Skip to content

vllm.model_executor.layers.fla.ops.wy_fast

recompute_w_u_fwd

recompute_w_u_fwd(
    k: Tensor,
    v: Tensor,
    beta: Tensor,
    g_cumsum: Tensor,
    A: Tensor,
    cu_seqlens: Optional[LongTensor],
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/layers/fla/ops/wy_fast.py
def recompute_w_u_fwd(
    k: torch.Tensor,
    v: torch.Tensor,
    beta: torch.Tensor,
    g_cumsum: torch.Tensor,
    A: torch.Tensor,
    cu_seqlens: Optional[torch.LongTensor],
) -> tuple[torch.Tensor, torch.Tensor]:
    B, T, Hg, K, V = *k.shape, v.shape[-1]
    H = v.shape[-2]
    BT = A.shape[-1]

    chunk_indices = prepare_chunk_indices(
        cu_seqlens, BT) if cu_seqlens is not None else None
    NT = triton.cdiv(T, BT) if cu_seqlens is None else len(chunk_indices)
    BK = 64
    BV = 64
    u = torch.empty_like(v)
    w = k.new_empty(B, T, H, K)
    recompute_w_u_fwd_kernel[(NT, B * H)](
        k=k,
        v=v,
        beta=beta,
        w=w,
        u=u,
        A=A,
        g=g_cumsum,
        cu_seqlens=cu_seqlens,
        chunk_indices=chunk_indices,
        T=T,
        H=H,
        Hg=Hg,
        K=K,
        V=V,
        BT=BT,
        BK=BK,
        BV=BV,
    )
    return w, u

recompute_w_u_fwd_kernel

recompute_w_u_fwd_kernel(
    k,
    v,
    beta,
    w,
    u,
    A,
    g,
    cu_seqlens,
    chunk_indices,
    T,
    H: constexpr,
    Hg: constexpr,
    K: constexpr,
    V: constexpr,
    BT: constexpr,
    BK: constexpr,
    BV: constexpr,
    IS_VARLEN: constexpr,
)
Source code in vllm/model_executor/layers/fla/ops/wy_fast.py
@triton.heuristics({'IS_VARLEN': lambda args: args['cu_seqlens'] is not None})
@triton.autotune(
    configs=[
        triton.Config({}, num_warps=num_warps, num_stages=num_stages)
        for num_warps in [2, 4, 8] for num_stages in [2, 3, 4]
    ],
    key=['H', 'K', 'V', 'BT', 'BK', 'BV', 'IS_VARLEN'],
)
@triton.jit(do_not_specialize=['T'])
def recompute_w_u_fwd_kernel(k, v, beta, w, u, A, g, cu_seqlens, chunk_indices,
                             T, H: tl.constexpr, Hg: tl.constexpr,
                             K: tl.constexpr, V: tl.constexpr,
                             BT: tl.constexpr, BK: tl.constexpr,
                             BV: tl.constexpr, IS_VARLEN: tl.constexpr):
    i_t, i_bh = tl.program_id(0), tl.program_id(1)
    i_b, i_h = i_bh // H, i_bh % H
    if IS_VARLEN:
        i_n, i_t = tl.load(chunk_indices + i_t * 2).to(
            tl.int32), tl.load(chunk_indices + i_t * 2 + 1).to(tl.int32)
        bos, eos = tl.load(cu_seqlens + i_n).to(
            tl.int32), tl.load(cu_seqlens + i_n + 1).to(tl.int32)
        T = eos - bos
    else:
        bos, eos = i_b * T, i_b * T + T
    p_beta = tl.make_block_ptr(beta + bos * H + i_h, (T, ), (H, ),
                               (i_t * BT, ), (BT, ), (0, ))
    p_g = tl.make_block_ptr(g + (bos * H + i_h), (T, ), (H, ), (i_t * BT, ),
                            (BT, ), (0, ))
    p_A = tl.make_block_ptr(A + (bos * H + i_h) * BT, (T, BT), (H * BT, 1),
                            (i_t * BT, 0), (BT, BT), (1, 0))
    b_beta = tl.load(p_beta, boundary_check=(0, ))
    b_A = tl.load(p_A, boundary_check=(0, 1))
    b_g = tl.exp(tl.load(p_g, boundary_check=(0, )))

    for i_v in range(tl.cdiv(V, BV)):
        p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V, 1),
                                (i_t * BT, i_v * BV), (BT, BV), (1, 0))
        p_u = tl.make_block_ptr(u + (bos * H + i_h) * V, (T, V), (H * V, 1),
                                (i_t * BT, i_v * BV), (BT, BV), (1, 0))
        b_v = tl.load(p_v, boundary_check=(0, 1))
        b_vb = (b_v * b_beta[:, None]).to(b_v.dtype)
        b_u = tl.dot(b_A, b_vb, allow_tf32=False)
        tl.store(p_u, b_u.to(p_u.dtype.element_ty), boundary_check=(0, 1))

    for i_k in range(tl.cdiv(K, BK)):
        p_k = tl.make_block_ptr(k + (bos * Hg + i_h // (H // Hg)) * K, (T, K),
                                (Hg * K, 1), (i_t * BT, i_k * BK), (BT, BK),
                                (1, 0))
        p_w = tl.make_block_ptr(w + (bos * H + i_h) * K, (T, K), (H * K, 1),
                                (i_t * BT, i_k * BK), (BT, BK), (1, 0))
        b_k = tl.load(p_k, boundary_check=(0, 1))
        b_kb = (b_k * b_beta[:, None] * b_g[:, None]).to(b_k.dtype)
        b_w = tl.dot(b_A, b_kb)
        tl.store(p_w, b_w.to(p_w.dtype.element_ty), boundary_check=(0, 1))