Skip to content

vllm.model_executor.layers.fla.ops.chunk_o

BKV_LIST module-attribute

BKV_LIST = [64, 128] if check_shared_mem() else [32, 64]

NUM_WARPS module-attribute

NUM_WARPS = [2, 4] if is_nvidia_hopper else [2, 4, 8]

chunk_fwd_kernel_o

chunk_fwd_kernel_o(
    q,
    k,
    v,
    h,
    g,
    o,
    cu_seqlens,
    chunk_indices,
    scale,
    T,
    H: constexpr,
    Hg: constexpr,
    K: constexpr,
    V: constexpr,
    BT: constexpr,
    BK: constexpr,
    BV: constexpr,
    USE_G: constexpr,
    IS_VARLEN: constexpr,
)
Source code in vllm/model_executor/layers/fla/ops/chunk_o.py
@triton.heuristics({
    'USE_G': lambda args: args['g'] is not None,
    'IS_VARLEN': lambda args: args['cu_seqlens'] is not None
})
@triton.autotune(
    configs=[
        triton.Config({
            'BK': BK,
            'BV': BV
        },
                      num_warps=num_warps,
                      num_stages=num_stages) for BK in BKV_LIST
        for BV in BKV_LIST for num_warps in NUM_WARPS
        for num_stages in [2, 3, 4]
    ],
    key=['H', 'K', 'V', 'BT'],
)
@triton.jit(do_not_specialize=['T'])
def chunk_fwd_kernel_o(
    q,
    k,
    v,
    h,
    g,
    o,
    cu_seqlens,
    chunk_indices,
    scale,
    T,
    H: tl.constexpr,
    Hg: tl.constexpr,
    K: tl.constexpr,
    V: tl.constexpr,
    BT: tl.constexpr,
    BK: tl.constexpr,
    BV: tl.constexpr,
    USE_G: tl.constexpr,
    IS_VARLEN: tl.constexpr,
):
    i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
    i_b, i_h = i_bh // H, i_bh % H

    if IS_VARLEN:
        i_tg = i_t
        i_n, i_t = tl.load(chunk_indices + i_t * 2).to(
            tl.int32), tl.load(chunk_indices + i_t * 2 + 1).to(tl.int32)
        bos, eos = tl.load(cu_seqlens + i_n).to(
            tl.int32), tl.load(cu_seqlens + i_n + 1).to(tl.int32)
        T = eos - bos
        NT = tl.cdiv(T, BT)
    else:
        NT = tl.cdiv(T, BT)
        i_tg = i_b * NT + i_t
        bos, eos = i_b * T, i_b * T + T

    # offset calculation
    q += (bos * Hg + i_h // (H // Hg)) * K
    k += (bos * Hg + i_h // (H // Hg)) * K
    v += (bos * H + i_h) * V
    o += (bos * H + i_h) * V
    h += (i_tg * H + i_h).to(tl.int64) * K * V

    b_o = tl.zeros([BT, BV], dtype=tl.float32)
    b_A = tl.zeros([BT, BT], dtype=tl.float32)

    for i_k in range(tl.cdiv(K, BK)):
        p_q = tl.make_block_ptr(q, (T, K), (Hg * K, 1), (i_t * BT, i_k * BK),
                                (BT, BK), (1, 0))
        p_k = tl.make_block_ptr(k, (K, T), (1, Hg * K), (i_k * BK, i_t * BT),
                                (BK, BT), (0, 1))
        p_h = tl.make_block_ptr(h, (K, V), (V, 1), (i_k * BK, i_v * BV),
                                (BK, BV), (1, 0))
        # [BT, BK]
        b_q = tl.load(p_q, boundary_check=(0, 1))
        # [BK, BT]
        b_k = tl.load(p_k, boundary_check=(0, 1))
        # [BK, BV]
        b_h = tl.load(p_h, boundary_check=(0, 1))

        # [BT, BK] @ [BK, BV] -> [BT, BV]
        b_o += tl.dot(b_q, b_h)
        # [BT, BK] @ [BK, BT] -> [BT, BT]
        b_A += tl.dot(b_q, b_k)

    if USE_G:
        g += bos * H + i_h
        p_g = tl.make_block_ptr(g, (T, ), (H, ), (i_t * BT, ), (BT, ), (0, ))
        b_g = tl.load(p_g, boundary_check=(0, ))
        b_o = b_o * exp(b_g)[:, None]
        b_A = b_A * exp(b_g[:, None] - b_g[None, :])

    o_t = i_t * BT + tl.arange(0, BT)
    m_t = o_t < T
    m_A = (o_t[:, None] >= o_t[None, :]) & (m_t[:, None] & m_t)
    b_A = tl.where(m_A, b_A, 0)

    p_v = tl.make_block_ptr(v, (T, V), (H * V, 1), (i_t * BT, i_v * BV),
                            (BT, BV), (1, 0))
    p_o = tl.make_block_ptr(o, (T, V), (H * V, 1), (i_t * BT, i_v * BV),
                            (BT, BV), (1, 0))
    b_v = tl.load(p_v, boundary_check=(0, 1))

    # to fix mma -> mma layout conversion
    # already solved by triton v3.2 or higher
    b_o = b_o * scale + tl.dot(b_A.to(b_v.dtype), b_v) * scale
    tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))

chunk_fwd_o

chunk_fwd_o(
    q: Tensor,
    k: Tensor,
    v: Tensor,
    h: Tensor,
    g: Optional[Tensor] = None,
    scale: Optional[float] = None,
    cu_seqlens: Optional[LongTensor] = None,
    chunk_size: int = 64,
) -> Tensor
Source code in vllm/model_executor/layers/fla/ops/chunk_o.py
def chunk_fwd_o(
        q: torch.Tensor,
        k: torch.Tensor,
        v: torch.Tensor,
        h: torch.Tensor,
        g: Optional[torch.Tensor] = None,  # cumsum of log decay
        scale: Optional[float] = None,
        cu_seqlens: Optional[torch.LongTensor] = None,
        chunk_size: int = 64) -> torch.Tensor:
    B, T, Hg, K, V = *q.shape, v.shape[-1]
    H = v.shape[-2]
    if FLA_GDN_FIX_BT:
        BT = 64
    else:
        BT = min(chunk_size, max(16, triton.next_power_of_2(T)))
    chunk_indices = prepare_chunk_indices(
        cu_seqlens, BT) if cu_seqlens is not None else None
    NT = triton.cdiv(T, BT) if cu_seqlens is None else len(chunk_indices)
    if scale is None:
        scale = k.shape[-1]**-0.5

    o = torch.empty_like(v)

    def grid(meta):
        return (triton.cdiv(V, meta['BV']), NT, B * H)

    chunk_fwd_kernel_o[grid](
        q,
        k,
        v,
        h,
        g,
        o,
        cu_seqlens,
        chunk_indices,
        scale,
        T=T,
        H=H,
        Hg=Hg,
        K=K,
        V=V,
        BT=BT,
    )
    return o