vllm.distributed.eplb ¶
Expert parallelism load balancer (EPLB).
Modules:
Name | Description |
---|---|
eplb_state | Expert parallelism load balancer (EPLB) metrics and states. |
rebalance_algo | Expert parallelism load balancer (EPLB) for vLLM. |
rebalance_execute | The actual execution of the rearrangement. |
EplbState dataclass
¶
EPLB metrics.
Source code in vllm/distributed/eplb/eplb_state.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
|
expert_load_pass instance-attribute
¶
expert_load_pass: Tensor
Expert load during this forward pass. We use the token count each expert processes as the load.
Shape: (num_moe_layers, num_physical_experts)
expert_load_window instance-attribute
¶
expert_load_window: Tensor
A sliding window of expert load.
Shape: (window_size, num_moe_layers, num_physical_experts)
NOTE: The expert_load_view now records load for all physical experts rather than just local experts. This ensures consistent load statistics across different dispatch methods (naive all-to-all, DeepEP, pplx-kernels). The recorded load will be multiplied by dp_size when using naive all-to-all due to each DP rank contributing the same token set to the calculation. See: https://github.com/vllm-project/vllm/pull/22167#pullrequestreview-3086143856
expert_load_window_size class-attribute
instance-attribute
¶
expert_load_window_size: int = 0
Size of the expert load sliding window. This is a constant and is taken from the config.
expert_load_window_step class-attribute
instance-attribute
¶
expert_load_window_step: int = 0
Current step in the sliding window.
Different from expert_rearrangement_step
, each EP rank may have its own expert_load_window_step
.
expert_rearrangement_step class-attribute
instance-attribute
¶
expert_rearrangement_step: int = 0
Steps after last rearrangement. Will trigger a rearrangement if it exceeds the threshold.
NOTE: Keep in mind that all EP ranks need to have the same expert_rearrangement_step
value to ensure synchronization. Otherwise, the rearrangement will hang at collective communication calls.
expert_rearrangement_step_interval class-attribute
instance-attribute
¶
expert_rearrangement_step_interval: int = 0
Interval for expert rearrangement steps. This is a constant and is taken from the config.
logical_replica_count instance-attribute
¶
logical_replica_count: Tensor
Number of replicas for each logical expert. This is exactly the non--1
count in the logical_to_physical_map
.
Shape: (num_moe_layers, num_logical_experts)
Example¶
For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3 EP ranks, the count could look like this:
``` [[2, 2, 1, 1], [3, 1, 1, 1]]
logical_to_physical_map instance-attribute
¶
logical_to_physical_map: Tensor
Mapping from logical experts to physical experts.
This is a sparse matrix, where -1 indicates no mapping.
Shape: (num_moe_layers, num_logical_experts, num_redundant_experts + 1)
Example¶
For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3 EP ranks, the mapping could look like this:
physical_to_logical_map instance-attribute
¶
physical_to_logical_map: Tensor
Mapping from physical experts to logical experts.
Shape: (num_moe_layers, num_physical_experts)
Example¶
For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3 EP ranks, the mapping could look like this:
__init__ ¶
__init__(
physical_to_logical_map: Tensor,
logical_to_physical_map: Tensor,
logical_replica_count: Tensor,
expert_load_pass: Tensor,
expert_load_window: Tensor,
expert_load_window_step: int = 0,
expert_load_window_size: int = 0,
expert_rearrangement_step: int = 0,
expert_rearrangement_step_interval: int = 0,
) -> None
build classmethod
¶
build(
model: MixtureOfExperts,
device: device,
parallel_config: ParallelConfig,
global_expert_load: Optional[Tensor] = None,
old_global_expert_indices: Optional[Tensor] = None,
rank_mapping: Optional[dict[int, int]] = None,
) -> EplbState
Build the initial EPLB state.
Source code in vllm/distributed/eplb/eplb_state.py
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
|
build_initial_global_physical_to_logical_map staticmethod
¶
build_initial_global_physical_to_logical_map(
num_routed_experts: int, num_redundant_experts: int
) -> Sequence[int]
Build an initial expert arrangement using the following structure: [original routed experts, redundant experts]
Returns:
Name | Type | Description |
---|---|---|
physical_to_logical_map | Sequence[int] | A list of integers, where each integer is the index of the logical expert that the corresponding physical expert maps to. |
Source code in vllm/distributed/eplb/eplb_state.py
rearrange ¶
rearrange(
model: MixtureOfExperts,
is_profile: bool = False,
execute_shuffle: bool = True,
global_expert_load: Optional[Tensor] = None,
rank_mapping: Optional[dict[int, int]] = None,
) -> Optional[Tensor]
Rearrange the experts according to the current load.
