Skip to content

vllm.entrypoints.openai.serving_engine

ChatLikeRequest module-attribute

ClassificationServeContext module-attribute

ClassificationServeContext = ServeContext[
    ClassificationRequest
]

RequestPrompt module-attribute

RequestPrompt = Union[
    list[int], str, TextTokensPrompt, EmbedsPrompt
]

RequestT module-attribute

RequestT = TypeVar('RequestT', bound=AnyRequest)

SpeechToTextRequest module-attribute

SpeechToTextRequest = Union[
    TranscriptionRequest, TranslationRequest
]

logger module-attribute

logger = init_logger(__name__)

EmbeddingServeContext

Bases: ServeContext[EmbeddingRequest]

Source code in vllm/entrypoints/openai/serving_engine.py
class EmbeddingServeContext(ServeContext[EmbeddingRequest]):
    chat_template: Optional[str] = None
    chat_template_content_format: ChatTemplateContentFormatOption

chat_template class-attribute instance-attribute

chat_template: Optional[str] = None

chat_template_content_format instance-attribute

chat_template_content_format: (
    ChatTemplateContentFormatOption
)

EmbedsPrompt

Bases: TypedDict

Source code in vllm/entrypoints/openai/serving_engine.py
class EmbedsPrompt(TypedDict):
    prompt_embeds: torch.Tensor

prompt_embeds instance-attribute

prompt_embeds: Tensor

OpenAIServing

Source code in vllm/entrypoints/openai/serving_engine.py
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
class OpenAIServing:
    request_id_prefix: ClassVar[str] = """
    A short string prepended to every request’s ID (e.g. "embd", "classify")
    so you can easily tell “this ID came from Embedding vs Classification.”
    """

    def __init__(
        self,
        engine_client: EngineClient,
        model_config: ModelConfig,
        models: OpenAIServingModels,
        *,
        request_logger: Optional[RequestLogger],
        return_tokens_as_token_ids: bool = False,
        enable_force_include_usage: bool = False,
        log_error_stack: bool = False,
    ):
        super().__init__()

        self.engine_client = engine_client
        self.model_config = model_config
        self.max_model_len = model_config.max_model_len

        self.models = models

        self.request_logger = request_logger
        self.return_tokens_as_token_ids = return_tokens_as_token_ids
        self.enable_force_include_usage = enable_force_include_usage

        self._tokenizer_executor = ThreadPoolExecutor(max_workers=1)

        self._async_tokenizer_pool: dict[AnyTokenizer,
                                         AsyncMicrobatchTokenizer] = {}
        self.log_error_stack = log_error_stack

    def _get_renderer(self, tokenizer: Optional[AnyTokenizer]) -> BaseRenderer:
        """
        Get a Renderer instance with the provided tokenizer.
        Uses shared async tokenizer pool for efficiency.
        """
        return CompletionRenderer(
            model_config=self.model_config,
            tokenizer=tokenizer,
            async_tokenizer_pool=self._async_tokenizer_pool)

    def _build_render_config(
        self,
        request: Any,
    ) -> RenderConfig:
        """
        Build and return a `RenderConfig` for an endpoint.

        Used by the renderer to control how prompts are prepared
        (e.g., tokenization and length handling). Endpoints should
        implement this with logic appropriate to their request type.
        """
        raise NotImplementedError

    def _get_async_tokenizer(self, tokenizer) -> AsyncMicrobatchTokenizer:
        """
        Return (and cache) an `AsyncMicrobatchTokenizer` bound to the
        given tokenizer.
        """
        async_tokenizer = self._async_tokenizer_pool.get(tokenizer)
        if async_tokenizer is None:
            async_tokenizer = AsyncMicrobatchTokenizer(tokenizer)
            self._async_tokenizer_pool[tokenizer] = async_tokenizer
        return async_tokenizer

    async def _preprocess(
        self,
        ctx: ServeContext,
    ) -> Optional[ErrorResponse]:
        """
        Default preprocessing hook. Subclasses may override
        to prepare `ctx` (classification, embedding, etc.).
        """
        return None

    def _build_response(
        self,
        ctx: ServeContext,
    ) -> Union[AnyResponse, ErrorResponse]:
        """
        Default response builder. Subclass may override this method
        to return the appropriate response object.
        """
        return self.create_error_response("unimplemented endpoint")

    async def handle(
        self,
        ctx: ServeContext,
    ) -> Union[AnyResponse, ErrorResponse]:
        generation: AsyncGenerator[Union[AnyResponse, ErrorResponse], None]
        generation = self._pipeline(ctx)

        async for response in generation:
            return response

        return self.create_error_response("No response yielded from pipeline")

    async def _pipeline(
        self,
        ctx: ServeContext,
    ) -> AsyncGenerator[Union[AnyResponse, ErrorResponse], None]:
        """Execute the request processing pipeline yielding responses."""
        if error := await self._check_model(ctx.request):
            yield error
        if error := self._validate_request(ctx):
            yield error

        preprocess_ret = await self._preprocess(ctx)
        if isinstance(preprocess_ret, ErrorResponse):
            yield preprocess_ret

        generators_ret = await self._prepare_generators(ctx)
        if isinstance(generators_ret, ErrorResponse):
            yield generators_ret

        collect_ret = await self._collect_batch(ctx)
        if isinstance(collect_ret, ErrorResponse):
            yield collect_ret

        yield self._build_response(ctx)

    def _validate_request(self, ctx: ServeContext) -> Optional[ErrorResponse]:
        truncate_prompt_tokens = getattr(ctx.request, "truncate_prompt_tokens",
                                         None)

        if (truncate_prompt_tokens is not None
                and truncate_prompt_tokens > self.max_model_len):
            return self.create_error_response(
                "truncate_prompt_tokens value is "
                "greater than max_model_len."
                " Please, select a smaller truncation size.")
        return None

    def _create_pooling_params(
        self,
        ctx: ServeContext,
    ) -> Union[PoolingParams, ErrorResponse]:
        if not hasattr(ctx.request, "to_pooling_params"):
            return self.create_error_response(
                "Request type does not support pooling parameters")

        return ctx.request.to_pooling_params()

    async def _prepare_generators(
        self,
        ctx: ServeContext,
    ) -> Optional[ErrorResponse]:
        """Schedule the request and get the result generator."""
        generators: list[AsyncGenerator[Union[RequestOutput,
                                              PoolingRequestOutput],
                                        None]] = []

        try:
            trace_headers = (None if ctx.raw_request is None else await
                             self._get_trace_headers(ctx.raw_request.headers))

            pooling_params = self._create_pooling_params(ctx)
            if isinstance(pooling_params, ErrorResponse):
                return pooling_params

            if ctx.engine_prompts is None:
                return self.create_error_response(
                    "Engine prompts not available")

            for i, engine_prompt in enumerate(ctx.engine_prompts):
                request_id_item = f"{ctx.request_id}-{i}"

                self._log_inputs(
                    request_id_item,
                    engine_prompt,
                    params=pooling_params,
                    lora_request=ctx.lora_request,
                )

                generator = self.engine_client.encode(
                    engine_prompt,
                    pooling_params,
                    request_id_item,
                    lora_request=ctx.lora_request,
                    trace_headers=trace_headers,
                    priority=getattr(ctx.request, "priority", 0),
                )

                generators.append(generator)

            ctx.result_generator = merge_async_iterators(*generators)

            return None

        except Exception as e:
            # TODO: Use a vllm-specific Validation Error
            return self.create_error_response(str(e))

    async def _collect_batch(
        self,
        ctx: ServeContext,
    ) -> Optional[ErrorResponse]:
        """Collect batch results from the result generator."""
        try:
            if ctx.engine_prompts is None:
                return self.create_error_response(
                    "Engine prompts not available")

            num_prompts = len(ctx.engine_prompts)
            final_res_batch: list[Optional[Union[RequestOutput,
                                                 PoolingRequestOutput]]]
            final_res_batch = [None] * num_prompts

