@triton.heuristics({
'USE_G': lambda args: args['g'] is not None,
'IS_VARLEN': lambda args: args['cu_seqlens'] is not None
})
@triton.autotune(
configs=[
triton.Config({
'BK': BK,
'BV': BV
},
num_warps=num_warps,
num_stages=num_stages) for BK in BKV_LIST
for BV in BKV_LIST for num_warps in NUM_WARPS
for num_stages in [2, 3, 4]
],
key=['H', 'K', 'V', 'BT'],
)
@triton.jit(do_not_specialize=['T'])
def chunk_fwd_kernel_o(
q,
k,
v,
h,
g,
o,
cu_seqlens,
chunk_indices,
scale,
T,
H: tl.constexpr,
Hg: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
USE_G: tl.constexpr,
IS_VARLEN: tl.constexpr,
):
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
if IS_VARLEN:
i_tg = i_t
i_n, i_t = tl.load(chunk_indices + i_t * 2).to(
tl.int32), tl.load(chunk_indices + i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(cu_seqlens + i_n).to(
tl.int32), tl.load(cu_seqlens + i_n + 1).to(tl.int32)
T = eos - bos
NT = tl.cdiv(T, BT)
else:
NT = tl.cdiv(T, BT)
i_tg = i_b * NT + i_t
bos, eos = i_b * T, i_b * T + T
# offset calculation
q += (bos * Hg + i_h // (H // Hg)) * K
k += (bos * Hg + i_h // (H // Hg)) * K
v += (bos * H + i_h) * V
o += (bos * H + i_h) * V
h += (i_tg * H + i_h).to(tl.int64) * K * V
b_o = tl.zeros([BT, BV], dtype=tl.float32)
b_A = tl.zeros([BT, BT], dtype=tl.float32)
for i_k in range(tl.cdiv(K, BK)):
p_q = tl.make_block_ptr(q, (T, K), (Hg * K, 1), (i_t * BT, i_k * BK),
(BT, BK), (1, 0))
p_k = tl.make_block_ptr(k, (K, T), (1, Hg * K), (i_k * BK, i_t * BT),
(BK, BT), (0, 1))
p_h = tl.make_block_ptr(h, (K, V), (V, 1), (i_k * BK, i_v * BV),
(BK, BV), (1, 0))
# [BT, BK]
b_q = tl.load(p_q, boundary_check=(0, 1))
# [BK, BT]
b_k = tl.load(p_k, boundary_check=(0, 1))
# [BK, BV]
b_h = tl.load(p_h, boundary_check=(0, 1))
# [BT, BK] @ [BK, BV] -> [BT, BV]
b_o += tl.dot(b_q, b_h)
# [BT, BK] @ [BK, BT] -> [BT, BT]
b_A += tl.dot(b_q, b_k)
if USE_G:
g += bos * H + i_h
p_g = tl.make_block_ptr(g, (T, ), (H, ), (i_t * BT, ), (BT, ), (0, ))
b_g = tl.load(p_g, boundary_check=(0, ))
b_o = b_o * exp(b_g)[:, None]
b_A = b_A * exp(b_g[:, None] - b_g[None, :])
o_t = i_t * BT + tl.arange(0, BT)
m_t = o_t < T
m_A = (o_t[:, None] >= o_t[None, :]) & (m_t[:, None] & m_t)
b_A = tl.where(m_A, b_A, 0)
p_v = tl.make_block_ptr(v, (T, V), (H * V, 1), (i_t * BT, i_v * BV),
(BT, BV), (1, 0))
p_o = tl.make_block_ptr(o, (T, V), (H * V, 1), (i_t * BT, i_v * BV),
(BT, BV), (1, 0))
b_v = tl.load(p_v, boundary_check=(0, 1))
# to fix mma -> mma layout conversion
# already solved by triton v3.2 or higher
b_o = b_o * scale + tl.dot(b_A.to(b_v.dtype), b_v) * scale
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))