vllm.config.model ¶
HfOverrides module-attribute
¶
LogprobsMode module-attribute
¶
LogprobsMode = Literal[
"raw_logits",
"raw_logprobs",
"processed_logits",
"processed_logprobs",
]
ModelDType module-attribute
¶
ModelDType = Literal[
"auto",
"half",
"float16",
"bfloat16",
"float",
"float32",
]
TaskOption module-attribute
¶
TaskOption = Literal[
"auto",
"generate",
"embedding",
"embed",
"classify",
"score",
"reward",
"transcription",
"draft",
]
_FLOAT16_NOT_SUPPORTED_MODELS module-attribute
¶
_FLOAT16_NOT_SUPPORTED_MODELS = {
"gemma2": "Numerical instability. Please use bfloat16 or float32 instead.",
"gemma3": "Numerical instability. Please use bfloat16 or float32 instead.",
"gemma3_text": "Numerical instability. Please use bfloat16 or float32 instead.",
"plamo2": "Numerical instability. Please use bfloat16 or float32 instead.",
"glm4": "Numerical instability. Please use bfloat16 or float32 instead.",
}
_RUNNER_CONVERTS module-attribute
¶
_RUNNER_CONVERTS: dict[RunnerType, list[ConvertType]] = {
"generate": [],
"pooling": ["embed", "classify", "reward"],
"draft": [],
}
_RUNNER_TASKS module-attribute
¶
_RUNNER_TASKS: dict[RunnerType, list[TaskOption]] = {
"generate": ["generate", "transcription"],
"pooling": [
"embedding",
"embed",
"classify",
"score",
"reward",
],
"draft": ["draft"],
}
_STR_DTYPE_TO_TORCH_DTYPE module-attribute
¶
_STR_DTYPE_TO_TORCH_DTYPE = {
"half": float16,
"float16": float16,
"float": float32,
"float32": float32,
"bfloat16": bfloat16,
}
_SUFFIX_TO_DEFAULTS module-attribute
¶
_SUFFIX_TO_DEFAULTS: list[
tuple[str, tuple[RunnerType, ConvertType]]
] = [
("ForCausalLM", ("generate", "none")),
("ForConditionalGeneration", ("generate", "none")),
("ChatModel", ("generate", "none")),
("LMHeadModel", ("generate", "none")),
("ForTextEncoding", ("pooling", "embed")),
("EmbeddingModel", ("pooling", "embed")),
("ForSequenceClassification", ("pooling", "classify")),
("ForAudioClassification", ("pooling", "classify")),
("ForImageClassification", ("pooling", "classify")),
("ForVideoClassification", ("pooling", "classify")),
("ClassificationModel", ("pooling", "classify")),
("ForRewardModeling", ("pooling", "reward")),
("RewardModel", ("pooling", "reward")),
("Model", ("pooling", "embed")),
]
ModelConfig ¶
Configuration for the model.
Source code in vllm/config/model.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 |
|
allowed_local_media_path class-attribute
instance-attribute
¶
allowed_local_media_path: str = ''
Allowing API requests to read local images or videos from directories specified by the server file system. This is a security risk. Should only be enabled in trusted environments.
allowed_media_domains class-attribute
instance-attribute
¶
If set, only media URLs that belong to this domain can be used for multi-modal inputs.
code_revision class-attribute
instance-attribute
¶
The specific revision to use for the model code on the Hugging Face Hub. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
config_format class-attribute
instance-attribute
¶
config_format: Union[str, ConfigFormat] = 'auto'
The format of the model config to load:
-
"auto" will try to load the config in hf format if available else it will try to load in mistral format.
-
"hf" will load the config in hf format.
-
"mistral" will load the config in mistral format.
convert class-attribute
instance-attribute
¶
convert: ConvertOption = 'auto'
Convert the model using adapters defined in vllm.model_executor.models.adapters. The most common use case is to adapt a text generation model to be used for pooling tasks.
disable_cascade_attn class-attribute
instance-attribute
¶
disable_cascade_attn: bool = False
Disable cascade attention for V1. While cascade attention does not change the mathematical correctness, disabling it could be useful for preventing potential numerical issues. Note that even if this is set to False, cascade attention will be only used when the heuristic tells that it's beneficial.
disable_sliding_window class-attribute
instance-attribute
¶
disable_sliding_window: bool = False
Whether to disable sliding window. If True, we will disable the sliding window functionality of the model, capping to sliding window size. If the model does not support sliding window, this argument is ignored.
dtype class-attribute
instance-attribute
¶
dtype: Union[ModelDType, dtype] = 'auto'
Data type for model weights and activations:
-
"auto" will use FP16 precision for FP32 and FP16 models, and BF16 precision for BF16 models.