            if ctx.result_generator is None:
                return self.create_error_response(
                    "Result generator not available")

            async for i, res in ctx.result_generator:
                final_res_batch[i] = res

            if None in final_res_batch:
                return self.create_error_response(
                    "Failed to generate results for all prompts")

            ctx.final_res_batch = [
                res for res in final_res_batch if res is not None
            ]

            return None

        except Exception as e:
            return self.create_error_response(str(e))

    def create_error_response(
        self,
        message: str,
        err_type: str = "BadRequestError",
        status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
    ) -> ErrorResponse:
        if self.log_error_stack:
            exc_type, _, _ = sys.exc_info()
            if exc_type is not None:
                traceback.print_exc()
            else:
                traceback.print_stack()
        return ErrorResponse(error=ErrorInfo(
            message=message, type=err_type, code=status_code.value))

    def create_streaming_error_response(
        self,
        message: str,
        err_type: str = "BadRequestError",
        status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
    ) -> str:
        json_str = json.dumps(
            self.create_error_response(message=message,
                                       err_type=err_type,
                                       status_code=status_code).model_dump())
        return json_str

    async def _check_model(
        self,
        request: AnyRequest,
    ) -> Optional[ErrorResponse]:
        error_response = None

        if self._is_model_supported(request.model):
            return None
        if request.model in self.models.lora_requests:
            return None
        if (envs.VLLM_ALLOW_RUNTIME_LORA_UPDATING and request.model and
            (load_result := await self.models.resolve_lora(request.model))):
            if isinstance(load_result, LoRARequest):
                return None
            if (isinstance(load_result, ErrorResponse) and
                    load_result.error.code == HTTPStatus.BAD_REQUEST.value):
                error_response = load_result

        return error_response or self.create_error_response(
            message=f"The model `{request.model}` does not exist.",
            err_type="NotFoundError",
            status_code=HTTPStatus.NOT_FOUND,
        )

    def _get_active_default_mm_loras(
            self, request: AnyRequest) -> Optional[LoRARequest]:
        """Determine if there are any active default multimodal loras."""
        # TODO: Currently this is only enabled for chat completions
        # to be better aligned with only being enabled for .generate
        # when run offline. It would be nice to support additional
        # tasks types in the future.
        message_types = self._get_message_types(request)
        default_mm_loras = set()

        for lora in self.models.lora_requests.values():
            # Best effort match for default multimodal lora adapters;
            # There is probably a better way to do this, but currently
            # this matches against the set of 'types' in any content lists
            # up until '_', e.g., to match audio_url -> audio
            if lora.lora_name in message_types:
                default_mm_loras.add(lora)

        # Currently only support default modality specific loras if
        # we have exactly one lora matched on the request.
        if len(default_mm_loras) == 1:
            return default_mm_loras.pop()
        return None

    def _maybe_get_adapters(
        self,
        request: AnyRequest,
        supports_default_mm_loras: bool = False,
    ) -> Optional[LoRARequest]:
        if request.model in self.models.lora_requests:
            return self.models.lora_requests[request.model]

        # Currently only support default modality specific loras
        # if we have exactly one lora matched on the request.
        if supports_default_mm_loras:
            default_mm_lora = self._get_active_default_mm_loras(request)
            if default_mm_lora is not None:
                return default_mm_lora

        if self._is_model_supported(request.model):
            return None

        # if _check_model has been called earlier, this will be unreachable
        raise ValueError(f"The model `{request.model}` does not exist.")

    def _get_message_types(self, request: AnyRequest) -> set[str]:
        """Retrieve the set of types from message content dicts up
        until `_`; we use this to match potential multimodal data
        with default per modality loras.
        """
        message_types: set[str] = set()

        if not hasattr(request, "messages"):
            return message_types

        for message in request.messages:
            if (isinstance(message, dict) and "content" in message
                    and isinstance(message["content"], list)):
                for content_dict in message["content"]:
                    if "type" in content_dict:
                        message_types.add(content_dict["type"].split("_")[0])
        return message_types

    async def _normalize_prompt_text_to_input(
        self,
        request: AnyRequest,
        prompt: str,
        tokenizer: AnyTokenizer,
        add_special_tokens: bool,
    ) -> TextTokensPrompt:
        async_tokenizer = self._get_async_tokenizer(tokenizer)

        if (self.model_config.encoder_config is not None
                and self.model_config.encoder_config.get(
                    "do_lower_case", False)):
            prompt = prompt.lower()

        truncate_prompt_tokens = getattr(request, "truncate_prompt_tokens",
                                         None)

        if truncate_prompt_tokens is None:
            encoded = await async_tokenizer(
                prompt, add_special_tokens=add_special_tokens)
        elif truncate_prompt_tokens < 0:
            # Negative means we cap at the model's max length
            encoded = await async_tokenizer(
                prompt,
                add_special_tokens=add_special_tokens,
                truncation=True,
                max_length=self.max_model_len,
            )
        else:
            encoded = await async_tokenizer(
                prompt,
                add_special_tokens=add_special_tokens,
                truncation=True,
                max_length=truncate_prompt_tokens,
            )

        input_ids = encoded.input_ids
        input_text = prompt

        return self._validate_input(request, input_ids, input_text)

    async def _normalize_prompt_tokens_to_input(
        self,
        request: AnyRequest,
        prompt_ids: list[int],
        tokenizer: Optional[AnyTokenizer],
    ) -> TextTokensPrompt:
        truncate_prompt_tokens = getattr(request, "truncate_prompt_tokens",
                                         None)

        if truncate_prompt_tokens is None:
            input_ids = prompt_ids
        elif truncate_prompt_tokens < 0:
            input_ids = prompt_ids[-self.max_model_len:]
        else:
            input_ids = prompt_ids[-truncate_prompt_tokens:]

        if tokenizer is None:
            input_text = ""
        else:
            async_tokenizer = self._get_async_tokenizer(tokenizer)
            input_text = await async_tokenizer.decode(input_ids)

        return self._validate_input(request, input_ids, input_text)

    def _validate_input(
        self,
        request: AnyRequest,
        input_ids: list[int],
        input_text: str,
    ) -> TextTokensPrompt:
        token_num = len(input_ids)

        # Note: EmbeddingRequest, ClassificationRequest,
        # and ScoreRequest doesn't have max_tokens
        if isinstance(
                request,
            (
                EmbeddingChatRequest,
                EmbeddingCompletionRequest,
                ScoreRequest,
                RerankRequest,
                ClassificationRequest,
            ),
        ):
            # Note: input length can be up to the entire model context length
            # since these requests don't generate tokens.
            if token_num > self.max_model_len:
                operations: dict[type[AnyRequest], str] = {
                    ScoreRequest: "score",
                    ClassificationRequest: "classification",
                }
                operation = operations.get(type(request),
                                           "embedding generation")
                raise ValueError(
                    f"This model's maximum context length is "
                    f"{self.max_model_len} tokens. However, you requested "
                    f"{token_num} tokens in the input for {operation}. "
                    f"Please reduce the length of the input.")
            return TextTokensPrompt(prompt=input_text,
                                    prompt_token_ids=input_ids)

        # Note: TokenizeRequest and DetokenizeRequest doesn't have max_tokens
        # and does not require model context length validation
        if isinstance(
                request,
            (TokenizeCompletionRequest, TokenizeChatRequest,
             DetokenizeRequest),
        ):
            return TextTokensPrompt(prompt=input_text,
                                    prompt_token_ids=input_ids)

        # chat completion endpoint supports max_completion_tokens
        if isinstance(request, ChatCompletionRequest):
            # TODO(#9845): remove max_tokens when field dropped from OpenAI API
            max_tokens = request.max_completion_tokens or request.max_tokens
        else:
            max_tokens = getattr(request, "max_tokens", None)

