bool,
    weight_and_reduce_impl: TopKWeightAndReduce,
) -> None:
    """
    Perform any combine plus apply weights and perform a reduction on the
    fused experts output.
    - output: The output tensor, written in place.  Must be (M, K) shape.
    - fused_expert_output: The unweighted, unreduced output of the fused
      experts, it will have (M, topk, K) shape.
    - topk_weights: The weights to be applied to the fused_experts_output.
    - topk_ids: The topk_ids.
    - apply_router_weight_on_input: When False, apply the weights to
      fused_expert_output.
    - weight_and_reduce_impl: An optional TopKWeightAndReduce
      implementation.
    """
    raise NotImplementedError

finalize_async

finalize_async(
    output: Tensor,
    fused_expert_output: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    apply_router_weight_on_input: bool,
    weight_and_reduce_impl: TopKWeightAndReduce,
) -> Union[tuple[Callable, Callable], Callable]

Perform any combine plus apply weights and perform a reduction on the fused experts output but do not wait for results from other workers. - output: The output tensor, written in place. Must be (M, K) shape. - fused_expert_output: The unweighted, unreduced output of the fused experts, it will have (M, topk, K) shape. - topk_weights: The weights to be applied to the fused_experts_output. - topk_ids: The topk_ids. - apply_router_weight_on_input: When False, apply the weights to fused_expert_output. - weight_and_reduce_impl: An optional TopKWeightAndReduce implementation.

Returns a callback or a hook callback pair that when invoked waits for results from other workers and has the same return signature as finalize, if a hook is returned this is more lightweight check that the recv is complete without doing extra work (used by DBO, will be refactored in the very near future)

ret = obj.finalize_async(output, ...) ... output not valid yet ... if isinstance(ret, tuple): hook, receiver = ret hook() receiver() ... output valid here ...

is equivalent to:

obj.finalize(output, ...)

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def finalize_async(
    self,
    output: torch.Tensor,
    fused_expert_output: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    apply_router_weight_on_input: bool,
    weight_and_reduce_impl: TopKWeightAndReduce,
) -> Union[tuple[Callable, Callable], Callable]:
    """
    Perform any combine plus apply weights and perform a reduction on the
    fused experts output but do not wait for results from other workers.
    - output: The output tensor, written in place.  Must be (M, K) shape.
    - fused_expert_output: The unweighted, unreduced output of the fused
      experts, it will have (M, topk, K) shape.
    - topk_weights: The weights to be applied to the fused_experts_output.
    - topk_ids: The topk_ids.
    - apply_router_weight_on_input: When False, apply the weights to
      fused_expert_output.
    - weight_and_reduce_impl: An optional TopKWeightAndReduce
      implementation.

    Returns a callback or a hook callback pair that when invoked waits for 
    results from other workers and has the same return signature as 
    `finalize`, if a hook is returned this is more lightweight check that
    the recv is complete without doing extra work (used by DBO, will be 
    refactored in the very near future)

    ret = obj.finalize_async(output, ...)
    ... output not valid yet ...
    if isinstance(ret, tuple):
        hook, receiver = ret
        hook()
    receiver()
    ... output valid here ...

    is equivalent to:

    obj.finalize(output, ...)
    """
    raise NotImplementedError

max_num_tokens_per_rank abstractmethod

max_num_tokens_per_rank() -> Optional[int]

Some PrepareFinalize All2All implementations are batched. Meaning, they can process only as set of tokens at a time. This function returns the batch size i.e the maximum number of tokens the implementation can process at a time. Return None if there are no such restrictions.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def max_num_tokens_per_rank(self) -> Optional[int]:
    """
    Some PrepareFinalize All2All implementations are batched. Meaning,
    they can process only as set of tokens at a time. This
    function returns the batch size i.e the maximum number of tokens
    the implementation can process at a time.
    Return None if there are no such restrictions.
    """
    raise NotImplementedError

num_dispatchers abstractmethod

num_dispatchers() -> int
Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def num_dispatchers(self) -> int:
    raise NotImplementedError

prepare abstractmethod

prepare(
    a1: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    num_experts: int,
    expert_map: Optional[Tensor],
    apply_router_weight_on_input: bool,
    quant_config: FusedMoEQuantConfig,
) -> PrepareResultType

Perform any quantization (and/or) dispatching needed for this kernel. - a1: The (unquantized) input to the MoE layer. - topk_ids: The topk ids. - topk_weights: The topk weights. - num_experts: The total number of experts in the global expert space. - expert_map: A tensor mapping expert indices from the global expert space to the local expert space of the expert parallel shard. - apply_router_weight_on_input: When True, apply the weights to the activations, before quantization + dispatching. - quant_config: Quantization info provided by the fused experts.

Returns a tuple of: - quantized + dispatched a. - Optional quantized + dispatched a1_scales. - Optional ExpertTokensMetadata containing gpu/cpu tensors as big as the number of local experts with the information about the number of tokens assigned to each local expert. - Optional dispatched expert topk IDs - Optional dispatched expert topk weight

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def prepare(
    self,
    a1: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    num_experts: int,
    expert_map: Optional[torch.Tensor],
    apply_router_weight_on_input: bool,
    quant_config: FusedMoEQuantConfig,
) -> PrepareResultType:
    """
    Perform any quantization (and/or) dispatching needed for this kernel.
    - a1: The (unquantized) input to the MoE layer.
    - topk_ids: The topk ids.
    - topk_weights: The topk weights.
    - num_experts: The total number of experts in the global expert space.
    - expert_map: A tensor mapping expert indices from the global expert
      space to the local expert space of the expert parallel shard.
    - apply_router_weight_on_input: When True, apply the weights to the
      activations, before quantization + dispatching.
    - quant_config: Quantization info provided by the fused experts.

    Returns a tuple of:
    - quantized + dispatched a.
    - Optional quantized + dispatched a1_scales.
    - Optional ExpertTokensMetadata containing gpu/cpu tensors
      as big as the number of local experts with the information about the
      number of tokens assigned to each local expert.
    - Optional dispatched expert topk IDs
    - Optional dispatched expert topk weight
    """
    raise NotImplementedError

prepare_async

prepare_async(
    a1: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    num_experts: int,
    expert_map: Optional[Tensor],
    apply_router_weight_on_input: bool,
    quant_config: FusedMoEQuantConfig,
) -> Union[tuple[Callable, ReceiverType], ReceiverType]

Perform any quantization (and/or) dispatching needed for this kernel but do not wait for results from other workers. - a1: The (unquantized) input to the MoE layer. - a1_scale: Optional scales for a1 - a2_scale: Optional scales for the second MoE gemm. Required to make sure the quantization is consistent for both gemms. - topk_ids: The topk ids. - topk_weights: The topk weights. - num_experts: The total number of experts in the global expert space. - expert_map: A tensor mapping expert indices from the global expert space to the local expert space of the expert parallel shard. - apply_router_weight_on_input: When True, apply the weights to the activations, before quantization + dispatching.