Source code in vllm/distributed/eplb/eplb_state.py
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
|
recv_state staticmethod
¶
Receive the expert load and old placement from the master rank.
Source code in vllm/distributed/eplb/eplb_state.py
step ¶
step(
model: MixtureOfExperts,
is_dummy: bool = False,
is_profile: bool = False,
log_stats: bool = False,
) -> None
Step the EPLB state.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model | MixtureOfExperts | The MoE model. | required |
is_dummy | bool | If | False |
is_profile | bool | If | False |
log_stats | bool | If | False |
Stats¶
The metrics are all summed up across layers.
- `avg_tokens`: The average load across ranks.
- `max_tokens`: The maximum load across ranks.
- `balancedness`: The ratio of average load to maximum load.
Source code in vllm/distributed/eplb/eplb_state.py
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
|
MixtureOfExperts ¶
Bases: Protocol
Check if the model is a mixture of experts (MoE) model.
Source code in vllm/model_executor/models/interfaces.py
expert_weights instance-attribute
¶
expert_weights: MutableSequence[Iterable[Tensor]]
Expert weights saved in this rank.
The first dimension is the layer, and the second dimension is different parameters in the layer, e.g. up/down projection weights.
num_expert_groups instance-attribute
¶
num_expert_groups: int
Number of expert groups in this model.
num_local_physical_experts instance-attribute
¶
num_local_physical_experts: int
Number of local physical experts in this model.
num_logical_experts instance-attribute
¶
num_logical_experts: int
Number of logical experts in this model.
num_physical_experts instance-attribute
¶
num_physical_experts: int
Number of physical experts in this model.
num_redundant_experts instance-attribute
¶
num_redundant_experts: int
Number of redundant experts in this model.
num_routed_experts instance-attribute
¶
num_routed_experts: int
Number of routed experts in this model.
num_shared_experts instance-attribute
¶
num_shared_experts: int
Number of shared experts in this model.
set_eplb_state ¶
set_eplb_state(
expert_load_view: Tensor,
logical_to_physical_map: Tensor,
logical_replica_count: Tensor,
) -> None
Register the EPLB state in the MoE model.
Since these are views of the actual EPLB state, any changes made by the EPLB algorithm are automatically reflected in the model's behavior without requiring additional method calls to set new states.
You should also collect model's expert_weights
here instead of in the weight loader, since after initial weight loading, further processing like quantization may be applied to the weights.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
expert_load_view | Tensor | A view of the expert load metrics tensor. | required |
logical_to_physical_map | Tensor | Mapping from logical to physical experts. | required |
logical_replica_count | Tensor | Count of replicas for each logical expert. | required |
Source code in vllm/model_executor/models/interfaces.py
ParallelConfig ¶
Configuration for the distributed execution.
Source code in vllm/config/parallel.py
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
|
_api_process_count class-attribute
instance-attribute
¶
_api_process_count: int = 1
The number of API processes initialized.
Note
This is an internal config that is only valid for and should only be set by API server scale-out.
_api_process_rank class-attribute
instance-attribute
¶
_api_process_rank: int = 0
The rank of this API process, or -1
for engine core processes under API server scale-out.
Note
This is an internal config that is only valid for and should only be set by API server scale-out.
_data_parallel_master_port_list class-attribute
instance-attribute
¶
List of open port auto-queried for data parallel messaging. Set to be private as it's not intended to be configured by users.
data_parallel_backend class-attribute
instance-attribute
¶
data_parallel_backend: str = 'mp'
Backend to use for data parallel, either "mp" or "ray".
data_parallel_external_lb class-attribute
instance-attribute
¶
data_parallel_external_lb: bool = False
Whether to use "external" DP LB mode. Applies only to online serving and when data_parallel_size > 0. This is useful for a "one-pod-per-rank" wide-EP setup in Kubernetes. Set implicitly when --data-parallel-rank is provided explicitly to vllm serve.
data_parallel_hybrid_lb class-attribute
instance-attribute
¶
data_parallel_hybrid_lb: bool = False
Whether to use "hybrid" DP LB mode. Applies only to online serving and when data_parallel_size > 0. Enables running an AsyncLLM and API server on a "per-node" basis where vLLM load balances between local data parallel ranks, but an external LB balances between vLLM nodes/replicas. Set explicitly in conjunction with --data-parallel-start-rank.