        # Note: input length can be up to model context length - 1 for
        # completion-like requests.
        if token_num >= self.max_model_len:
            raise ValueError(
                f"This model's maximum context length is "
                f"{self.max_model_len} tokens. However, your request has "
                f"{token_num} input tokens. Please reduce the length of "
                "the input messages.")

        if (max_tokens is not None
                and token_num + max_tokens > self.max_model_len):
            raise ValueError(
                "'max_tokens' or 'max_completion_tokens' is too large: "
                f"{max_tokens}. This model's maximum context length is "
                f"{self.max_model_len} tokens and your request has "
                f"{token_num} input tokens ({max_tokens} > {self.max_model_len}"
                f" - {token_num}).")

        return TextTokensPrompt(prompt=input_text, prompt_token_ids=input_ids)

    async def _tokenize_prompt_input_async(
        self,
        request: AnyRequest,
        tokenizer: AnyTokenizer,
        prompt_input: Union[str, list[int]],
        add_special_tokens: bool = True,
    ) -> TextTokensPrompt:
        """
        A simpler implementation that tokenizes a single prompt input.
        """
        async for result in self._tokenize_prompt_inputs_async(
                request,
                tokenizer,
            [prompt_input],
                add_special_tokens=add_special_tokens,
        ):
            return result
        raise ValueError("No results yielded from tokenization")

    async def _tokenize_prompt_inputs_async(
        self,
        request: AnyRequest,
        tokenizer: AnyTokenizer,
        prompt_inputs: Iterable[Union[str, list[int]]],
        add_special_tokens: bool = True,
    ) -> AsyncGenerator[TextTokensPrompt, None]:
        """
        A simpler implementation that tokenizes multiple prompt inputs.
        """
        for prompt in prompt_inputs:
            if isinstance(prompt, str):
                yield await self._normalize_prompt_text_to_input(
                    request,
                    prompt=prompt,
                    tokenizer=tokenizer,
                    add_special_tokens=add_special_tokens,
                )
            else:
                yield await self._normalize_prompt_tokens_to_input(
                    request,
                    prompt_ids=prompt,
                    tokenizer=tokenizer,
                )

    async def _preprocess_chat(
        self,
        request: Union[ChatLikeRequest, ResponsesRequest],
        tokenizer: AnyTokenizer,
        messages: list[ChatCompletionMessageParam],
        chat_template: Optional[str],
        chat_template_content_format: ChatTemplateContentFormatOption,
        add_generation_prompt: bool = True,
        continue_final_message: bool = False,
        tool_dicts: Optional[list[dict[str, Any]]] = None,
        documents: Optional[list[dict[str, str]]] = None,
        chat_template_kwargs: Optional[dict[str, Any]] = None,
        tool_parser: Optional[Callable[[AnyTokenizer], ToolParser]] = None,
        add_special_tokens: bool = False,
    ) -> tuple[
            list[ConversationMessage],
            Sequence[RequestPrompt],
            list[EngineTokensPrompt],
    ]:
        model_config = self.model_config

        resolved_content_format = resolve_chat_template_content_format(
            chat_template,
            tool_dicts,
            chat_template_content_format,
            tokenizer,
            model_config=model_config,
        )
        conversation, mm_data_future, mm_uuids = parse_chat_messages_futures(
            messages,
            model_config,
            tokenizer,
            content_format=resolved_content_format,
        )

        _chat_template_kwargs: dict[str, Any] = dict(
            chat_template=chat_template,
            add_generation_prompt=add_generation_prompt,
            continue_final_message=continue_final_message,
            tools=tool_dicts,
            documents=documents,
        )
        _chat_template_kwargs.update(chat_template_kwargs or {})

        request_prompt: Union[str, list[int]]

        if tokenizer is None:
            request_prompt = "placeholder"
        elif isinstance(tokenizer, MistralTokenizer):
            request_prompt = apply_mistral_chat_template(
                tokenizer,
                messages=messages,
                **_chat_template_kwargs,
            )
        else:
            request_prompt = apply_hf_chat_template(
                tokenizer=tokenizer,
                conversation=conversation,
                model_config=model_config,
                **_chat_template_kwargs,
            )

        mm_data = await mm_data_future

        # tool parsing is done only if a tool_parser has been set and if
        # tool_choice is not "none" (if tool_choice is "none" but a tool_parser
        # is set, we want to prevent parsing a tool_call hallucinated by the LLM
        should_parse_tools = tool_parser is not None and (hasattr(
            request, "tool_choice") and request.tool_choice != "none")

        if should_parse_tools:
            if not isinstance(request, ChatCompletionRequest):
                msg = "Tool usage is only supported for Chat Completions API"
                raise NotImplementedError(msg)

            request = tool_parser(tokenizer).adjust_request(  # type: ignore
                request=request)

        if tokenizer is None:
            assert isinstance(request_prompt, str), (
                "Prompt has to be a string",
                "when the tokenizer is not initialised",
            )
            prompt_inputs = TextTokensPrompt(prompt=request_prompt,
                                             prompt_token_ids=[1])
        elif isinstance(request_prompt, str):
            prompt_inputs = await self._tokenize_prompt_input_async(
                request,
                tokenizer,
                request_prompt,
                add_special_tokens=add_special_tokens,
            )
        else:
            # For MistralTokenizer
            assert is_list_of(request_prompt, int), (
                "Prompt has to be either a string or a list of token ids")
            prompt_inputs = TextTokensPrompt(
                prompt=tokenizer.decode(request_prompt),
                prompt_token_ids=request_prompt,
            )

        engine_prompt = EngineTokensPrompt(
            prompt_token_ids=prompt_inputs["prompt_token_ids"])
        if mm_data is not None:
            engine_prompt["multi_modal_data"] = mm_data

        if mm_uuids is not None:
            engine_prompt["multi_modal_uuids"] = mm_uuids

        if request.mm_processor_kwargs is not None:
            engine_prompt["mm_processor_kwargs"] = request.mm_processor_kwargs

        if hasattr(request, "cache_salt") and request.cache_salt is not None:
            engine_prompt["cache_salt"] = request.cache_salt

        return conversation, [request_prompt], [engine_prompt]

    async def _generate_with_builtin_tools(
        self,
        request_id: str,
        request_prompt: RequestPrompt,
        engine_prompt: EngineTokensPrompt,
        sampling_params: SamplingParams,
        context: ConversationContext,
        lora_request: Optional[LoRARequest] = None,
        priority: int = 0,
        **kwargs,
    ):
        orig_priority = priority
        while True:
            self._log_inputs(
                request_id,
                request_prompt,
                params=sampling_params,
                lora_request=lora_request,
            )
            generator = self.engine_client.generate(
                engine_prompt,
                sampling_params,
                request_id,
                lora_request=lora_request,
                priority=priority,
                **kwargs,
            )
            async for res in generator:
                context.append_output(res)
                # NOTE(woosuk): The stop condition is handled by the engine.
                yield context

            if not context.need_builtin_tool_call():
                # The model did not ask for a tool call, so we're done.
                break

            # Call the tool and update the context with the result.
            tool_output = await context.call_tool()
            context.append_output(tool_output)