Returns a callback or a hook callback pair that when invoked waits for results from other workers and has the same return signature as prepare, if a hook is returned this is more lightweight check that the recv is complete without doing extra work (used by DBO, will be refactored in the very near future)

e.g.

ret = obj.prepare_async(...)

if isinstance(ret, tuple): hook, receiver = ret hook()

if hook is not None: a, a_scales, expert_meta, topk_ids, topk_weights = receiver()

is equivalent to:

a, a_scales, expert_meta, topk_ids, topk_weights = obj.prepare(...)

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def prepare_async(
    self,
    a1: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    num_experts: int,
    expert_map: Optional[torch.Tensor],
    apply_router_weight_on_input: bool,
    quant_config: FusedMoEQuantConfig,
) -> Union[tuple[Callable, ReceiverType], ReceiverType]:
    """
    Perform any quantization (and/or) dispatching needed for this kernel
    but do not wait for results from other workers.
    - a1: The (unquantized) input to the MoE layer.
    - a1_scale: Optional scales for a1
    - a2_scale: Optional scales for the second MoE gemm.  Required to make
      sure the quantization is consistent for both gemms.
    - topk_ids: The topk ids.
    - topk_weights: The topk weights.
    - num_experts: The total number of experts in the global expert space.
    - expert_map: A tensor mapping expert indices from the global expert
      space to the local expert space of the expert parallel shard.
    - apply_router_weight_on_input: When True, apply the weights to the
      activations, before quantization + dispatching.

    Returns a callback or a hook callback pair that when invoked waits for 
    results from other workers and has the same return signature as 
    `prepare`, if a hook is returned this is more lightweight check that
    the recv is complete without doing extra work (used by DBO, will be 
    refactored in the very near future)

    e.g.

    ret = obj.prepare_async(...)

    if isinstance(ret, tuple):
        hook, receiver = ret
        hook()

    if hook is not None:
    a, a_scales, expert_meta, topk_ids, topk_weights = receiver()

    is equivalent to:

    a, a_scales, expert_meta, topk_ids, topk_weights = obj.prepare(...)
    """
    raise NotImplementedError

supports_async

supports_async() -> bool

Indicates whether or not this class implements prepare_async and finalize_async.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
def supports_async(self) -> bool:
    """
    Indicates whether or not this class implements prepare_async and
    finalize_async.
    """
    return False

topk_indices_dtype abstractmethod

topk_indices_dtype() -> Optional[dtype]

The PrepareFinalize All2All implementations generally constrain the dtype of the topk_ids they support. This function returns the required topk indices dtype so it can be respected. Return None if there are no such restrictions.

Source code in vllm/model_executor/layers/fused_moe/modular_kernel.py
@abstractmethod
def topk_indices_dtype(self) -> Optional[torch.dtype]:
    """
    The PrepareFinalize All2All implementations generally constrain the
    dtype of the topk_ids they support. This function returns the
    required topk indices dtype so it can be respected.
    Return None if there are no such restrictions.
    """
    raise NotImplementedError

FusedMoeWeightScaleSupported

Bases: Enum

Source code in vllm/model_executor/layers/fused_moe/layer.py
class FusedMoeWeightScaleSupported(Enum):
    TENSOR = "tensor"
    CHANNEL = "channel"
    GROUP = "group"
    BLOCK = "block"

BLOCK class-attribute instance-attribute

BLOCK = 'block'

CHANNEL class-attribute instance-attribute

CHANNEL = 'channel'

GROUP class-attribute instance-attribute

GROUP = 'group'

TENSOR class-attribute instance-attribute

TENSOR = 'tensor'

TritonExperts

Bases: FusedMoEPermuteExpertsUnpermute

Source code in vllm/model_executor/layers/fused_moe/fused_moe.py
class TritonExperts(mk.FusedMoEPermuteExpertsUnpermute):

    def __init__(
        self,
        quant_config: FusedMoEQuantConfig,
    ):
        super().__init__(quant_config)

    @property
    def activation_formats(
        self
    ) -> tuple[mk.FusedMoEActivationFormat, mk.FusedMoEActivationFormat]:
        return (mk.FusedMoEActivationFormat.Standard,
                mk.FusedMoEActivationFormat.Standard)

    def supports_chunking(self) -> bool:
        return True

    def supports_expert_map(self) -> bool:
        return True

    def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
        return TopKWeightAndReduceNoOP()

    def workspace_shapes(
        self,
        a: torch.Tensor,
        aq: torch.Tensor,
        M: int,
        N: int,
        K: int,
        topk: int,
        global_num_experts: int,
        local_num_experts: int,
        expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
    ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
        workspace1 = (M, topk, max(N // 2, K))
        workspace2 = (M, topk, max(N, K))
        output = (M, K)
        return (workspace1, workspace2, output, a.dtype)

    def apply(
        self,
        output: torch.Tensor,
        hidden_states: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        activation: str,
        global_num_experts: int,
        expert_map: Optional[torch.Tensor],
        a1q_scale: Optional[torch.Tensor],
        a2_scale: Optional[torch.Tensor],
        workspace13: torch.Tensor,
        workspace2: torch.Tensor,
        expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
        apply_router_weight_on_input: bool,
    ):
        # Check constraints.
        if self.quant_config.use_int4_w4a16:
            assert hidden_states.size(-1) // 2 == w1.size(2), (
                "Hidden size mismatch")
        else:
            assert hidden_states.size(-1) == w1.size(2), \
                (f"Hidden size mismatch {hidden_states.size(-1)} "
                 f"!= {w1.size(2)}")

        assert hidden_states.is_contiguous(
        ), "Hidden_states must be contiguous"
        assert hidden_states.dim() == 2
        assert w1.stride(-1) == 1, "Stride of last dimension must be 1"
        assert w2.stride(-1) == 1, "Stride of last dimension must be 1"
        assert hidden_states.dtype in [
            torch.float32, torch.float16, torch.bfloat16, torch.float8_e4m3fn
        ]