-
"half" for FP16. Recommended for AWQ quantization.
-
"float16" is the same as "half".
-
"bfloat16" for a balance between precision and range.
-
"float" is shorthand for FP32 precision.
-
"float32" for FP32 precision.
enable_prompt_embeds class-attribute
instance-attribute
¶
enable_prompt_embeds: bool = False
If True
, enables passing text embeddings as inputs via the prompt_embeds
key. Note that enabling this will double the time required for graph compilation.
enable_sleep_mode class-attribute
instance-attribute
¶
enable_sleep_mode: bool = False
Enable sleep mode for the engine (only cuda platform is supported).
enforce_eager class-attribute
instance-attribute
¶
enforce_eager: bool = False
Whether to always use eager-mode PyTorch. If True, we will disable CUDA graph and always execute the model in eager mode. If False, we will use CUDA graph and eager execution in hybrid for maximal performance and flexibility.
generation_config class-attribute
instance-attribute
¶
generation_config: str = 'auto'
The folder path to the generation config. Defaults to "auto"
, the generation config will be loaded from model path. If set to "vllm"
, no generation config is loaded, vLLM defaults will be used. If set to a folder path, the generation config will be loaded from the specified folder path. If max_new_tokens
is specified in generation config, then it sets a server-wide limit on the number of output tokens for all requests.
head_dtype property
¶
head_dtype: dtype
"head" refers to the last Linear layer(s) of an LLM, such as the lm_head in a generation model, or the score or classifier in a classification model.
head_dtype
currently only supports pooling models.
- The pooling model defaults to using fp32 head, you can use --hf-overrides '{"head_dtype": "model"}' to disable it.
hf_config_path class-attribute
instance-attribute
¶
Name or path of the Hugging Face config to use. If unspecified, model name or path will be used.
hf_overrides class-attribute
instance-attribute
¶
hf_overrides: HfOverrides = field(default_factory=dict)
If a dictionary, contains arguments to be forwarded to the Hugging Face config. If a callable, it is called to update the HuggingFace config.
hf_token class-attribute
instance-attribute
¶
The token to use as HTTP bearer authorization for remote files . If True
, will use the token generated when running huggingface-cli login
(stored in ~/.huggingface
).
io_processor_plugin class-attribute
instance-attribute
¶
IOProcessor plugin name to load at model startup
logits_processor_pattern class-attribute
instance-attribute
¶
Optional regex pattern specifying valid logits processor qualified names that can be passed with the logits_processors
extra completion argument. Defaults to None
, which allows no processors.
logits_processors class-attribute
instance-attribute
¶
One or more logits processors' fully-qualified class names or class definitions
logprobs_mode class-attribute
instance-attribute
¶
logprobs_mode: LogprobsMode = 'raw_logprobs'
Indicates the content returned in the logprobs and prompt_logprobs. Supported mode: 1) raw_logprobs, 2) processed_logprobs, 3) raw_logits, 4) processed_logits. Raw means the values before applying any logit processors, like bad words. Processed means the values after applying all processors, including temperature and top_k/top_p.
max_logprobs class-attribute
instance-attribute
¶
max_logprobs: int = 20
Maximum number of log probabilities to return when logprobs
is specified in SamplingParams
. The default value comes the default for the OpenAI Chat Completions API. -1 means no cap, i.e. all (output_length * vocab_size) logprobs are allowed to be returned and it may cause OOM.
max_model_len class-attribute
instance-attribute
¶
max_model_len: SkipValidation[int] = None
Model context length (prompt and output). If unspecified, will be automatically derived from the model config.