            # TODO: uncomment this and enable tool output streaming
            # yield context

            # Create inputs for the next turn.
            # Render the next prompt token ids.
            prompt_token_ids = context.render_for_completion()
            engine_prompt = EngineTokensPrompt(
                prompt_token_ids=prompt_token_ids)
            request_prompt = prompt_token_ids
            # Update the sampling params.
            sampling_params.max_tokens = self.max_model_len - len(
                prompt_token_ids)
            # OPTIMIZATION
            priority = orig_priority - 1

    def _log_inputs(
        self,
        request_id: str,
        inputs: Union[RequestPrompt, PromptType],
        params: Optional[Union[SamplingParams, PoolingParams,
                               BeamSearchParams]],
        lora_request: Optional[LoRARequest],
    ) -> None:
        if self.request_logger is None:
            return
        prompt, prompt_token_ids, prompt_embeds = None, None, None
        if isinstance(inputs, str):
            prompt = inputs
        elif isinstance(inputs, list):
            prompt_token_ids = inputs
        else:
            prompt = getattr(inputs, 'prompt', None)
            prompt_token_ids = getattr(inputs, 'prompt_token_ids', None)

        self.request_logger.log_inputs(
            request_id,
            prompt,
            prompt_token_ids,
            prompt_embeds,
            params=params,
            lora_request=lora_request,
        )

    async def _get_trace_headers(
        self,
        headers: Headers,
    ) -> Optional[Mapping[str, str]]:
        is_tracing_enabled = await self.engine_client.is_tracing_enabled()

        if is_tracing_enabled:
            return extract_trace_headers(headers)

        if contains_trace_headers(headers):
            log_tracing_disabled_warning()

        return None

    @staticmethod
    def _base_request_id(raw_request: Optional[Request],
                         default: Optional[str] = None) -> Optional[str]:
        """Pulls the request id to use from a header, if provided"""
        default = default or random_uuid()
        if raw_request is None:
            return default

        return raw_request.headers.get("X-Request-Id", default)

    @staticmethod
    def _get_decoded_token(
        logprob: Logprob,
        token_id: int,
        tokenizer: AnyTokenizer,
        return_as_token_id: bool = False,
    ) -> str:
        if return_as_token_id:
            return f"token_id:{token_id}"

        if logprob.decoded_token is not None:
            return logprob.decoded_token
        return tokenizer.decode(token_id)

    def _is_model_supported(self, model_name: Optional[str]) -> bool:
        if not model_name:
            return True
        return self.models.is_base_model(model_name)

_async_tokenizer_pool instance-attribute

_async_tokenizer_pool: dict[
    AnyTokenizer, AsyncMicrobatchTokenizer
] = {}

_tokenizer_executor instance-attribute

_tokenizer_executor = ThreadPoolExecutor(max_workers=1)

enable_force_include_usage instance-attribute

enable_force_include_usage = enable_force_include_usage

engine_client instance-attribute

engine_client = engine_client

log_error_stack instance-attribute

log_error_stack = log_error_stack

max_model_len instance-attribute

max_model_len = max_model_len

model_config instance-attribute

model_config = model_config

models instance-attribute

models = models

request_id_prefix class-attribute

request_id_prefix: str = '\n    A short string prepended to every request’s ID (e.g. "embd", "classify")\n    so you can easily tell “this ID came from Embedding vs Classification.”\n    '

request_logger instance-attribute

request_logger = request_logger

return_tokens_as_token_ids instance-attribute

return_tokens_as_token_ids = return_tokens_as_token_ids

__init__

__init__(
    engine_client: EngineClient,
    model_config: ModelConfig,
    models: OpenAIServingModels,
    *,
    request_logger: Optional[RequestLogger],
    return_tokens_as_token_ids: bool = False,
    enable_force_include_usage: bool = False,
    log_error_stack: bool = False,
)
Source code in vllm/entrypoints/openai/serving_engine.py
def __init__(
    self,
    engine_client: EngineClient,
    model_config: ModelConfig,
    models: OpenAIServingModels,
    *,
    request_logger: Optional[RequestLogger],
    return_tokens_as_token_ids: bool = False,
    enable_force_include_usage: bool = False,
    log_error_stack: bool = False,
):
    super().__init__()

    self.engine_client = engine_client
    self.model_config = model_config
    self.max_model_len = model_config.max_model_len

    self.models = models

    self.request_logger = request_logger
    self.return_tokens_as_token_ids = return_tokens_as_token_ids
    self.enable_force_include_usage = enable_force_include_usage

    self._tokenizer_executor = ThreadPoolExecutor(max_workers=1)

    self._async_tokenizer_pool: dict[AnyTokenizer,
                                     AsyncMicrobatchTokenizer] = {}
    self.log_error_stack = log_error_stack

_base_request_id staticmethod

_base_request_id(
    raw_request: Optional[Request],
    default: Optional[str] = None,
) -> Optional[str]

Pulls the request id to use from a header, if provided

Source code in vllm/entrypoints/openai/serving_engine.py
@staticmethod
def _base_request_id(raw_request: Optional[Request],
                     default: Optional[str] = None) -> Optional[str]:
    """Pulls the request id to use from a header, if provided"""
    default = default or random_uuid()
    if raw_request is None:
        return default

    return raw_request.headers.get("X-Request-Id", default)

_build_render_config

_build_render_config(request: Any) -> RenderConfig

Build and return a RenderConfig for an endpoint.

Used by the renderer to control how prompts are prepared (e.g., tokenization and length handling). Endpoints should implement this with logic appropriate to their request type.

Source code in vllm/entrypoints/openai/serving_engine.py
def _build_render_config(
    self,
    request: Any,
) -> RenderConfig:
    """
    Build and return a `RenderConfig` for an endpoint.

    Used by the renderer to control how prompts are prepared
    (e.g., tokenization and length handling). Endpoints should
    implement this with logic appropriate to their request type.
    """
    raise NotImplementedError

_build_response

_build_response(
    ctx: ServeContext,
) -> Union[AnyResponse, ErrorResponse]

Default response builder. Subclass may override this method to return the appropriate response object.

Source code in vllm/entrypoints/openai/serving_engine.py
def _build_response(
    self,
    ctx: ServeContext,
) -> Union[AnyResponse, ErrorResponse]:
    """
    Default response builder. Subclass may override this method
    to return the appropriate response object.
    """
    return self.create_error_response("unimplemented endpoint")

_check_model async

_check_model(
    request: AnyRequest,
) -> Optional[ErrorResponse]
Source code in vllm/entrypoints/openai/serving_engine.py
async def _check_model(
    self,
    request: AnyRequest,
) -> Optional[ErrorResponse]:
    error_response = None

    if self._is_model_supported(request.model):
        return None
    if request.model in self.models.lora_requests:
        return None
    if (envs.VLLM_ALLOW_RUNTIME_LORA_UPDATING and request.model and
        (load_result := await self.models.resolve_lora(request.model))):
        if isinstance(load_result, LoRARequest):
            return None
        if (isinstance(load_result, ErrorResponse) and
                load_result.error.code == HTTPStatus.BAD_REQUEST.value):
            error_response = load_result

    return error_response or self.create_error_response(
        message=f"The model `{request.model}` does not exist.",
        err_type="NotFoundError",
        status_code=HTTPStatus.NOT_FOUND,
    )

_collect_batch async

_collect_batch(
    ctx: ServeContext,
) -> Optional[ErrorResponse]

Collect batch results from the result generator.

Source code in vllm/entrypoints/openai/serving_engine.py
async def _collect_batch(
    self,
    ctx: ServeContext,
) -> Optional[ErrorResponse]:
    """Collect batch results from the result generator."""
    try:
        if ctx.engine_prompts is None:
            return self.create_error_response(
                "Engine prompts not available")

        num_prompts = len(ctx.engine_prompts)
        final_res_batch: list[Optional[Union[RequestOutput,
                                             PoolingRequestOutput]]]
        final_res_batch = [None] * num_prompts

        if ctx.result_generator is None:
            return self.create_error_response(
                "Result generator not available")

        async for i, res in ctx.result_generator:
            final_res_batch[i] = res

        if None in final_res_batch:
            return self.create_error_response(
                "Failed to generate results for all prompts")

        ctx.final_res_batch = [
            res for res in final_res_batch if res is not None
        ]

        return None

    except Exception as e:
        return self.create_error_response(str(e))

_create_pooling_params

_create_pooling_params(
    ctx: ServeContext,
) -> Union[PoolingParams, ErrorResponse]
Source code in vllm/entrypoints/openai/serving_engine.py
def _create_pooling_params(
    self,
    ctx: ServeContext,
) -> Union[PoolingParams, ErrorResponse]:
    if not hasattr(ctx.request, "to_pooling_params"):
        return self.create_error_response(
            "Request type does not support pooling parameters")

    return ctx.request.to_pooling_params()