        E, num_tokens, N, K, top_k_num = mk._moe_problem_size(
            hidden_states, w1, w2, topk_ids)

        if global_num_experts == -1:
            global_num_experts = E

        config = try_get_optimal_moe_config(
            w1.size(),
            w2.size(),
            top_k_num,
            self.quant_config.config_name(hidden_states.dtype),
            num_tokens,
            block_shape=self.block_shape,
        )

        if hidden_states.dtype == torch.bfloat16:
            compute_type = tl.bfloat16
        elif hidden_states.dtype == torch.float16:
            compute_type = tl.float16
        elif hidden_states.dtype == torch.float32:
            compute_type = tl.float32
        elif hidden_states.dtype == torch.float8_e4m3fn:
            compute_type = tl.bfloat16
        else:
            raise ValueError(
                f"Unsupported compute_type: {hidden_states.dtype}")

        # Note that the output tensor might be in workspace1
        intermediate_cache1 = _resize_cache(workspace2,
                                            (num_tokens, top_k_num, N))
        intermediate_cache2 = _resize_cache(workspace13,
                                            (num_tokens * top_k_num, N // 2))
        intermediate_cache3 = _resize_cache(workspace2,
                                            (num_tokens, top_k_num, K))

        sorted_token_ids, expert_ids, num_tokens_post_padded = (
            moe_align_block_size(topk_ids, config['BLOCK_SIZE_M'],
                                 global_num_experts, expert_map))

        invoke_fused_moe_kernel(
            hidden_states,
            w1,
            intermediate_cache1,
            a1q_scale,
            self.w1_scale,
            self.w1_zp,
            None,  # topk_weights
            sorted_token_ids,
            expert_ids,
            num_tokens_post_padded,
            False,  # mul_routed_weights
            top_k_num,
            config,
            compute_type=compute_type,
            use_fp8_w8a8=self.quant_config.use_fp8_w8a8,
            use_int8_w8a8=self.quant_config.use_int8_w8a8,
            use_int8_w8a16=self.quant_config.use_int8_w8a16,
            use_int4_w4a16=self.quant_config.use_int4_w4a16,
            per_channel_quant=self.per_act_token_quant,
            block_shape=self.block_shape,
            B_bias=self.w1_bias,
        )

        self.activation(activation, intermediate_cache2,
                        intermediate_cache1.view(-1, N))

        a2q_scale: Optional[torch.Tensor] = None

        qintermediate_cache2, a2q_scale = moe_kernel_quantize_input(
            intermediate_cache2, a2_scale, self.quant_dtype,
            self.per_act_token_quant, self.block_shape)

        invoke_fused_moe_kernel(
            qintermediate_cache2,
            w2,
            intermediate_cache3,
            a2q_scale,
            self.w2_scale,
            self.w2_zp,
            topk_weights,
            sorted_token_ids,
            expert_ids,
            num_tokens_post_padded,
            not apply_router_weight_on_input,
            1,
            config,
            compute_type=compute_type,
            use_fp8_w8a8=self.quant_config.use_fp8_w8a8,
            use_int8_w8a8=self.quant_config.use_int8_w8a8,
            use_int8_w8a16=self.quant_config.use_int8_w8a16,
            use_int4_w4a16=self.quant_config.use_int4_w4a16,
            per_channel_quant=self.per_act_token_quant,
            block_shape=self.block_shape,
            B_bias=self.w2_bias,
        )

        ops.moe_sum(intermediate_cache3, output)

activation_formats property

__init__

__init__(quant_config: FusedMoEQuantConfig)
Source code in vllm/model_executor/layers/fused_moe/fused_moe.py
def __init__(
    self,
    quant_config: FusedMoEQuantConfig,
):
    super().__init__(quant_config)

apply

apply(
    output: Tensor,
    hidden_states: Tensor,
    w1: Tensor,
    w2: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    activation: str,
    global_num_experts: int,
    expert_map: Optional[Tensor],
    a1q_scale: Optional[Tensor],
    a2_scale: Optional[Tensor],
    workspace13: Tensor,
    workspace2: Tensor,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
)
Source code in vllm/model_executor/layers/fused_moe/fused_moe.py
def apply(
    self,
    output: torch.Tensor,
    hidden_states: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    activation: str,
    global_num_experts: int,
    expert_map: Optional[torch.Tensor],
    a1q_scale: Optional[torch.Tensor],
    a2_scale: Optional[torch.Tensor],
    workspace13: torch.Tensor,
    workspace2: torch.Tensor,
    expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
):
    # Check constraints.
    if self.quant_config.use_int4_w4a16:
        assert hidden_states.size(-1) // 2 == w1.size(2), (
            "Hidden size mismatch")
    else:
        assert hidden_states.size(-1) == w1.size(2), \
            (f"Hidden size mismatch {hidden_states.size(-1)} "
             f"!= {w1.size(2)}")

    assert hidden_states.is_contiguous(
    ), "Hidden_states must be contiguous"
    assert hidden_states.dim() == 2
    assert w1.stride(-1) == 1, "Stride of last dimension must be 1"
    assert w2.stride(-1) == 1, "Stride of last dimension must be 1"
    assert hidden_states.dtype in [
        torch.float32, torch.float16, torch.bfloat16, torch.float8_e4m3fn
    ]

    E, num_tokens, N, K, top_k_num = mk._moe_problem_size(
        hidden_states, w1, w2, topk_ids)

    if global_num_experts == -1:
        global_num_experts = E

    config = try_get_optimal_moe_config(
        w1.size(),
        w2.size(),
        top_k_num,
        self.quant_config.config_name(hidden_states.dtype),
        num_tokens,
        block_shape=self.block_shape,
    )

    if hidden_states.dtype == torch.bfloat16:
        compute_type = tl.bfloat16
    elif hidden_states.dtype == torch.float16:
        compute_type = tl.float16
    elif hidden_states.dtype == torch.float32:
        compute_type = tl.float32
    elif hidden_states.dtype == torch.float8_e4m3fn:
        compute_type = tl.bfloat16
    else:
        raise ValueError(
            f"Unsupported compute_type: {hidden_states.dtype}")

