vllm.config.vllm ¶
VllmConfig ¶
Dataclass which contains all vllm-related configuration. This simplifies passing around the distinct configurations in the codebase.
Source code in vllm/config/vllm.py
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
|
additional_config class-attribute
instance-attribute
¶
additional_config: Union[dict, SupportsHash] = field(
default_factory=dict
)
Additional config for specified platform. Different platforms may support different configs. Make sure the configs are valid for the platform you are using. Contents must be hashable.
cache_config class-attribute
instance-attribute
¶
cache_config: CacheConfig = field(
default_factory=CacheConfig
)
Cache configuration.
compilation_config class-attribute
instance-attribute
¶
compilation_config: CompilationConfig = field(
default_factory=CompilationConfig
)
torch.compile
and cudagraph capture configuration for the model.
As a shorthand, -O<n>
can be used to directly specify the compilation level n
: -O3
is equivalent to -O.level=3
(same as -O='{"level":3}'
). Currently, -O
NOTE: level 0 is the default level without any optimization. level 1 and 2 are for internal testing only. level 3 is the recommended level for production, also default in V1.
You can specify the full compilation config like so: {"level": 3, "cudagraph_capture_sizes": [1, 2, 4, 8]}
device_config class-attribute
instance-attribute
¶
device_config: DeviceConfig = field(
default_factory=DeviceConfig
)
Device configuration.
kv_events_config class-attribute
instance-attribute
¶
kv_events_config: Optional[KVEventsConfig] = None
The configurations for event publishing.
kv_transfer_config class-attribute
instance-attribute
¶
kv_transfer_config: Optional[KVTransferConfig] = None
The configurations for distributed KV cache transfer.
load_config class-attribute
instance-attribute
¶
load_config: LoadConfig = field(default_factory=LoadConfig)
Load configuration.
lora_config class-attribute
instance-attribute
¶
lora_config: Optional[LoRAConfig] = None
LoRA configuration.
model_config class-attribute
instance-attribute
¶
model_config: ModelConfig = None
Model configuration.
observability_config class-attribute
instance-attribute
¶
observability_config: Optional[ObservabilityConfig] = None
Observability configuration.
parallel_config class-attribute
instance-attribute
¶
parallel_config: ParallelConfig = field(
default_factory=ParallelConfig
)
Parallel configuration.
quant_config class-attribute
instance-attribute
¶
quant_config: Optional[QuantizationConfig] = None
Quantization configuration.
scheduler_config class-attribute
instance-attribute
¶
scheduler_config: SchedulerConfig = field(
default_factory=SchedulerConfig
)
Scheduler configuration.
speculative_config class-attribute
instance-attribute
¶
speculative_config: Optional[SpeculativeConfig] = None
Speculative decoding configuration.
structured_outputs_config class-attribute
instance-attribute
¶
structured_outputs_config: StructuredOutputsConfig = field(
default_factory=StructuredOutputsConfig
)
Structured outputs configuration.
__post_init__ ¶
Verify configs are valid & consistent with each other.
Source code in vllm/config/vllm.py
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
|
__str__ ¶
Source code in vllm/config/vllm.py
_get_quantization_config staticmethod
¶
_get_quantization_config(
model_config: ModelConfig, load_config: LoadConfig
) -> Optional[QuantizationConfig]
Get the quantization config.
Source code in vllm/config/vllm.py
_set_cudagraph_sizes ¶
vLLM defines the default candidate list of batch sizes for CUDA graph capture as:
```python max_graph_size = min(max_num_seqs * 2, 512)
1, 2, 4, then multiples of 8 up to max_graph_size¶
cuda_graph_sizes = [1, 2, 4, 8, 16, 24, 32, 40, ..., max_graph_size]
In the end, vllm_config.compilation_config.cudagraph_capture_sizes
will be the final sizes to capture cudagraph (in descending order).
These sizes are used to capture and reuse CUDA graphs for performance-critical paths (e.g., decoding). Capturing enables significantly faster kernel dispatch by avoiding Python overhead. The list is then filtered based on max_num_batched_tokens
(e.g., 8192 on most GPUs), which controls the total allowed number of tokens in a batch. Since each sequence may have a variable number of tokens, the maximum usable batch size will depend on actual sequence lengths.
Example: With max_num_batched_tokens = 8192
, and typical sequences averaging ~32 tokens, most practical batch sizes fall below 256. However, the system will still allow capture sizes up to 512 if shape and memory permit.
Note: If users explicitly specify cudagraph capture sizes in the compilation config, those will override this default logic. At runtime:
- If batch size <= one of the `cudagraph_capture_sizes`, the closest
padded CUDA graph will be used.
- If batch size > largest `cudagraph_capture_sizes`, cudagraph will
not be used.
Source code in vllm/config/vllm.py
compile_debug_dump_path ¶
Returns a rank-aware path for dumping torch.compile debug information.
Source code in vllm/config/vllm.py
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/vllm.py
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
|
get_quantization_config staticmethod
¶
get_quantization_config(
model_config: ModelConfig, load_config: LoadConfig
) -> Optional[QuantizationConfig]
Source code in vllm/config/vllm.py
pad_for_cudagraph ¶
Source code in vllm/config/vllm.py
recalculate_max_model_len ¶
recalculate_max_model_len(max_model_len: int)
Source code in vllm/config/vllm.py
try_verify_and_update_config ¶
Source code in vllm/config/vllm.py
update_sizes_for_sequence_parallelism ¶
Source code in vllm/config/vllm.py
with_hf_config ¶
with_hf_config(
hf_config: PretrainedConfig,
architectures: Optional[list[str]] = None,
) -> VllmConfig
Source code in vllm/config/vllm.py
get_cached_compilation_config cached
¶
get_current_vllm_config ¶
get_current_vllm_config() -> VllmConfig
Source code in vllm/config/vllm.py
get_layers_from_vllm_config ¶
get_layers_from_vllm_config(
vllm_config: VllmConfig,
layer_type: type[T],
layer_names: Optional[list[str]] = None,
) -> dict[str, T]
Get layers from the vLLM config.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vllm_config | VllmConfig | The vLLM config. | required |
layer_type | type[T] | The type of the layer to get. | required |
layer_names | Optional[list[str]] | The names of the layers to get. If None, return all layers. | None |
Source code in vllm/config/vllm.py
set_current_vllm_config ¶
set_current_vllm_config(
vllm_config: VllmConfig,
check_compile=False,
prefix: Optional[str] = None,
)
Temporarily set the current vLLM config. Used during model initialization. We save the current vLLM config in a global variable, so that all modules can access it, e.g. custom ops can access the vLLM config to determine how to dispatch.