_generate_with_builtin_tools async

_generate_with_builtin_tools(
    request_id: str,
    request_prompt: RequestPrompt,
    engine_prompt: TokensPrompt,
    sampling_params: SamplingParams,
    context: ConversationContext,
    lora_request: Optional[LoRARequest] = None,
    priority: int = 0,
    **kwargs,
)
Source code in vllm/entrypoints/openai/serving_engine.py
async def _generate_with_builtin_tools(
    self,
    request_id: str,
    request_prompt: RequestPrompt,
    engine_prompt: EngineTokensPrompt,
    sampling_params: SamplingParams,
    context: ConversationContext,
    lora_request: Optional[LoRARequest] = None,
    priority: int = 0,
    **kwargs,
):
    orig_priority = priority
    while True:
        self._log_inputs(
            request_id,
            request_prompt,
            params=sampling_params,
            lora_request=lora_request,
        )
        generator = self.engine_client.generate(
            engine_prompt,
            sampling_params,
            request_id,
            lora_request=lora_request,
            priority=priority,
            **kwargs,
        )
        async for res in generator:
            context.append_output(res)
            # NOTE(woosuk): The stop condition is handled by the engine.
            yield context

        if not context.need_builtin_tool_call():
            # The model did not ask for a tool call, so we're done.
            break

        # Call the tool and update the context with the result.
        tool_output = await context.call_tool()
        context.append_output(tool_output)

        # TODO: uncomment this and enable tool output streaming
        # yield context

        # Create inputs for the next turn.
        # Render the next prompt token ids.
        prompt_token_ids = context.render_for_completion()
        engine_prompt = EngineTokensPrompt(
            prompt_token_ids=prompt_token_ids)
        request_prompt = prompt_token_ids
        # Update the sampling params.
        sampling_params.max_tokens = self.max_model_len - len(
            prompt_token_ids)
        # OPTIMIZATION
        priority = orig_priority - 1

_get_active_default_mm_loras

_get_active_default_mm_loras(
    request: AnyRequest,
) -> Optional[LoRARequest]

Determine if there are any active default multimodal loras.

Source code in vllm/entrypoints/openai/serving_engine.py
def _get_active_default_mm_loras(
        self, request: AnyRequest) -> Optional[LoRARequest]:
    """Determine if there are any active default multimodal loras."""
    # TODO: Currently this is only enabled for chat completions
    # to be better aligned with only being enabled for .generate
    # when run offline. It would be nice to support additional
    # tasks types in the future.
    message_types = self._get_message_types(request)
    default_mm_loras = set()

    for lora in self.models.lora_requests.values():
        # Best effort match for default multimodal lora adapters;
        # There is probably a better way to do this, but currently
        # this matches against the set of 'types' in any content lists
        # up until '_', e.g., to match audio_url -> audio
        if lora.lora_name in message_types:
            default_mm_loras.add(lora)

    # Currently only support default modality specific loras if
    # we have exactly one lora matched on the request.
    if len(default_mm_loras) == 1:
        return default_mm_loras.pop()
    return None

_get_async_tokenizer

_get_async_tokenizer(tokenizer) -> AsyncMicrobatchTokenizer

Return (and cache) an AsyncMicrobatchTokenizer bound to the given tokenizer.

Source code in vllm/entrypoints/openai/serving_engine.py
def _get_async_tokenizer(self, tokenizer) -> AsyncMicrobatchTokenizer:
    """
    Return (and cache) an `AsyncMicrobatchTokenizer` bound to the
    given tokenizer.
    """
    async_tokenizer = self._async_tokenizer_pool.get(tokenizer)
    if async_tokenizer is None:
        async_tokenizer = AsyncMicrobatchTokenizer(tokenizer)
        self._async_tokenizer_pool[tokenizer] = async_tokenizer
    return async_tokenizer

_get_decoded_token staticmethod

_get_decoded_token(
    logprob: Logprob,
    token_id: int,
    tokenizer: AnyTokenizer,
    return_as_token_id: bool = False,
) -> str
Source code in vllm/entrypoints/openai/serving_engine.py
@staticmethod
def _get_decoded_token(
    logprob: Logprob,
    token_id: int,
    tokenizer: AnyTokenizer,
    return_as_token_id: bool = False,
) -> str:
    if return_as_token_id:
        return f"token_id:{token_id}"

    if logprob.decoded_token is not None:
        return logprob.decoded_token
    return tokenizer.decode(token_id)

_get_message_types

_get_message_types(request: AnyRequest) -> set[str]

Retrieve the set of types from message content dicts up until _; we use this to match potential multimodal data with default per modality loras.

Source code in vllm/entrypoints/openai/serving_engine.py
def _get_message_types(self, request: AnyRequest) -> set[str]:
    """Retrieve the set of types from message content dicts up
    until `_`; we use this to match potential multimodal data
    with default per modality loras.
    """
    message_types: set[str] = set()

    if not hasattr(request, "messages"):
        return message_types

    for message in request.messages:
        if (isinstance(message, dict) and "content" in message
                and isinstance(message["content"], list)):
            for content_dict in message["content"]:
                if "type" in content_dict:
                    message_types.add(content_dict["type"].split("_")[0])
    return message_types

_get_renderer

_get_renderer(
    tokenizer: Optional[AnyTokenizer],
) -> BaseRenderer

Get a Renderer instance with the provided tokenizer. Uses shared async tokenizer pool for efficiency.

Source code in vllm/entrypoints/openai/serving_engine.py
def _get_renderer(self, tokenizer: Optional[AnyTokenizer]) -> BaseRenderer:
    """
    Get a Renderer instance with the provided tokenizer.
    Uses shared async tokenizer pool for efficiency.
    """
    return CompletionRenderer(
        model_config=self.model_config,
        tokenizer=tokenizer,
        async_tokenizer_pool=self._async_tokenizer_pool)

_get_trace_headers async

_get_trace_headers(
    headers: Headers,
) -> Optional[Mapping[str, str]]
Source code in vllm/entrypoints/openai/serving_engine.py
async def _get_trace_headers(
    self,
    headers: Headers,
) -> Optional[Mapping[str, str]]:
    is_tracing_enabled = await self.engine_client.is_tracing_enabled()

    if is_tracing_enabled:
        return extract_trace_headers(headers)

    if contains_trace_headers(headers):
        log_tracing_disabled_warning()

    return None

_is_model_supported

_is_model_supported(model_name: Optional[str]) -> bool
Source code in vllm/entrypoints/openai/serving_engine.py
def _is_model_supported(self, model_name: Optional[str]) -> bool:
    if not model_name:
        return True
    return self.models.is_base_model(model_name)

_log_inputs

_log_inputs(
    request_id: str,
    inputs: Union[RequestPrompt, PromptType],
    params: Optional[
        Union[
            SamplingParams, PoolingParams, BeamSearchParams
        ]
    ],
    lora_request: Optional[LoRARequest],
) -> None
Source code in vllm/entrypoints/openai/serving_engine.py
def _log_inputs(
    self,
    request_id: str,
    inputs: Union[RequestPrompt, PromptType],
    params: Optional[Union[SamplingParams, PoolingParams,
                           BeamSearchParams]],
    lora_request: Optional[LoRARequest],
) -> None:
    if self.request_logger is None:
        return
    prompt, prompt_token_ids, prompt_embeds = None, None, None
    if isinstance(inputs, str):
        prompt = inputs
    elif isinstance(inputs, list):
        prompt_token_ids = inputs
    else:
        prompt = getattr(inputs, 'prompt', None)
        prompt_token_ids = getattr(inputs, 'prompt_token_ids', None)

    self.request_logger.log_inputs(
        request_id,
        prompt,
        prompt_token_ids,
        prompt_embeds,
        params=params,
        lora_request=lora_request,
    )

_maybe_get_adapters

_maybe_get_adapters(
    request: AnyRequest,
    supports_default_mm_loras: bool = False,
) -> Optional[LoRARequest]
Source code in vllm/entrypoints/openai/serving_engine.py
def _maybe_get_adapters(
    self,
    request: AnyRequest,
    supports_default_mm_loras: bool = False,
) -> Optional[LoRARequest]:
    if request.model in self.models.lora_requests:
        return self.models.lora_requests[request.model]

    # Currently only support default modality specific loras
    # if we have exactly one lora matched on the request.
    if supports_default_mm_loras:
        default_mm_lora = self._get_active_default_mm_loras(request)
        if default_mm_lora is not None:
            return default_mm_lora

    if self._is_model_supported(request.model):
        return None

    # if _check_model has been called earlier, this will be unreachable
    raise ValueError(f"The model `{request.model}` does not exist.")