    # Note that the output tensor might be in workspace1
    intermediate_cache1 = _resize_cache(workspace2,
                                        (num_tokens, top_k_num, N))
    intermediate_cache2 = _resize_cache(workspace13,
                                        (num_tokens * top_k_num, N // 2))
    intermediate_cache3 = _resize_cache(workspace2,
                                        (num_tokens, top_k_num, K))

    sorted_token_ids, expert_ids, num_tokens_post_padded = (
        moe_align_block_size(topk_ids, config['BLOCK_SIZE_M'],
                             global_num_experts, expert_map))

    invoke_fused_moe_kernel(
        hidden_states,
        w1,
        intermediate_cache1,
        a1q_scale,
        self.w1_scale,
        self.w1_zp,
        None,  # topk_weights
        sorted_token_ids,
        expert_ids,
        num_tokens_post_padded,
        False,  # mul_routed_weights
        top_k_num,
        config,
        compute_type=compute_type,
        use_fp8_w8a8=self.quant_config.use_fp8_w8a8,
        use_int8_w8a8=self.quant_config.use_int8_w8a8,
        use_int8_w8a16=self.quant_config.use_int8_w8a16,
        use_int4_w4a16=self.quant_config.use_int4_w4a16,
        per_channel_quant=self.per_act_token_quant,
        block_shape=self.block_shape,
        B_bias=self.w1_bias,
    )

    self.activation(activation, intermediate_cache2,
                    intermediate_cache1.view(-1, N))

    a2q_scale: Optional[torch.Tensor] = None

    qintermediate_cache2, a2q_scale = moe_kernel_quantize_input(
        intermediate_cache2, a2_scale, self.quant_dtype,
        self.per_act_token_quant, self.block_shape)

    invoke_fused_moe_kernel(
        qintermediate_cache2,
        w2,
        intermediate_cache3,
        a2q_scale,
        self.w2_scale,
        self.w2_zp,
        topk_weights,
        sorted_token_ids,
        expert_ids,
        num_tokens_post_padded,
        not apply_router_weight_on_input,
        1,
        config,
        compute_type=compute_type,
        use_fp8_w8a8=self.quant_config.use_fp8_w8a8,
        use_int8_w8a8=self.quant_config.use_int8_w8a8,
        use_int8_w8a16=self.quant_config.use_int8_w8a16,
        use_int4_w4a16=self.quant_config.use_int4_w4a16,
        per_channel_quant=self.per_act_token_quant,
        block_shape=self.block_shape,
        B_bias=self.w2_bias,
    )

    ops.moe_sum(intermediate_cache3, output)

finalize_weight_and_reduce_impl

finalize_weight_and_reduce_impl() -> TopKWeightAndReduce
Source code in vllm/model_executor/layers/fused_moe/fused_moe.py
def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
    return TopKWeightAndReduceNoOP()

supports_chunking

supports_chunking() -> bool
Source code in vllm/model_executor/layers/fused_moe/fused_moe.py
def supports_chunking(self) -> bool:
    return True

supports_expert_map

supports_expert_map() -> bool
Source code in vllm/model_executor/layers/fused_moe/fused_moe.py
def supports_expert_map(self) -> bool:
    return True

workspace_shapes

workspace_shapes(
    a: Tensor,
    aq: Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
) -> tuple[
    tuple[int, ...], tuple[int, ...], tuple[int, ...], dtype
]
Source code in vllm/model_executor/layers/fused_moe/fused_moe.py
def workspace_shapes(
    self,
    a: torch.Tensor,
    aq: torch.Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
    workspace1 = (M, topk, max(N // 2, K))
    workspace2 = (M, topk, max(N, K))
    output = (M, K)
    return (workspace1, workspace2, output, a.dtype)

TritonOrDeepGemmExperts

Bases: FusedMoEPermuteExpertsUnpermute

Source code in vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py
class TritonOrDeepGemmExperts(mk.FusedMoEPermuteExpertsUnpermute):

    def __init__(
        self,
        quant_config: FusedMoEQuantConfig,
        allow_deep_gemm: bool = False,
    ):
        super().__init__(quant_config)

        self.triton_expert = TritonExperts(quant_config)

        self.allow_deep_gemm = (allow_deep_gemm
                                and self.quant_config.use_fp8_w8a8 and
                                self.block_shape == deep_gemm_block_shape())

        self.deep_gemm_expert = DeepGemmExperts(
            self.quant_config) if self.allow_deep_gemm else None

    @property
    def activation_formats(
        self
    ) -> tuple[mk.FusedMoEActivationFormat, mk.FusedMoEActivationFormat]:
        assert (self.deep_gemm_expert is None
                or self.triton_expert.activation_formats
                == self.deep_gemm_expert.activation_formats)
        return self.triton_expert.activation_formats

    def supports_chunking(self) -> bool:
        dge = self.deep_gemm_expert
        te = self.triton_expert
        return ((dge is None or dge.supports_chunking())
                and (te is None or te.supports_chunking()))

    def supports_expert_map(self) -> bool:
        dge = self.deep_gemm_expert
        te = self.triton_expert
        return ((dge is None or dge.supports_expert_map())
                and (te is None or te.supports_expert_map()))

    def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
        dge = self.deep_gemm_expert
        te = self.triton_expert
        dge_war = dge.finalize_weight_and_reduce_impl() if dge else None
        te_war = te.finalize_weight_and_reduce_impl() if te else None
        is_dge_war = dge_war is not None
        is_te_war = te_war is not None

        if is_dge_war and is_te_war:
            assert dge_war == te_war, (
                "Both implementations should agree on WeightAndReduce impls. "
                f"Got dge_war: {dge_war}, and te_war: {te_war}")

        if dge_war is not None:
            return dge_war

        assert te_war is not None
        return te_war

    def workspace_shapes(
        self,
        a: torch.Tensor,
        aq: torch.Tensor,
        M: int,
        N: int,
        K: int,
        topk: int,
        global_num_experts: int,
        local_num_experts: int,
        expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
    ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
        # Note: the deep gemm workspaces are strictly larger than the triton
        # workspaces so we can be pessimistic here and allocate for DeepGemm
        # even if we fall back to triton later, e.g. if expert maps are set.
        if self.allow_deep_gemm and (is_deep_gemm_e8m0_used()
                                     or _valid_deep_gemm_shape(M, N, K)):
            assert self.deep_gemm_expert is not None
            return self.deep_gemm_expert.workspace_shapes(
                a, aq, M, N, K, topk, global_num_experts, local_num_experts,
                expert_tokens_meta)
        else:
            return self.triton_expert.workspace_shapes(a, aq, M, N, K, topk,
                                                       global_num_experts,
                                                       local_num_experts,
                                                       expert_tokens_meta)

    def apply(
        self,
        output: torch.Tensor,
        hidden_states: torch.Tensor,
        w1: torch.Tensor,
        w2: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        activation: str,
        global_num_experts: int,
        expert_map: Optional[torch.Tensor],
        a1q_scale: Optional[torch.Tensor],
        a2_scale: Optional[torch.Tensor],
        workspace13: torch.Tensor,
        workspace2: torch.Tensor,
        expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
        apply_router_weight_on_input: bool,
    ):
        use_deep_gemm = (self.allow_deep_gemm
                         and (_valid_deep_gemm(hidden_states, w1, w2)
                              or is_deep_gemm_e8m0_used()))