When passing via --max-model-len
, supports k/m/g/K/M/G in human-readable format. Examples:
-
1k -> 1000
-
1K -> 1024
-
25.6k -> 25,600
model class-attribute
instance-attribute
¶
model: str = 'Qwen/Qwen3-0.6B'
Name or path of the Hugging Face model to use. It is also used as the content for model_name
tag in metrics output when served_model_name
is not specified.
model_impl class-attribute
instance-attribute
¶
Which implementation of the model to use:
-
"auto" will try to use the vLLM implementation, if it exists, and fall back to the Transformers implementation if no vLLM implementation is available.
-
"vllm" will use the vLLM model implementation.
-
"transformers" will use the Transformers model implementation.
-
"terratorch" will use the TerraTorch model implementation.
multimodal_config class-attribute
instance-attribute
¶
multimodal_config: Optional[MultiModalConfig] = None
Configuration for multimodal model. If None
, this will be inferred from the architecture of self.model
.
override_attention_dtype class-attribute
instance-attribute
¶
Override dtype for attention
override_generation_config class-attribute
instance-attribute
¶
Overrides or sets generation config. e.g. {"temperature": 0.5}
. If used with --generation-config auto
, the override parameters will be merged with the default config from the model. If used with --generation-config vllm
, only the override parameters are used.
override_pooler_config class-attribute
instance-attribute
¶
override_pooler_config: Optional[
Union[dict, PoolerConfig]
] = None
[DEPRECATED] Use pooler_config
instead. This field will be removed in v0.12.0 or v1.0.0, whichever is sooner.
pooler_config class-attribute
instance-attribute
¶
pooler_config: Optional[PoolerConfig] = None
Pooler config which controls the behaviour of output pooling in pooling models.
quantization class-attribute
instance-attribute
¶
quantization: SkipValidation[
Optional[QuantizationMethods]
] = None
Method used to quantize the weights. If None
, we first check the quantization_config
attribute in the model config file. If that is None
, we assume the model weights are not quantized and use dtype
to determine the data type of the weights.
revision class-attribute
instance-attribute
¶
The specific model version to use. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
rope_scaling class-attribute
instance-attribute
¶
RoPE scaling configuration. For example, {"rope_type":"dynamic","factor":2.0}
.
rope_theta class-attribute
instance-attribute
¶
RoPE theta. Use with rope_scaling
. In some cases, changing the RoPE theta improves the performance of the scaled model.
runner class-attribute
instance-attribute
¶
runner: RunnerOption = 'auto'
The type of model runner to use. Each vLLM instance only supports one model runner, even if the same model can be used for multiple types.
seed class-attribute
instance-attribute
¶
Random seed for reproducibility. Initialized to None in V0, but initialized to 0 in V1.
served_model_name class-attribute
instance-attribute
¶
The model name(s) used in the API. If multiple names are provided, the server will respond to any of the provided names. The model name in the model field of a response will be the first name in this list. If not specified, the model name will be the same as the --model
argument. Noted that this name(s) will also be used in model_name
tag content of prometheus metrics, if multiple names provided, metrics tag will take the first one.
skip_tokenizer_init class-attribute
instance-attribute
¶
skip_tokenizer_init: bool = False
Skip initialization of tokenizer and detokenizer. Expects valid prompt_token_ids
and None
for prompt from the input. The generated output will contain token ids.
spec_target_max_model_len class-attribute
instance-attribute
¶
Specify the maximum length for spec decoding draft models.
task class-attribute
instance-attribute
¶
task: Optional[TaskOption] = None
[DEPRECATED] The task to use the model for. If the model supports more than one model runner, this is used to select which model runner to run.
Note that the model may support other tasks using the same model runner.
tokenizer class-attribute
instance-attribute
¶
tokenizer: SkipValidation[str] = None
Name or path of the Hugging Face tokenizer to use. If unspecified, model name or path will be used.
tokenizer_mode class-attribute
instance-attribute
¶
tokenizer_mode: TokenizerMode = 'auto'
Tokenizer mode:
-
"auto" will use the fast tokenizer if available.
-
"slow" will always use the slow tokenizer.
-
"mistral" will always use the tokenizer from
mistral_common
. -
"custom" will use --tokenizer to select the preregistered tokenizer.
tokenizer_revision class-attribute
instance-attribute
¶
The specific revision to use for the tokenizer on the Hugging Face Hub. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
trust_remote_code class-attribute
instance-attribute
¶
trust_remote_code: bool = False
Trust remote code (e.g., from HuggingFace) when downloading the model and tokenizer.