_normalize_prompt_text_to_input async

_normalize_prompt_text_to_input(
    request: AnyRequest,
    prompt: str,
    tokenizer: AnyTokenizer,
    add_special_tokens: bool,
) -> TextTokensPrompt
Source code in vllm/entrypoints/openai/serving_engine.py
async def _normalize_prompt_text_to_input(
    self,
    request: AnyRequest,
    prompt: str,
    tokenizer: AnyTokenizer,
    add_special_tokens: bool,
) -> TextTokensPrompt:
    async_tokenizer = self._get_async_tokenizer(tokenizer)

    if (self.model_config.encoder_config is not None
            and self.model_config.encoder_config.get(
                "do_lower_case", False)):
        prompt = prompt.lower()

    truncate_prompt_tokens = getattr(request, "truncate_prompt_tokens",
                                     None)

    if truncate_prompt_tokens is None:
        encoded = await async_tokenizer(
            prompt, add_special_tokens=add_special_tokens)
    elif truncate_prompt_tokens < 0:
        # Negative means we cap at the model's max length
        encoded = await async_tokenizer(
            prompt,
            add_special_tokens=add_special_tokens,
            truncation=True,
            max_length=self.max_model_len,
        )
    else:
        encoded = await async_tokenizer(
            prompt,
            add_special_tokens=add_special_tokens,
            truncation=True,
            max_length=truncate_prompt_tokens,
        )

    input_ids = encoded.input_ids
    input_text = prompt

    return self._validate_input(request, input_ids, input_text)

_normalize_prompt_tokens_to_input async

_normalize_prompt_tokens_to_input(
    request: AnyRequest,
    prompt_ids: list[int],
    tokenizer: Optional[AnyTokenizer],
) -> TextTokensPrompt
Source code in vllm/entrypoints/openai/serving_engine.py
async def _normalize_prompt_tokens_to_input(
    self,
    request: AnyRequest,
    prompt_ids: list[int],
    tokenizer: Optional[AnyTokenizer],
) -> TextTokensPrompt:
    truncate_prompt_tokens = getattr(request, "truncate_prompt_tokens",
                                     None)

    if truncate_prompt_tokens is None:
        input_ids = prompt_ids
    elif truncate_prompt_tokens < 0:
        input_ids = prompt_ids[-self.max_model_len:]
    else:
        input_ids = prompt_ids[-truncate_prompt_tokens:]

    if tokenizer is None:
        input_text = ""
    else:
        async_tokenizer = self._get_async_tokenizer(tokenizer)
        input_text = await async_tokenizer.decode(input_ids)

    return self._validate_input(request, input_ids, input_text)

_pipeline async

_pipeline(
    ctx: ServeContext,
) -> AsyncGenerator[
    Union[AnyResponse, ErrorResponse], None
]

Execute the request processing pipeline yielding responses.

Source code in vllm/entrypoints/openai/serving_engine.py
async def _pipeline(
    self,
    ctx: ServeContext,
) -> AsyncGenerator[Union[AnyResponse, ErrorResponse], None]:
    """Execute the request processing pipeline yielding responses."""
    if error := await self._check_model(ctx.request):
        yield error
    if error := self._validate_request(ctx):
        yield error

    preprocess_ret = await self._preprocess(ctx)
    if isinstance(preprocess_ret, ErrorResponse):
        yield preprocess_ret

    generators_ret = await self._prepare_generators(ctx)
    if isinstance(generators_ret, ErrorResponse):
        yield generators_ret

    collect_ret = await self._collect_batch(ctx)
    if isinstance(collect_ret, ErrorResponse):
        yield collect_ret

    yield self._build_response(ctx)

_prepare_generators async

_prepare_generators(
    ctx: ServeContext,
) -> Optional[ErrorResponse]

Schedule the request and get the result generator.

Source code in vllm/entrypoints/openai/serving_engine.py
async def _prepare_generators(
    self,
    ctx: ServeContext,
) -> Optional[ErrorResponse]:
    """Schedule the request and get the result generator."""
    generators: list[AsyncGenerator[Union[RequestOutput,
                                          PoolingRequestOutput],
                                    None]] = []

    try:
        trace_headers = (None if ctx.raw_request is None else await
                         self._get_trace_headers(ctx.raw_request.headers))

        pooling_params = self._create_pooling_params(ctx)
        if isinstance(pooling_params, ErrorResponse):
            return pooling_params

        if ctx.engine_prompts is None:
            return self.create_error_response(
                "Engine prompts not available")

        for i, engine_prompt in enumerate(ctx.engine_prompts):
            request_id_item = f"{ctx.request_id}-{i}"

            self._log_inputs(
                request_id_item,
                engine_prompt,
                params=pooling_params,
                lora_request=ctx.lora_request,
            )

            generator = self.engine_client.encode(
                engine_prompt,
                pooling_params,
                request_id_item,
                lora_request=ctx.lora_request,
                trace_headers=trace_headers,
                priority=getattr(ctx.request, "priority", 0),
            )

            generators.append(generator)

        ctx.result_generator = merge_async_iterators(*generators)

        return None

    except Exception as e:
        # TODO: Use a vllm-specific Validation Error
        return self.create_error_response(str(e))

_preprocess async

_preprocess(ctx: ServeContext) -> Optional[ErrorResponse]

Default preprocessing hook. Subclasses may override to prepare ctx (classification, embedding, etc.).

Source code in vllm/entrypoints/openai/serving_engine.py
async def _preprocess(
    self,
    ctx: ServeContext,
) -> Optional[ErrorResponse]:
    """
    Default preprocessing hook. Subclasses may override
    to prepare `ctx` (classification, embedding, etc.).
    """
    return None

_preprocess_chat async

_preprocess_chat(
    request: Union[ChatLikeRequest, ResponsesRequest],
    tokenizer: AnyTokenizer,
    messages: list[ChatCompletionMessageParam],
    chat_template: Optional[str],
    chat_template_content_format: ChatTemplateContentFormatOption,
    add_generation_prompt: bool = True,
    continue_final_message: bool = False,
    tool_dicts: Optional[list[dict[str, Any]]] = None,
    documents: Optional[list[dict[str, str]]] = None,
    chat_template_kwargs: Optional[dict[str, Any]] = None,
    tool_parser: Optional[
        Callable[[AnyTokenizer], ToolParser]
    ] = None,
    add_special_tokens: bool = False,
) -> tuple[
    list[ConversationMessage],
    Sequence[RequestPrompt],
    list[TokensPrompt],
]
Source code in vllm/entrypoints/openai/serving_engine.py
async def _preprocess_chat(
    self,
    request: Union[ChatLikeRequest, ResponsesRequest],
    tokenizer: AnyTokenizer,
    messages: list[ChatCompletionMessageParam],
    chat_template: Optional[str],
    chat_template_content_format: ChatTemplateContentFormatOption,
    add_generation_prompt: bool = True,
    continue_final_message: bool = False,
    tool_dicts: Optional[list[dict[str, Any]]] = None,
    documents: Optional[list[dict[str, str]]] = None,
    chat_template_kwargs: Optional[dict[str, Any]] = None,
    tool_parser: Optional[Callable[[AnyTokenizer], ToolParser]] = None,
    add_special_tokens: bool = False,
) -> tuple[
        list[ConversationMessage],
        Sequence[RequestPrompt],
        list[EngineTokensPrompt],
]:
    model_config = self.model_config

    resolved_content_format = resolve_chat_template_content_format(
        chat_template,
        tool_dicts,
        chat_template_content_format,
        tokenizer,
        model_config=model_config,
    )
    conversation, mm_data_future, mm_uuids = parse_chat_messages_futures(
        messages,
        model_config,
        tokenizer,
        content_format=resolved_content_format,
    )