        experts = self.deep_gemm_expert if use_deep_gemm else self.triton_expert
        assert experts is not None

        experts.apply(
            output,
            hidden_states,
            w1,
            w2,
            topk_weights,
            topk_ids,
            activation,
            global_num_experts,
            expert_map,
            a1q_scale,
            a2_scale,
            workspace13,
            workspace2,
            expert_tokens_meta,
            apply_router_weight_on_input,
        )

activation_formats property

allow_deep_gemm instance-attribute

allow_deep_gemm = (
    allow_deep_gemm
    and use_fp8_w8a8
    and block_shape == deep_gemm_block_shape()
)

deep_gemm_expert instance-attribute

deep_gemm_expert = (
    DeepGemmExperts(quant_config)
    if allow_deep_gemm
    else None
)

triton_expert instance-attribute

triton_expert = TritonExperts(quant_config)

__init__

__init__(
    quant_config: FusedMoEQuantConfig,
    allow_deep_gemm: bool = False,
)
Source code in vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py
def __init__(
    self,
    quant_config: FusedMoEQuantConfig,
    allow_deep_gemm: bool = False,
):
    super().__init__(quant_config)

    self.triton_expert = TritonExperts(quant_config)

    self.allow_deep_gemm = (allow_deep_gemm
                            and self.quant_config.use_fp8_w8a8 and
                            self.block_shape == deep_gemm_block_shape())

    self.deep_gemm_expert = DeepGemmExperts(
        self.quant_config) if self.allow_deep_gemm else None

apply

apply(
    output: Tensor,
    hidden_states: Tensor,
    w1: Tensor,
    w2: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    activation: str,
    global_num_experts: int,
    expert_map: Optional[Tensor],
    a1q_scale: Optional[Tensor],
    a2_scale: Optional[Tensor],
    workspace13: Tensor,
    workspace2: Tensor,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
)
Source code in vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py
def apply(
    self,
    output: torch.Tensor,
    hidden_states: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    activation: str,
    global_num_experts: int,
    expert_map: Optional[torch.Tensor],
    a1q_scale: Optional[torch.Tensor],
    a2_scale: Optional[torch.Tensor],
    workspace13: torch.Tensor,
    workspace2: torch.Tensor,
    expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
    apply_router_weight_on_input: bool,
):
    use_deep_gemm = (self.allow_deep_gemm
                     and (_valid_deep_gemm(hidden_states, w1, w2)
                          or is_deep_gemm_e8m0_used()))

    experts = self.deep_gemm_expert if use_deep_gemm else self.triton_expert
    assert experts is not None

    experts.apply(
        output,
        hidden_states,
        w1,
        w2,
        topk_weights,
        topk_ids,
        activation,
        global_num_experts,
        expert_map,
        a1q_scale,
        a2_scale,
        workspace13,
        workspace2,
        expert_tokens_meta,
        apply_router_weight_on_input,
    )

finalize_weight_and_reduce_impl

finalize_weight_and_reduce_impl() -> TopKWeightAndReduce
Source code in vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py
def finalize_weight_and_reduce_impl(self) -> mk.TopKWeightAndReduce:
    dge = self.deep_gemm_expert
    te = self.triton_expert
    dge_war = dge.finalize_weight_and_reduce_impl() if dge else None
    te_war = te.finalize_weight_and_reduce_impl() if te else None
    is_dge_war = dge_war is not None
    is_te_war = te_war is not None

    if is_dge_war and is_te_war:
        assert dge_war == te_war, (
            "Both implementations should agree on WeightAndReduce impls. "
            f"Got dge_war: {dge_war}, and te_war: {te_war}")

    if dge_war is not None:
        return dge_war

    assert te_war is not None
    return te_war

supports_chunking

supports_chunking() -> bool
Source code in vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py
def supports_chunking(self) -> bool:
    dge = self.deep_gemm_expert
    te = self.triton_expert
    return ((dge is None or dge.supports_chunking())
            and (te is None or te.supports_chunking()))

supports_expert_map

supports_expert_map() -> bool
Source code in vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py
def supports_expert_map(self) -> bool:
    dge = self.deep_gemm_expert
    te = self.triton_expert
    return ((dge is None or dge.supports_expert_map())
            and (te is None or te.supports_expert_map()))

workspace_shapes

workspace_shapes(
    a: Tensor,
    aq: Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_meta: Optional[ExpertTokensMetadata],
) -> tuple[
    tuple[int, ...], tuple[int, ...], tuple[int, ...], dtype
]
Source code in vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py
def workspace_shapes(
    self,
    a: torch.Tensor,
    aq: torch.Tensor,
    M: int,
    N: int,
    K: int,
    topk: int,
    global_num_experts: int,
    local_num_experts: int,
    expert_tokens_meta: Optional[mk.ExpertTokensMetadata],
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], torch.dtype]:
    # Note: the deep gemm workspaces are strictly larger than the triton
    # workspaces so we can be pessimistic here and allocate for DeepGemm
    # even if we fall back to triton later, e.g. if expert maps are set.
    if self.allow_deep_gemm and (is_deep_gemm_e8m0_used()
                                 or _valid_deep_gemm_shape(M, N, K)):
        assert self.deep_gemm_expert is not None
        return self.deep_gemm_expert.workspace_shapes(
            a, aq, M, N, K, topk, global_num_experts, local_num_experts,
            expert_tokens_meta)
    else:
        return self.triton_expert.workspace_shapes(a, aq, M, N, K, topk,
                                                   global_num_experts,
                                                   local_num_experts,
                                                   expert_tokens_meta)

_raise_exception

_raise_exception(method: str)
Source code in vllm/model_executor/layers/fused_moe/__init__.py
def _raise_exception(method: str):
    raise NotImplementedError(
        f"{method} is not implemented as lack of triton.")

activation_without_mul

activation_without_mul(activation: str) -> str
Source code in vllm/model_executor/layers/fused_moe/utils.py
def activation_without_mul(activation: str) -> str:
    return activation + "_no_mul"

cutlass_moe_fp4

cutlass_moe_fp4(
    a: Tensor,
    w1_fp4: Tensor,
    w2_fp4: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    quant_config: FusedMoEQuantConfig,
    m: int,
    n: int,
    k: int,
    e: int,
    expert_map: Optional[Tensor] = None,
    apply_router_weight_on_input: bool = False,
) -> Tensor
Source code in vllm/model_executor/layers/fused_moe/cutlass_moe.py
def cutlass_moe_fp4(
        a: torch.Tensor,
        w1_fp4: torch.Tensor,
        w2_fp4: torch.Tensor,
        topk_weights: torch.Tensor,
        topk_ids: torch.Tensor,
        quant_config: FusedMoEQuantConfig,
        m: int,
        n: int,
        k: int,
        e: int,
        expert_map: Optional[torch.Tensor] = None,
        apply_router_weight_on_input: bool = False) -> torch.Tensor:
    assert expert_map is None, ("Expert Parallelism / expert_map "
                                "is currently not supported for "
                                "ModelOptNvFp4FusedMoE's cutlass_moe_fp4.")