data_parallel_master_ip class-attribute
instance-attribute
¶
data_parallel_master_ip: str = '127.0.0.1'
IP of the data parallel master.
data_parallel_master_port class-attribute
instance-attribute
¶
data_parallel_master_port: int = 29500
Port of the data parallel master.
data_parallel_rank class-attribute
instance-attribute
¶
data_parallel_rank: int = 0
Rank of the data parallel group.
data_parallel_rank_local class-attribute
instance-attribute
¶
Local rank of the data parallel group, set only in SPMD mode.
data_parallel_rpc_port class-attribute
instance-attribute
¶
data_parallel_rpc_port: int = 29550
Port for data parallel messaging.
data_parallel_size class-attribute
instance-attribute
¶
data_parallel_size: int = 1
Number of data parallel groups. MoE layers will be sharded according to the product of the tensor parallel size and data parallel size.
data_parallel_size_local class-attribute
instance-attribute
¶
data_parallel_size_local: int = 1
Number of local data parallel groups.
dbo_decode_token_threshold class-attribute
instance-attribute
¶
dbo_decode_token_threshold: int = 32
The threshold for dual batch overlap for batches only containing decodes. If the number of tokens in the request is greater than this threshold, microbatching will be used. Otherwise, the request will be processed in a single batch.
dbo_prefill_token_threshold class-attribute
instance-attribute
¶
dbo_prefill_token_threshold: int = 512
The threshold for dual batch overlap for batches that contain one or more prefills. If the number of tokens in the request is greater than this threshold, microbatching will be used. Otherwise, the request will be processed in a single batch.
decode_context_parallel_size class-attribute
instance-attribute
¶
decode_context_parallel_size: int = 1
Number of decode context parallel groups, because the world size does not change by dcp, it simply reuse the GPUs of TP group, and tp_size needs to be divisible by dcp_size.
disable_custom_all_reduce class-attribute
instance-attribute
¶
disable_custom_all_reduce: bool = False
Disable the custom all-reduce kernel and fall back to NCCL.
distributed_executor_backend class-attribute
instance-attribute
¶
distributed_executor_backend: Optional[
Union[
str, DistributedExecutorBackend, type[ExecutorBase]
]
] = None
Backend to use for distributed model workers, either "ray" or "mp" (multiprocessing). If the product of pipeline_parallel_size and tensor_parallel_size is less than or equal to the number of GPUs available, "mp" will be used to keep processing on a single host. Otherwise, this will default to "ray" if Ray is installed and fail otherwise. Note that tpu only support Ray for distributed inference.
enable_dbo class-attribute
instance-attribute
¶
enable_dbo: bool = False
Enable dual batch overlap for the model executor.
enable_eplb class-attribute
instance-attribute
¶
enable_eplb: bool = False
Enable expert parallelism load balancing for MoE layers.
enable_expert_parallel class-attribute
instance-attribute
¶
enable_expert_parallel: bool = False
Use expert parallelism instead of tensor parallelism for MoE layers.
eplb_config class-attribute
instance-attribute
¶
eplb_config: EPLBConfig = field(default_factory=EPLBConfig)
Expert parallelism configuration.
eplb_log_balancedness class-attribute
instance-attribute
¶
eplb_log_balancedness
is deprecated and has been replaced with eplb_config.log_balancedness
. This will be removed in v0.12.0. Please use eplb_config.log_balancedness
instead.
eplb_step_interval class-attribute
instance-attribute
¶
eplb_step_interval
is deprecated and has been replaced with eplb_config.step_interval
. This will be removed in v0.12.0. Please use eplb_config.step_interval
instead.
eplb_window_size class-attribute
instance-attribute
¶
eplb_window_size
is deprecated and has been replaced with eplb_config.window_size
. This will be removed in v0.12.0. Please use eplb_config.window_size
instead.
expert_placement_strategy class-attribute
instance-attribute
¶
expert_placement_strategy: ExpertPlacementStrategy = (
"linear"
)
The expert placement strategy for MoE layers:
-
"linear": Experts are placed in a contiguous manner. For example, with 4 experts and 2 ranks, rank 0 will have experts [0, 1] and rank 1 will have experts [2, 3].