    _chat_template_kwargs: dict[str, Any] = dict(
        chat_template=chat_template,
        add_generation_prompt=add_generation_prompt,
        continue_final_message=continue_final_message,
        tools=tool_dicts,
        documents=documents,
    )
    _chat_template_kwargs.update(chat_template_kwargs or {})

    request_prompt: Union[str, list[int]]

    if tokenizer is None:
        request_prompt = "placeholder"
    elif isinstance(tokenizer, MistralTokenizer):
        request_prompt = apply_mistral_chat_template(
            tokenizer,
            messages=messages,
            **_chat_template_kwargs,
        )
    else:
        request_prompt = apply_hf_chat_template(
            tokenizer=tokenizer,
            conversation=conversation,
            model_config=model_config,
            **_chat_template_kwargs,
        )

    mm_data = await mm_data_future

    # tool parsing is done only if a tool_parser has been set and if
    # tool_choice is not "none" (if tool_choice is "none" but a tool_parser
    # is set, we want to prevent parsing a tool_call hallucinated by the LLM
    should_parse_tools = tool_parser is not None and (hasattr(
        request, "tool_choice") and request.tool_choice != "none")

    if should_parse_tools:
        if not isinstance(request, ChatCompletionRequest):
            msg = "Tool usage is only supported for Chat Completions API"
            raise NotImplementedError(msg)

        request = tool_parser(tokenizer).adjust_request(  # type: ignore
            request=request)

    if tokenizer is None:
        assert isinstance(request_prompt, str), (
            "Prompt has to be a string",
            "when the tokenizer is not initialised",
        )
        prompt_inputs = TextTokensPrompt(prompt=request_prompt,
                                         prompt_token_ids=[1])
    elif isinstance(request_prompt, str):
        prompt_inputs = await self._tokenize_prompt_input_async(
            request,
            tokenizer,
            request_prompt,
            add_special_tokens=add_special_tokens,
        )
    else:
        # For MistralTokenizer
        assert is_list_of(request_prompt, int), (
            "Prompt has to be either a string or a list of token ids")
        prompt_inputs = TextTokensPrompt(
            prompt=tokenizer.decode(request_prompt),
            prompt_token_ids=request_prompt,
        )

    engine_prompt = EngineTokensPrompt(
        prompt_token_ids=prompt_inputs["prompt_token_ids"])
    if mm_data is not None:
        engine_prompt["multi_modal_data"] = mm_data

    if mm_uuids is not None:
        engine_prompt["multi_modal_uuids"] = mm_uuids

    if request.mm_processor_kwargs is not None:
        engine_prompt["mm_processor_kwargs"] = request.mm_processor_kwargs

    if hasattr(request, "cache_salt") and request.cache_salt is not None:
        engine_prompt["cache_salt"] = request.cache_salt

    return conversation, [request_prompt], [engine_prompt]

_tokenize_prompt_input_async async

_tokenize_prompt_input_async(
    request: AnyRequest,
    tokenizer: AnyTokenizer,
    prompt_input: Union[str, list[int]],
    add_special_tokens: bool = True,
) -> TextTokensPrompt

A simpler implementation that tokenizes a single prompt input.

Source code in vllm/entrypoints/openai/serving_engine.py
async def _tokenize_prompt_input_async(
    self,
    request: AnyRequest,
    tokenizer: AnyTokenizer,
    prompt_input: Union[str, list[int]],
    add_special_tokens: bool = True,
) -> TextTokensPrompt:
    """
    A simpler implementation that tokenizes a single prompt input.
    """
    async for result in self._tokenize_prompt_inputs_async(
            request,
            tokenizer,
        [prompt_input],
            add_special_tokens=add_special_tokens,
    ):
        return result
    raise ValueError("No results yielded from tokenization")

_tokenize_prompt_inputs_async async

_tokenize_prompt_inputs_async(
    request: AnyRequest,
    tokenizer: AnyTokenizer,
    prompt_inputs: Iterable[Union[str, list[int]]],
    add_special_tokens: bool = True,
) -> AsyncGenerator[TextTokensPrompt, None]

A simpler implementation that tokenizes multiple prompt inputs.

Source code in vllm/entrypoints/openai/serving_engine.py
async def _tokenize_prompt_inputs_async(
    self,
    request: AnyRequest,
    tokenizer: AnyTokenizer,
    prompt_inputs: Iterable[Union[str, list[int]]],
    add_special_tokens: bool = True,
) -> AsyncGenerator[TextTokensPrompt, None]:
    """
    A simpler implementation that tokenizes multiple prompt inputs.
    """
    for prompt in prompt_inputs:
        if isinstance(prompt, str):
            yield await self._normalize_prompt_text_to_input(
                request,
                prompt=prompt,
                tokenizer=tokenizer,
                add_special_tokens=add_special_tokens,
            )
        else:
            yield await self._normalize_prompt_tokens_to_input(
                request,
                prompt_ids=prompt,
                tokenizer=tokenizer,
            )

_validate_input

_validate_input(
    request: AnyRequest,
    input_ids: list[int],
    input_text: str,
) -> TextTokensPrompt
Source code in vllm/entrypoints/openai/serving_engine.py
def _validate_input(
    self,
    request: AnyRequest,
    input_ids: list[int],
    input_text: str,
) -> TextTokensPrompt:
    token_num = len(input_ids)

    # Note: EmbeddingRequest, ClassificationRequest,
    # and ScoreRequest doesn't have max_tokens
    if isinstance(
            request,
        (
            EmbeddingChatRequest,
            EmbeddingCompletionRequest,
            ScoreRequest,
            RerankRequest,
            ClassificationRequest,
        ),
    ):
        # Note: input length can be up to the entire model context length
        # since these requests don't generate tokens.
        if token_num > self.max_model_len:
            operations: dict[type[AnyRequest], str] = {
                ScoreRequest: "score",
                ClassificationRequest: "classification",
            }
            operation = operations.get(type(request),
                                       "embedding generation")
            raise ValueError(
                f"This model's maximum context length is "
                f"{self.max_model_len} tokens. However, you requested "
                f"{token_num} tokens in the input for {operation}. "
                f"Please reduce the length of the input.")
        return TextTokensPrompt(prompt=input_text,
                                prompt_token_ids=input_ids)

    # Note: TokenizeRequest and DetokenizeRequest doesn't have max_tokens
    # and does not require model context length validation
    if isinstance(
            request,
        (TokenizeCompletionRequest, TokenizeChatRequest,
         DetokenizeRequest),
    ):
        return TextTokensPrompt(prompt=input_text,
                                prompt_token_ids=input_ids)

    # chat completion endpoint supports max_completion_tokens
    if isinstance(request, ChatCompletionRequest):
        # TODO(#9845): remove max_tokens when field dropped from OpenAI API
        max_tokens = request.max_completion_tokens or request.max_tokens
    else:
        max_tokens = getattr(request, "max_tokens", None)

    # Note: input length can be up to model context length - 1 for
    # completion-like requests.
    if token_num >= self.max_model_len:
        raise ValueError(
            f"This model's maximum context length is "
            f"{self.max_model_len} tokens. However, your request has "
            f"{token_num} input tokens. Please reduce the length of "
            "the input messages.")

