vllm.model_executor.layers.fused_moe.deep_gemm_moe ¶
DeepGemmExperts ¶
Bases: FusedMoEPermuteExpertsUnpermute
Source code in vllm/model_executor/layers/fused_moe/deep_gemm_moe.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
|
activation_formats property
¶
activation_formats: tuple[
FusedMoEActivationFormat, FusedMoEActivationFormat
]
__init__ ¶
__init__(quant_config: FusedMoEQuantConfig)
Source code in vllm/model_executor/layers/fused_moe/deep_gemm_moe.py
apply ¶
apply(
output: Tensor,
hidden_states: Tensor,
w1: Tensor,
w2: Tensor,
topk_weights: Tensor,
topk_ids: Tensor,
activation: str,
global_num_experts: int,
expert_map: Optional[Tensor],
a1q_scale: Optional[Tensor],
a2_scale: Optional[Tensor],
workspace13: Tensor,
workspace2: Tensor,
expert_tokens_meta: Optional[ExpertTokensMetadata],
apply_router_weight_on_input: bool,
)
Source code in vllm/model_executor/layers/fused_moe/deep_gemm_moe.py
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
|
finalize_weight_and_reduce_impl ¶
finalize_weight_and_reduce_impl() -> TopKWeightAndReduce
workspace_shapes ¶
workspace_shapes(
a: Tensor,
aq: Tensor,
M: int,
N: int,
K: int,
topk: int,
global_num_experts: int,
local_num_experts: int,
expert_tokens_meta: Optional[ExpertTokensMetadata],
) -> tuple[
tuple[int, ...], tuple[int, ...], tuple[int, ...], dtype
]
Source code in vllm/model_executor/layers/fused_moe/deep_gemm_moe.py
_valid_deep_gemm ¶
Check if the given problem size is supported by the DeepGemm grouped gemm kernel. All of M, N, K and the quantization block_shape must be aligned by dg.get_m_alignment_for_contiguous_layout()
.
Source code in vllm/model_executor/layers/fused_moe/deep_gemm_moe.py
_valid_deep_gemm_shape ¶
deep_gemm_moe_fp8 ¶
deep_gemm_moe_fp8(
hidden_states: Tensor,
w1: Tensor,
w2: Tensor,
w1_scale: Tensor,
w2_scale: Tensor,
topk_weights: Tensor,
topk_ids: Tensor,
inplace: bool = False,
activation: str = "silu",
global_num_experts: int = -1,
expert_map: Optional[Tensor] = None,
a1_scale: Optional[Tensor] = None,
a2_scale: Optional[Tensor] = None,
apply_router_weight_on_input=False,
) -> Tensor
This function computes a a8w8-quantized Mixture of Experts (MoE) layer using two sets of quantized weights, w1_q and w2_q, and top-k gating mechanism. The matrix multiplications are implemented with DeepGemm grouped gemm.
- hidden_states (torch.Tensor): The input tensor to the MoE layer. Shape: [M, K]
- w1 (torch.Tensor): The first set of fp8 quantized expert weights. Shape: [num_experts, K, 2N] (the weights are passed transposed)
- w2 (torch.Tensor): The second set of fp8 quantized expert weights. Shape: [num_experts, N, K] (the weights are passed transposed)
- w1_scale (torch.Tensor): The fp32 scale to dequantize w1_q. Shape: [num_experts] or [num_experts, 2N]
- w2_scale (torch.Tensor): The fp32 scale to dequantize w2_q. Shape: [num_experts] or [num_experts, K]
- topk_weights (torch.Tensor): The weights of each token->expert mapping.
- topk_ids (torch.Tensor): The token->expert mapping for topk_weights.
- inplace (bool): If True, perform the operation in-place. Defaults to False.
- activation (str): The activation function to apply after the first MoE layer.
- global_num_experts (int): The total number of experts in the global expert space.
- expert_map (Optional[torch.Tensor]): A tensor mapping expert indices from the global expert space to the local expert space of the expert parallel shard.
- a1_scale (Optional[torch.Tensor]): The optional fp32 scale to quantize a. Shape: scalar or [M]
- a2_scale (Optional[torch.Tensor]): The optional fp32 scale to quantize the intermediate result between the gemms. Shape: scalar or [M]
Returns: - torch.Tensor: The bfloat16 output tensor after applying the MoE layer.
Source code in vllm/model_executor/layers/fused_moe/deep_gemm_moe.py
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
|
warmup_deepgemm_gg_contiguous_kernels ¶
warmup_deepgemm_gg_contiguous_kernels(
w1: Tensor,
w2: Tensor,
w1_scale: Tensor,
w2_scale: Tensor,
num_topk: int,
)
DeepGemm JITs the grouped-gemm kernels. The JIT'ing happens based on the input tensor shapes. In this function, we construct all possible input tensor shapes so all the kernels are JIT'ed and cached. Note that this warmup is expected to happen during the model profile call and not during actual model inference.