-
"round_robin": Experts are placed in a round-robin manner. For example, with 4 experts and 2 ranks, rank 0 will have experts [0, 2] and rank 1 will have experts [1, 3]. This strategy can help improve load balancing for grouped expert models with no redundant experts.
max_parallel_loading_workers class-attribute
instance-attribute
¶
Maximum number of parallel loading workers when loading model sequentially in multiple batches. To avoid RAM OOM when using tensor parallel and large models.
num_redundant_experts class-attribute
instance-attribute
¶
num_redundant_experts
is deprecated and has been replaced with eplb_config.num_redundant_experts
. This will be removed in v0.12.0. Please use eplb_config.num_redundant_experts
instead.
pipeline_parallel_size class-attribute
instance-attribute
¶
pipeline_parallel_size: int = 1
Number of pipeline parallel groups.
placement_group class-attribute
instance-attribute
¶
placement_group: Optional[PlacementGroup] = None
ray distributed model workers placement group.
ray_runtime_env class-attribute
instance-attribute
¶
ray_runtime_env: Optional[RuntimeEnv] = None
Ray runtime environment to pass to distributed workers.
ray_workers_use_nsight class-attribute
instance-attribute
¶
ray_workers_use_nsight: bool = False
Whether to profile Ray workers with nsight, see https://docs.ray.io/en/latest/ray-observability/user-guides/profiling.html#profiling-nsight-profiler.
sd_worker_cls class-attribute
instance-attribute
¶
sd_worker_cls: str = 'auto'
The full name of the worker class to use for speculative decoding. If "auto", the worker class will be determined based on the platform.
tensor_parallel_size class-attribute
instance-attribute
¶
tensor_parallel_size: int = 1
Number of tensor parallel groups.
worker_cls class-attribute
instance-attribute
¶
worker_cls: str = 'auto'
The full name of the worker class to use. If "auto", the worker class will be determined based on the platform.
worker_extension_cls class-attribute
instance-attribute
¶
worker_extension_cls: str = ''
The full name of the worker extension class to use. The worker extension class is dynamically inherited by the worker class. This is used to inject new attributes and methods to the worker class for use in collective_rpc calls.
world_size class-attribute
instance-attribute
¶
world_size is TPxPP, it affects the number of workers we create.
world_size_across_dp property
¶
world_size_across_dp: int
world_size_across_dp is TPxPPxDP, it is the size of the world including data parallelism.
__post_init__ ¶
Source code in vllm/config/parallel.py
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
|
_verify_args ¶
_verify_args() -> Self
Source code in vllm/config/parallel.py
compute_hash ¶
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/parallel.py
get_next_dp_init_port ¶
get_next_dp_init_port() -> int
We might need to initialize process groups in multiple processes that is related to data parallelism, e.g. both in the worker and in the engine, which can live in different processes. To avoid port conflicts, we pop a new port from the prepared port list each time we need to initialize a new process group related to data parallelism.
Source code in vllm/config/parallel.py
has_unfinished_dp staticmethod
¶
Source code in vllm/config/parallel.py
stateless_init_dp_group ¶
Source code in vllm/config/parallel.py
sync_kv_cache_memory_size staticmethod
¶
Source code in vllm/config/parallel.py
StatelessProcessGroup dataclass
¶
A dataclass to hold a metadata store, and the rank, world_size of the group. Only use it to communicate metadata between processes. For data-plane communication, create NCCL-related objects.
Source code in vllm/distributed/utils.py
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
|
broadcast_recv_src_counter class-attribute
instance-attribute
¶
entries class-attribute
instance-attribute
¶
recv_src_counter class-attribute
instance-attribute
¶
send_dst_counter class-attribute
instance-attribute
¶
__init__ ¶
__init__(
rank: int,
world_size: int,
store: Store,
socket: Optional[socket],
data_expiration_seconds: int = 3600,
send_dst_counter: dict[int, int] = dict(),
recv_src_counter: dict[int, int] = dict(),
broadcast_send_counter: int = 0,
broadcast_recv_src_counter: dict[int, int] = dict(),
entries: deque[tuple[str, float]] = deque(),
) -> None
__post_init__ ¶
Source code in vllm/distributed/utils.py
all_gather_obj ¶
All gather an object from all ranks.
Source code in vllm/distributed/utils.py
barrier ¶
barrier(timeout: float = 30.0)
A robust barrier to synchronize all ranks.
Uses a multi-phase approach to ensure all processes reach the barrier before proceeding:
-
Each process signals it has reached the barrier
-
Each process signals that it has confirmed the arrival of all other ranks.