    # TODO(bnell): this feels a bit hacky
    # NVFP4 requires two levels of quantization, which involves
    # computing some scaling factors dynamically. This makes it
    # incompatible with the typical prepare -> MoE -> finalize
    # pipeline. Move the quantization logic into the MoE body.
    quant_config = FusedMoEQuantConfig.make(
        quant_dtype=None,  # skip quantization in prepare/finalize
        per_act_token_quant=quant_config.per_act_token_quant,
        per_out_ch_quant=quant_config.per_out_ch_quant,
        block_shape=quant_config.block_shape,
        g1_alphas=quant_config.g1_alphas,
        g2_alphas=quant_config.g2_alphas,
        a1_gscale=quant_config.a1_gscale,
        a2_gscale=quant_config.a2_gscale,
        w1_scale=quant_config.w1_scale,
        w2_scale=quant_config.w2_scale,
    )

    fn = mk.FusedMoEModularKernel(
        MoEPrepareAndFinalizeNoEP(),
        CutlassExpertsFp4(
            max_experts_per_worker=e,
            out_dtype=a.dtype,
            quant_config=quant_config,
            use_batched_format=False,
        ),
    )

    return fn(
        hidden_states=a,
        w1=w1_fp4,
        w2=w2_fp4,
        topk_weights=topk_weights,
        topk_ids=topk_ids,
        inplace=False,
        activation="silu",
        global_num_experts=e,
        expert_map=None,
        apply_router_weight_on_input=apply_router_weight_on_input,
    )

cutlass_moe_fp8

cutlass_moe_fp8(
    a: Tensor,
    w1_q: Tensor,
    w2_q: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    ab_strides1: Tensor,
    ab_strides2: Tensor,
    c_strides1: Tensor,
    c_strides2: Tensor,
    quant_config: FusedMoEQuantConfig,
    activation: str = "silu",
    expert_map: Optional[Tensor] = None,
    apply_router_weight_on_input: bool = False,
    global_num_experts: int = -1,
) -> Tensor

This function computes a a8w8-quantized Mixture of Experts (MoE) layer using two sets of quantized weights, w1_q and w2_q, and top-k gating mechanism. The matrix multiplications are implemented with CUTLASS grouped gemm.

  • a (torch.Tensor): The input tensor to the MoE layer. Shape: [M, K]
  • w1_q (torch.Tensor): The first set of fp8-quantized expert weights. Shape: [num_experts, K, 2N] (the weights are passed transposed)
  • w2_q (torch.Tensor): The second set of fp8-quantized expert weights. Shape: [num_experts, N, K] (the weights are passed transposed)
  • topk_weights (torch.Tensor): The weights of each token->expert mapping.
  • topk_ids (torch.Tensor): The token->expert mappings.
  • w1_scale (torch.Tensor): The fp32 scale to dequantize w1_q. Shape: [num_experts] or [num_experts, 2N]
  • w2_scale (torch.Tensor): The fp32 scale to dequantize w2_q. Shape: [num_experts] or [num_experts, K]
  • ab_strides1 (torch.Tensor): The input/weight strides for the first gemm. Shape: [num_experts]
  • ab_strides2 (torch.Tensor): The input/weight strides for the second gemm. Shape: [num_experts]
  • c_strides1 (torch.Tensor): The output strides for the first gemm. Shape: [num_experts]
  • c_strides2 (torch.Tensor): The output strides for the second gemm. Shape: [num_experts]
  • per_act_token (Optional[bool]): Whether the scale is per-token or per-tensor.
  • activation (str): The activation function to use.
  • a1_scale (Optional[torch.Tensor]): The optional fp32 scale to quantize a. Shape: scalar or [M]
  • a2_scale (Optional[torch.Tensor]): The optional fp32 scale to quantize the intermediate result between the gemms. Shape: scalar or [M]
  • expert_map (Optional[torch.Tensor]): In the case of Expert parallel, every Rank is responsible for a subset of experts. expert_map is a mapping from global expert-id to local expert-id. When expert_map[i] is -1, it means that this Rank is not responsible for global expert-id i.
  • apply_router_weight_on_input (bool): When true, the topk weights are applied directly on the inputs. This is only applicable when topk is 1.
  • global_num_experts (int): The total number of experts.

Returns: - torch.Tensor: The fp16 output tensor after applying the MoE layer.

Source code in vllm/model_executor/layers/fused_moe/cutlass_moe.py
def cutlass_moe_fp8(
    a: torch.Tensor,
    w1_q: torch.Tensor,
    w2_q: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    ab_strides1: torch.Tensor,
    ab_strides2: torch.Tensor,
    c_strides1: torch.Tensor,
    c_strides2: torch.Tensor,
    quant_config: FusedMoEQuantConfig,
    activation: str = "silu",
    expert_map: Optional[torch.Tensor] = None,
    apply_router_weight_on_input: bool = False,
    global_num_experts: int = -1,
) -> torch.Tensor:
    """
    This function computes a a8w8-quantized Mixture of Experts (MoE) layer
    using two sets of quantized weights, w1_q and w2_q, and top-k gating
    mechanism. The matrix multiplications are implemented with CUTLASS
    grouped gemm.

