vllm.entrypoints.renderer ¶
BaseRenderer ¶
Bases: ABC
Base class for unified input processing and rendering.
The Renderer serves as a unified input processor that consolidates tokenization, chat template formatting, and multimodal input handling into a single component. It converts high-level API requests (OpenAI-style JSON) into token IDs and multimodal features ready for engine consumption.
Key responsibilities: - Convert text prompts to token sequences with proper special tokens - Apply chat templates and format conversations - Handle multimodal inputs (images, audio, etc.) when applicable - Manage prompt truncation and length validation - Provide clean separation between API layer and engine core
Source code in vllm/entrypoints/renderer.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
|
__init__ ¶
__init__(
model_config: ModelConfig,
tokenizer: Optional[AnyTokenizer] = None,
)
load_prompt_embeds classmethod
¶
load_prompt_embeds(
prompt_embeds: Union[bytes, list[bytes]],
truncate_prompt_tokens: Optional[
Annotated[int, Field(ge=0)]
] = None,
cache_salt: Optional[str] = None,
) -> list[EmbedsPrompt]
Load and validate base64-encoded embeddings into prompt objects.
Source code in vllm/entrypoints/renderer.py
render_prompt abstractmethod
async
¶
render_prompt(
*,
prompt_or_prompts: Union[
str, list[str], list[int], list[list[int]]
],
config: RenderConfig,
) -> list[TokensPrompt]
Convert text or token inputs into engine-ready TokensPrompt objects.
This method accepts text or token inputs and produces a list of TokensPrompt
objects for the engine.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prompt_or_prompts | Union[str, list[str], list[int], list[list[int]]] | One of: - | required |
config | RenderConfig | Render configuration controlling how prompts are prepared (e.g., tokenization and length handling). | required |
Returns:
Type | Description |
---|---|
list[TokensPrompt] | list[EngineTokensPrompt]: Engine-ready token prompts. |
Raises:
Type | Description |
---|---|
ValueError | If input formats are invalid or length limits exceeded. |
Source code in vllm/entrypoints/renderer.py
render_prompt_and_embeds abstractmethod
async
¶
render_prompt_and_embeds(
*,
prompt_or_prompts: Optional[
Union[str, list[str], list[int], list[list[int]]]
] = None,
prompt_embeds: Optional[
Union[bytes, list[bytes]]
] = None,
config: RenderConfig,
) -> list[Union[TokensPrompt, EmbedsPrompt]]
Convert text/token and/or base64-encoded embeddings inputs into engine-ready prompt objects using a unified RenderConfig.
At least one of prompt_or_prompts
or prompt_embeds
must be provided and non-empty. If both are omitted or empty (e.g., empty string and empty list), a ValueError
is raised.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prompt_or_prompts | Optional[Union[str, list[str], list[int], list[list[int]]]] | Text or token inputs to include. | None |
prompt_embeds | Optional[Union[bytes, list[bytes]]] | Base64-encoded bytes (or list thereof) containing a torch-saved tensor to be used as prompt embeddings. | None |
config | RenderConfig | Render configuration controlling how prompts are prepared (e.g., tokenization and length handling). | required |
Returns:
Type | Description |
---|---|
list[Union[TokensPrompt, EmbedsPrompt]] | list[Union[EngineTokensPrompt, EngineEmbedsPrompt]]: Engine-ready prompt objects. |
Raises:
Type | Description |
---|---|
ValueError | If both |
Source code in vllm/entrypoints/renderer.py
CompletionRenderer ¶
Bases: BaseRenderer
Source code in vllm/entrypoints/renderer.py
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
|
__init__ ¶
__init__(
model_config: ModelConfig,
tokenizer: Optional[AnyTokenizer] = None,
async_tokenizer_pool: Optional[
dict[AnyTokenizer, AsyncMicrobatchTokenizer]
] = None,
)
Source code in vllm/entrypoints/renderer.py
_create_tokens_prompt ¶
_create_tokens_prompt(
token_ids: list[int],
max_length: Optional[int] = None,
cache_salt: Optional[str] = None,
prompt: Optional[str] = None,
) -> TokensPrompt
Create validated EngineTokensPrompt.
Source code in vllm/entrypoints/renderer.py
_get_async_tokenizer ¶
_get_async_tokenizer() -> AsyncMicrobatchTokenizer
Get or create async tokenizer using shared pool.
Source code in vllm/entrypoints/renderer.py
_maybe_apply_truncation ¶
_maybe_apply_truncation(
token_ids: list[int],
truncate_prompt_tokens: Optional[int],
) -> list[int]
Apply truncation to token sequence.
Source code in vllm/entrypoints/renderer.py
_maybe_detokenize async
¶
_maybe_detokenize(
token_ids: list[int],
max_length: Optional[int],
truncate_prompt_tokens: Optional[int],
cache_salt: Optional[str],
needs_detokenization: Optional[bool] = False,
) -> TokensPrompt
Optionally detokenize token IDs and build a tokens prompt.
Source code in vllm/entrypoints/renderer.py
_tokenize async
¶
_tokenize(
text: str,
max_length: Optional[int],
truncate_prompt_tokens: Optional[int],
add_special_tokens: Optional[bool],
cache_salt: Optional[str],
) -> TokensPrompt
Tokenize text input asynchronously.
Source code in vllm/entrypoints/renderer.py
_validate_and_normalize_truncate_tokens ¶
_validate_and_normalize_truncate_tokens(
truncate_prompt_tokens: Optional[int],
max_length: Optional[int],
) -> Optional[int]
Validate and normalize truncate_prompt_tokens parameter.
Source code in vllm/entrypoints/renderer.py
render_prompt async
¶
render_prompt(
*,
prompt_or_prompts: Union[
str, list[str], list[int], list[list[int]]
],
config: RenderConfig,
) -> list[TokensPrompt]
Implementation of prompt rendering for completion-style requests.
Uses async tokenizer pooling for improved performance. See base class for detailed parameter documentation.
Source code in vllm/entrypoints/renderer.py
render_prompt_and_embeds async
¶
render_prompt_and_embeds(
*,
prompt_or_prompts: Optional[
Union[str, list[str], list[int], list[list[int]]]
] = None,
prompt_embeds: Optional[
Union[bytes, list[bytes]]
] = None,
config: RenderConfig,
) -> list[Union[TokensPrompt, EmbedsPrompt]]
Render text/token prompts and/or precomputed embedding prompts. At least one of prompt_or_prompts
or prompt_embeds
must be provided.
Source code in vllm/entrypoints/renderer.py
RenderConfig dataclass
¶
Configuration to control how prompts are prepared.
Source code in vllm/entrypoints/renderer.py
add_special_tokens class-attribute
instance-attribute
¶
Whether to add model-specific special tokens during tokenization.
cache_salt class-attribute
instance-attribute
¶
String to disambiguate prefix cache entries.
max_length class-attribute
instance-attribute
¶
Maximum allowable total input token length. If provided, token inputs longer than this raise ValueError
.
needs_detokenization class-attribute
instance-attribute
¶
If True, detokenize IDs back to text for inclusion in outputs.
truncate_prompt_tokens class-attribute
instance-attribute
¶
Number of tokens to keep. None
means no truncation. 0
yields an empty list (and skips embeds). -1
maps to model_config.max_model_len
.