-
Rank 0 waits for all other ranks to signal their departure to ensure that all ranks have departed the barrier first.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
timeout | float | Maximum time in seconds to wait for each phase (in seconds) | 30.0 |
Raises:
Type | Description |
---|---|
RuntimeError | If coordination fails or times out |
Source code in vllm/distributed/utils.py
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
|
broadcast_obj ¶
Broadcast an object from a source rank to all other ranks. It does not clean up after all ranks have received the object. Use it for limited times, e.g., for initialization.
Source code in vllm/distributed/utils.py
create staticmethod
¶
create(
host: str,
port: int,
rank: int,
world_size: int,
data_expiration_seconds: int = 3600,
store_timeout: int = 300,
) -> StatelessProcessGroup
A replacement for torch.distributed.init_process_group
that does not pollute the global state.
If we have process A and process B called torch.distributed.init_process_group
to form a group, and then we want to form another group with process A, B, C, D, it is not possible in PyTorch, because process A and process B have already formed a group, and process C and process D cannot join that group. This function is a workaround for this issue.
torch.distributed.init_process_group
is a global call, while this function is a stateless call. It will return a StatelessProcessGroup
object that can be used for exchanging metadata. With this function, process A and process B can call StatelessProcessGroup.create
to form a group, and then process A, B, C, and D can call StatelessProcessGroup.create
to form another group.
Source code in vllm/distributed/utils.py
expire_data ¶
Expire data that is older than data_expiration_seconds
seconds.
Source code in vllm/distributed/utils.py
recv_obj ¶
Receive an object from a source rank.
send_obj ¶
Send an object to a destination rank.
Source code in vllm/distributed/utils.py
get_ep_group ¶
get_ep_group() -> GroupCoordinator
get_node_count ¶
get_node_count() -> int
Return the total number of nodes in the distributed environment.
in_the_same_node_as ¶
in_the_same_node_as(
pg: Union[ProcessGroup, StatelessProcessGroup],
source_rank: int = 0,
) -> list[bool]
This is a collective operation that returns if each rank is in the same node as the source rank. It tests if processes are attached to the same memory system (shared access to shared memory).
Source code in vllm/distributed/parallel_state.py
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 |
|
init_logger ¶
init_logger(name: str) -> _VllmLogger
The main purpose of this function is to ensure that loggers are retrieved in such a way that we can be sure the root vllm logger has already been configured.
Source code in vllm/logger.py
rearrange_expert_weights_inplace ¶
rearrange_expert_weights_inplace(
old_global_expert_indices: Tensor,
new_global_expert_indices: Tensor,
expert_weights: Sequence[Iterable[Tensor]],
ep_group: ProcessGroup,
is_profile: bool = False,
rank_mapping: Optional[dict[int, int]] = None,
) -> None
Rearranges the expert weights in place according to the new expert indices.
The value of the indices arguments are logical indices of the experts, while keys are physical.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
old_global_expert_indices | Tensor | Shape (num_moe_layers, num_physical_experts). | required |
new_global_expert_indices | Tensor | Shape (num_moe_layers, num_physical_experts). | required |
expert_weights | Sequence[Iterable[Tensor]] | A sequence of shape (num_moe_layers)(weight_count) of tensors of shape (num_local_physical_experts, hidden_size_i). For example, a linear layer may have up and down projection, so weight_count = 2. Each weight's hidden size can be different. | required |
ep_group | ProcessGroup | The device process group for expert parallelism. | required |
is_profile | bool | If | False |
rank_mapping | Optional[dict[int, int]] | A dictionary mapping old rank to new rank. | None |
Source code in vllm/distributed/eplb/rebalance_execute.py
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
|
rebalance_experts ¶
rebalance_experts(
weight: Tensor,
num_replicas: int,
num_groups: int,
num_nodes: int,
num_gpus: int,
) -> tuple[Tensor, Tensor, Tensor]
Entry point for expert-parallelism load balancer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
weight | Tensor | [layers, num_logical_experts], the load statistics for all logical experts | required |
num_replicas | int | number of physical experts, must be a multiple of | required |
num_groups | int | number of expert groups | required |
num_nodes | int | number of server nodes, where the intra-node network (e.g, NVLink) is faster | required |
num_gpus | int | number of GPUs, must be a multiple of | required |
Returns:
Name | Type | Description |
---|---|---|
physical_to_logical_map | Tensor | [layers, num_replicas], the expert index of each replica |
logical_to_physical_map | Tensor | [layers, num_logical_experts, X], the replica indices for each expert |
expert_count | Tensor | [layers, num_logical_experts], number of physical replicas for each logical expert |