    Parameters:
    - a (torch.Tensor): The input tensor to the MoE layer.
        Shape: [M, K]
    - w1_q (torch.Tensor): The first set of fp8-quantized expert weights.
        Shape: [num_experts, K, 2N] (the weights are passed transposed)
    - w2_q (torch.Tensor): The second set of fp8-quantized expert weights.
        Shape: [num_experts, N, K] (the weights are passed transposed)
    - topk_weights (torch.Tensor): The weights of each token->expert mapping.
    - topk_ids (torch.Tensor): The token->expert mappings.
    - w1_scale (torch.Tensor): The fp32 scale to dequantize w1_q.
        Shape: [num_experts] or [num_experts, 2N]
    - w2_scale (torch.Tensor): The fp32 scale to dequantize w2_q.
        Shape: [num_experts] or [num_experts, K]
    - ab_strides1 (torch.Tensor): The input/weight strides for the first gemm.
        Shape: [num_experts]
    - ab_strides2 (torch.Tensor): The input/weight strides for the second gemm.
        Shape: [num_experts]
    - c_strides1 (torch.Tensor): The output strides for the first gemm.
        Shape: [num_experts]
    - c_strides2 (torch.Tensor): The output strides for the second gemm.
        Shape: [num_experts]
    - per_act_token (Optional[bool]): Whether the scale is per-token or
                                      per-tensor.
    - activation (str): The activation function to use.
    - a1_scale (Optional[torch.Tensor]): The optional fp32 scale to quantize a.
        Shape: scalar or [M]
    - a2_scale (Optional[torch.Tensor]): The optional fp32 scale to
        quantize the intermediate result between the gemms.
        Shape: scalar or [M]
    - expert_map (Optional[torch.Tensor]): In the case of Expert parallel,
        every Rank is responsible for a subset of experts. expert_map is a
        mapping from global expert-id to local expert-id. When expert_map[i]
        is -1, it means that this Rank is not responsible for global
        expert-id i.
    - apply_router_weight_on_input (bool): When true, the topk weights are
        applied directly on the inputs. This is only applicable when topk is 1.
    - global_num_experts (int): The total number of experts.

    Returns:
    - torch.Tensor: The fp16 output tensor after applying the MoE layer.
    """
    assert quant_config is not None

    if quant_config.a1_scale is not None:
        assert (quant_config.per_act_token_quant ==
                quant_config.a1_scale.numel() != 1)
    if quant_config.a2_scale is not None:
        assert (quant_config.per_act_token_quant ==
                quant_config.a2_scale.numel() != 1)

    assert (quant_config.w1_scale is None
            or (quant_config.per_out_ch_quant == (quant_config.w1_scale.size(1)
                                                  == w1_q.size(1))))

    num_experts = global_num_experts if global_num_experts != -1 else w1_q.size(
        0)

    fn = mk.FusedMoEModularKernel(
        MoEPrepareAndFinalizeNoEP(),
        CutlassExpertsFp8(
            out_dtype=a.dtype,
            ab_strides1=ab_strides1,
            ab_strides2=ab_strides2,
            c_strides1=c_strides1,
            c_strides2=c_strides2,
            quant_config=quant_config,
        ),
    )

    return fn(
        a,
        w1_q,
        w2_q,
        topk_weights,
        topk_ids,
        activation=activation,
        global_num_experts=num_experts,
        expert_map=expert_map,
        apply_router_weight_on_input=apply_router_weight_on_input,
    )

fused_experts

fused_experts(
    hidden_states: Tensor,
    w1: Tensor,
    w2: Tensor,
    topk_weights: Tensor,
    topk_ids: Tensor,
    inplace: bool = False,
    activation: str = "silu",
    apply_router_weight_on_input: bool = False,
    global_num_experts: int = -1,
    expert_map: Optional[Tensor] = None,
    quant_config: Optional[FusedMoEQuantConfig] = None,
    allow_deep_gemm: bool = False,
    allow_cutlass_block_scaled_grouped_gemm: bool = False,
) -> Tensor
Source code in vllm/model_executor/layers/fused_moe/fused_moe.py
def fused_experts(
    hidden_states: torch.Tensor,
    w1: torch.Tensor,
    w2: torch.Tensor,
    topk_weights: torch.Tensor,
    topk_ids: torch.Tensor,
    inplace: bool = False,
    activation: str = "silu",
    apply_router_weight_on_input: bool = False,
    global_num_experts: int = -1,
    expert_map: Optional[torch.Tensor] = None,
    quant_config: Optional[FusedMoEQuantConfig] = None,
    allow_deep_gemm: bool = False,
    allow_cutlass_block_scaled_grouped_gemm: bool = False,
) -> torch.Tensor:

    if quant_config is None:
        quant_config = FUSED_MOE_UNQUANTIZED_CONFIG
    use_fp8_w8a8 = quant_config.use_fp8_w8a8

    # For now, disable DeepGemm for small N (<= 512) until better
    # permute/unpermute ops are available.
    # However, on B200, we use DeepGemm for all cases because they only support
    # E8M0 scale, which means we requantize the weight and input to the specific
    # scale. Fallen back to cutlass or triton for some cases would cause
    # accuracy issue.
    if (allow_deep_gemm and quant_config.use_fp8_w8a8 and
        (is_deep_gemm_e8m0_used() or _valid_deep_gemm(hidden_states, w1, w2))):
        assert quant_config is not None
        assert apply_router_weight_on_input is False
        return deep_gemm_moe_fp8(
            hidden_states=hidden_states,
            w1=w1,
            w2=w2,
            topk_weights=topk_weights,
            topk_ids=topk_ids,
            inplace=inplace,
            activation=activation,
            global_num_experts=global_num_experts,
            expert_map=expert_map,
            w1_scale=quant_config.w1_scale,
            w2_scale=quant_config.w2_scale,
            a1_scale=quant_config.a1_scale,
            a2_scale=quant_config.a2_scale,
            apply_router_weight_on_input=apply_router_weight_on_input,
        )
    elif (allow_cutlass_block_scaled_grouped_gemm and use_fp8_w8a8
          and _valid_cutlass_block_scaled_grouped_gemm(
              w1, w2, inplace, activation, apply_router_weight_on_input,
              expert_map)):
        assert quant_config is not None
        return run_cutlass_block_scaled_fused_experts(
            a=hidden_states,
            w1=w1,
            w2=w2,
            w1_scale=quant_config.w1_scale,
            w2_scale=quant_config.w2_scale,
            topk_weights=topk_weights,
            topk_ids=topk_ids)
    else:
        return dispatch_fused_experts_func(inplace)(
            hidden_states=hidden_states,
            w1=w1,
            w2=w2,
            topk_weights=topk_weights,
            topk_ids=topk_ids,
            activation=activation,
            apply_router_weight_on_input=apply_router_weight_on_input,
            use_fp8_w8a8=quant_config.use_fp8_w8a8,
            use_int8_w8a8=quant_config.use_int8_w8a8,
            use_int8_w8a16=quant_config.use_int8_w8a16,
            use_int4_w4a16=quant_config.use_int4_w4a16,
            use_mxfp4_w4a4=quant_config.use_mxfp4_w4a4,
            per_channel_quant=quant_config.per_act_token_quant,
            global_num_experts=global_num_experts,
            expert_map=expert_map,
            w1_scale=quant_config.w1_scale,
            w2_scale=quant_config.w2_scale,
            w1_zp=quant_config.w1_zp,
            w2_zp=quant_config.w2_zp,
            a1_scale=quant_config.a1_scale,
            a2_scale=quant_config.a2_scale,
            block_shape=quant_config.block_shape,
            w1_bias=quant_config.w1_bias,
            w2_bias=quant_config.w2_bias)