    if (max_tokens is not None
            and token_num + max_tokens > self.max_model_len):
        raise ValueError(
            "'max_tokens' or 'max_completion_tokens' is too large: "
            f"{max_tokens}. This model's maximum context length is "
            f"{self.max_model_len} tokens and your request has "
            f"{token_num} input tokens ({max_tokens} > {self.max_model_len}"
            f" - {token_num}).")

    return TextTokensPrompt(prompt=input_text, prompt_token_ids=input_ids)

_validate_request

_validate_request(
    ctx: ServeContext,
) -> Optional[ErrorResponse]
Source code in vllm/entrypoints/openai/serving_engine.py
def _validate_request(self, ctx: ServeContext) -> Optional[ErrorResponse]:
    truncate_prompt_tokens = getattr(ctx.request, "truncate_prompt_tokens",
                                     None)

    if (truncate_prompt_tokens is not None
            and truncate_prompt_tokens > self.max_model_len):
        return self.create_error_response(
            "truncate_prompt_tokens value is "
            "greater than max_model_len."
            " Please, select a smaller truncation size.")
    return None

create_error_response

create_error_response(
    message: str,
    err_type: str = "BadRequestError",
    status_code: HTTPStatus = BAD_REQUEST,
) -> ErrorResponse
Source code in vllm/entrypoints/openai/serving_engine.py
def create_error_response(
    self,
    message: str,
    err_type: str = "BadRequestError",
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
) -> ErrorResponse:
    if self.log_error_stack:
        exc_type, _, _ = sys.exc_info()
        if exc_type is not None:
            traceback.print_exc()
        else:
            traceback.print_stack()
    return ErrorResponse(error=ErrorInfo(
        message=message, type=err_type, code=status_code.value))

create_streaming_error_response

create_streaming_error_response(
    message: str,
    err_type: str = "BadRequestError",
    status_code: HTTPStatus = BAD_REQUEST,
) -> str
Source code in vllm/entrypoints/openai/serving_engine.py
def create_streaming_error_response(
    self,
    message: str,
    err_type: str = "BadRequestError",
    status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
) -> str:
    json_str = json.dumps(
        self.create_error_response(message=message,
                                   err_type=err_type,
                                   status_code=status_code).model_dump())
    return json_str

handle async

Source code in vllm/entrypoints/openai/serving_engine.py
async def handle(
    self,
    ctx: ServeContext,
) -> Union[AnyResponse, ErrorResponse]:
    generation: AsyncGenerator[Union[AnyResponse, ErrorResponse], None]
    generation = self._pipeline(ctx)

    async for response in generation:
        return response

    return self.create_error_response("No response yielded from pipeline")

RequestProcessingMixin

Bases: BaseModel

Mixin for request processing, handling prompt preparation and engine input.

Source code in vllm/entrypoints/openai/serving_engine.py
class RequestProcessingMixin(BaseModel):
    """
    Mixin for request processing,
    handling prompt preparation and engine input.
    """

    request_prompts: Optional[Sequence[RequestPrompt]] = []
    engine_prompts: Optional[list[EngineTokensPrompt]] = []

    model_config = ConfigDict(arbitrary_types_allowed=True)

engine_prompts class-attribute instance-attribute

engine_prompts: Optional[list[TokensPrompt]] = []

model_config class-attribute instance-attribute

model_config = ConfigDict(arbitrary_types_allowed=True)

request_prompts class-attribute instance-attribute

request_prompts: Optional[Sequence[RequestPrompt]] = []

ResponseGenerationMixin

Bases: BaseModel

Mixin for response generation, managing result generators and final batch results.

Source code in vllm/entrypoints/openai/serving_engine.py
class ResponseGenerationMixin(BaseModel):
    """
    Mixin for response generation,
    managing result generators and final batch results.
    """

    result_generator: Optional[AsyncGenerator[tuple[int, Union[
        RequestOutput, PoolingRequestOutput]], None]] = None
    final_res_batch: list[Union[RequestOutput, PoolingRequestOutput]] = Field(
        default_factory=list)

    model_config = ConfigDict(arbitrary_types_allowed=True)

final_res_batch class-attribute instance-attribute

final_res_batch: list[
    Union[RequestOutput, PoolingRequestOutput]
] = Field(default_factory=list)

model_config class-attribute instance-attribute

model_config = ConfigDict(arbitrary_types_allowed=True)

result_generator class-attribute instance-attribute

result_generator: Optional[
    AsyncGenerator[
        tuple[
            int, Union[RequestOutput, PoolingRequestOutput]
        ],
        None,
    ]
] = None

ServeContext

Bases: RequestProcessingMixin, ResponseGenerationMixin, BaseModel, Generic[RequestT]

Source code in vllm/entrypoints/openai/serving_engine.py
class ServeContext(
        RequestProcessingMixin,
        ResponseGenerationMixin,
        BaseModel,
        Generic[RequestT],
):
    # Shared across all requests
    request: RequestT
    raw_request: Optional[Request] = None
    model_name: str
    request_id: str
    created_time: int = Field(default_factory=lambda: int(time.time()))
    lora_request: Optional[LoRARequest] = None

    # Shared across most requests
    tokenizer: Optional[AnyTokenizer] = None

    # `protected_namespaces` resolves Pydantic v2's warning
    # on conflict with protected namespace "model_"
    model_config = ConfigDict(
        protected_namespaces=(),
        arbitrary_types_allowed=True,
    )

created_time class-attribute instance-attribute

created_time: int = Field(
    default_factory=lambda: int(time())
)

lora_request class-attribute instance-attribute

lora_request: Optional[LoRARequest] = None

model_config class-attribute instance-attribute

model_config = ConfigDict(
    protected_namespaces=(), arbitrary_types_allowed=True
)

model_name instance-attribute

model_name: str

raw_request class-attribute instance-attribute

raw_request: Optional[Request] = None

request instance-attribute

request: RequestT

request_id instance-attribute

request_id: str

tokenizer class-attribute instance-attribute

tokenizer: Optional[AnyTokenizer] = None

TextTokensPrompt

Bases: TypedDict

Source code in vllm/entrypoints/openai/serving_engine.py
class TextTokensPrompt(TypedDict):
    prompt: str
    prompt_token_ids: list[int]

prompt instance-attribute

prompt: str

prompt_token_ids instance-attribute

prompt_token_ids: list[int]

clamp_prompt_logprobs

clamp_prompt_logprobs(
    prompt_logprobs: Union[PromptLogprobs, None],
) -> Union[PromptLogprobs, None]
Source code in vllm/entrypoints/openai/serving_engine.py
def clamp_prompt_logprobs(
    prompt_logprobs: Union[PromptLogprobs,
                           None], ) -> Union[PromptLogprobs, None]:
    if prompt_logprobs is None:
        return prompt_logprobs

    for logprob_dict in prompt_logprobs:
        if logprob_dict is None:
            continue
        for logprob_values in logprob_dict.values():
            if logprob_values.logprob == float("-inf"):
                logprob_values.logprob = -9999.0
    return prompt_logprobs

is_embeds_prompt

is_embeds_prompt(
    prompt: RequestPrompt,
) -> TypeIs[EmbedsPrompt]
Source code in vllm/entrypoints/openai/serving_engine.py
def is_embeds_prompt(prompt: RequestPrompt) -> TypeIs[EmbedsPrompt]:
    return (isinstance(prompt, dict) and "prompt_token_ids" not in prompt
            and "prompt_embeds" in prompt)

is_text_tokens_prompt

is_text_tokens_prompt(
    prompt: RequestPrompt,
) -> TypeIs[TextTokensPrompt]
Source code in vllm/entrypoints/openai/serving_engine.py
def is_text_tokens_prompt(prompt: RequestPrompt) -> TypeIs[TextTokensPrompt]:
    return (isinstance(prompt, dict) and "prompt_token_ids" in prompt
            and "prompt_embeds" not in prompt)