fused_topk

fused_topk(
    hidden_states: Tensor,
    gating_output: Tensor,
    topk: int,
    renormalize: bool,
    indices_type: Optional[dtype] = None,
) -> tuple[Tensor, Tensor, Tensor]
Source code in vllm/model_executor/layers/fused_moe/fused_moe.py
def fused_topk(
    hidden_states: torch.Tensor,
    gating_output: torch.Tensor,
    topk: int,
    renormalize: bool,
    indices_type: Optional[torch.dtype] = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    assert hidden_states.size(0) == gating_output.size(0), (
        "Number of tokens mismatch")

    M, _ = hidden_states.size()

    topk_weights = torch.empty(M,
                               topk,
                               dtype=torch.float32,
                               device=hidden_states.device)
    topk_ids = torch.empty(
        M,
        topk,
        dtype=torch.int32 if indices_type is None else indices_type,
        device=hidden_states.device)
    token_expert_indices = torch.empty(M,
                                       topk,
                                       dtype=torch.int32,
                                       device=hidden_states.device)

    gating_output_float = gating_output.float()  # TODO(woosuk): Optimize this.

    topk_func = dispatch_topk_func()
    topk_weights, topk_ids = topk_func(topk_weights, topk_ids,
                                       token_expert_indices,
                                       gating_output_float, renormalize)

    return topk_weights, topk_ids, token_expert_indices

get_config

get_config() -> Optional[dict[str, Any]]
Source code in vllm/model_executor/layers/fused_moe/__init__.py
def get_config() -> Optional[dict[str, Any]]:
    return _config

get_config_file_name

get_config_file_name(
    E: int,
    N: int,
    dtype: Optional[str],
    block_shape: Optional[list[int]] = None,
) -> str
Source code in vllm/model_executor/layers/fused_moe/fused_moe.py
def get_config_file_name(E: int,
                         N: int,
                         dtype: Optional[str],
                         block_shape: Optional[list[int]] = None) -> str:
    device_name = current_platform.get_device_name().replace(" ", "_")
    dtype_selector = "" if not dtype else f",dtype={dtype}"
    block_shape_selector = ("" if not block_shape or not all(block_shape) else
                            f",block_shape={block_shape}").replace(" ", "")
    return f"E={E},N={N},device_name={device_name}{dtype_selector}{block_shape_selector}.json"  # noqa: E501

grouped_topk

grouped_topk(
    hidden_states: Tensor,
    gating_output: Tensor,
    topk: int,
    renormalize: bool,
    num_expert_group: int = 0,
    topk_group: int = 0,
    scoring_func: str = "softmax",
    routed_scaling_factor: float = 1.0,
    e_score_correction_bias: Optional[Tensor] = None,
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/layers/fused_moe/fused_moe.py
@torch.compile(dynamic=True, backend=current_platform.simple_compile_backend)
def grouped_topk(
    hidden_states: torch.Tensor,
    gating_output: torch.Tensor,
    topk: int,
    renormalize: bool,
    num_expert_group: int = 0,
    topk_group: int = 0,
    scoring_func: str = "softmax",
    routed_scaling_factor: float = 1.0,
    e_score_correction_bias: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
    if envs.VLLM_USE_FUSED_MOE_GROUPED_TOPK and \
            current_platform.is_cuda() and \
            num_expert_group <= 32 and topk <= 32 and \
            e_score_correction_bias is not None:
        return fused_grouped_topk(
            hidden_states=hidden_states,
            gating_output=gating_output,
            topk=topk,
            renormalize=renormalize,
            e_score_correction_bias=e_score_correction_bias,
            num_expert_group=num_expert_group,
            topk_group=topk_group,
            scoring_func=scoring_func,
            routed_scaling_factor=routed_scaling_factor)

    assert hidden_states.size(0) == gating_output.size(0), (
        "Number of tokens mismatch")

    if scoring_func == "softmax":
        scores = torch.softmax(gating_output, dim=-1)
    elif scoring_func == "sigmoid":
        scores = gating_output.sigmoid()
    else:
        raise ValueError(f"Unsupported scoring function: {scoring_func}")

    num_token = scores.size(0)
    if e_score_correction_bias is not None:
        # Store original scores before applying correction bias. We use biased
        # scores for expert selection but original scores for routing weights
        original_scores = scores
        scores = scores + e_score_correction_bias.unsqueeze(0)
        group_scores = (scores.view(num_token, num_expert_group,
                                    -1).topk(2, dim=-1)[0].sum(dim=-1))
    else:
        group_scores = scores.view(num_token, num_expert_group,
                                   -1).max(dim=-1).values  # [n, n_group]
    group_idx = torch.topk(group_scores, k=topk_group, dim=-1,
                           sorted=False)[1]  # [n, top_k_group]
    group_mask = torch.zeros_like(group_scores)  # [n, n_group]
    group_mask.scatter_(1, group_idx, 1)  # [n, n_group]
    score_mask = group_mask.unsqueeze(-1).expand(
        num_token, num_expert_group,
        scores.size(-1) // num_expert_group).reshape(num_token, -1)  # [n, e]
    tmp_scores = scores.masked_fill(~score_mask.bool(),
                                    float("-inf"))  # [n, e]

    if e_score_correction_bias is not None:
        topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False)[1]
        # Use original unbiased scores for the routing weights
        topk_weights = original_scores.gather(1, topk_ids)
    else:
        topk_weights, topk_ids = torch.topk(tmp_scores,
                                            k=topk,
                                            dim=-1,
                                            sorted=False)

    if renormalize:
        topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)

    if routed_scaling_factor != 1.0:
        topk_weights = topk_weights * routed_scaling_factor
    return topk_weights.to(torch.float32), topk_ids.to(torch.int32)

override_config

override_config(config)
Source code in vllm/model_executor/layers/fused_moe/__init__.py
@contextmanager
def override_config(config):
    global _config
    old_config = _config
    _config = config
    yield
    _config = old_config