__post_init__ ¶
__post_init__(
limit_mm_per_prompt: Optional[dict[str, int]],
media_io_kwargs: Optional[dict[str, dict[str, Any]]],
mm_processor_kwargs: Optional[dict[str, Any]],
mm_processor_cache_gb: Optional[float],
mm_processor_cache_type: Optional[MMCacheType],
mm_shm_cache_max_object_size_mb: Optional[int],
mm_encoder_tp_mode: Optional[MMEncoderTPMode],
interleave_mm_strings: Optional[bool],
skip_mm_profiling: Optional[bool],
video_pruning_rate: Optional[float],
) -> None
Source code in vllm/config/model.py
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 |
|
_get_convert_type ¶
_get_convert_type(
architectures: list[str],
runner_type: RunnerType,
convert: ConvertOption,
) -> ConvertType
Source code in vllm/config/model.py
_get_default_convert_type ¶
_get_default_convert_type(
architectures: list[str], runner_type: RunnerType
) -> ConvertType
Source code in vllm/config/model.py
_get_default_pooling_task ¶
Source code in vllm/config/model.py
_get_default_runner_type ¶
_get_default_runner_type(
architectures: list[str],
) -> RunnerType
Source code in vllm/config/model.py
_get_encoder_config ¶
_get_runner_type ¶
_get_runner_type(
architectures: list[str], runner: RunnerOption
) -> RunnerType
Source code in vllm/config/model.py
_get_transformers_backend_cls ¶
_get_transformers_backend_cls() -> str
Determine which Transformers backend class will be used if model_impl
is set to transformers
or auto
.
Source code in vllm/config/model.py
_parse_quant_hf_config ¶
Source code in vllm/config/model.py
_verify_bnb_config ¶
The current version of bitsandbytes (0.46.1) with 8-bit models does not yet support CUDA graph.
TODO Remove this when bitsandbytes supports.¶
Source code in vllm/config/model.py
_verify_cuda_graph ¶
Source code in vllm/config/model.py
_verify_quantization ¶
Source code in vllm/config/model.py
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 |
|
_verify_tokenizer_mode ¶
Source code in vllm/config/model.py
_verify_with_expert_parallelism ¶
Source code in vllm/config/model.py
compute_hash ¶
compute_hash() -> str
WARNING: Whenever a new field is added to this config, ensure that it is included in the factors list if it affects the computation graph.
Provide a hash that uniquely identifies all the configs that affect the structure of the computation graph from input ids/embeddings to the final hidden states, excluding anything before input ids/embeddings and after the final hidden states.
Source code in vllm/config/model.py
get_and_verify_max_len ¶
get_and_verify_max_len(max_model_len: int)
Source code in vllm/config/model.py
get_diff_sampling_param ¶
This method returns a dictionary containing the non-default sampling parameters with override_generation_config
applied.
The default sampling parameters are:
- vLLM's neutral defaults if
self.generation_config="vllm"
- the model's defaults if
self.generation_config="auto"
- as defined in
generation_config.json
ifself.generation_config="path/to/generation_config/dir"
Returns:
Type | Description |
---|---|
dict[str, Any] | A dictionary containing the non-default sampling parameters. |
Source code in vllm/config/model.py
get_head_size ¶
get_head_size() -> int
Source code in vllm/config/model.py
get_layers_start_end_indices ¶
get_layers_start_end_indices(
parallel_config: ParallelConfig,
) -> tuple[int, int]
Source code in vllm/config/model.py
get_mamba_chunk_size ¶
Returns the mamba chunk size if it exists
Source code in vllm/config/model.py
get_multimodal_config ¶
get_multimodal_config() -> MultiModalConfig
Get the multimodal configuration of the model.
Raises:
Type | Description |
---|---|
ValueError | If the model is not multimodal. |
Source code in vllm/config/model.py
get_num_attention_heads ¶
get_num_attention_heads(
parallel_config: ParallelConfig,
) -> int
get_num_kv_heads ¶
get_num_kv_heads(parallel_config: ParallelConfig) -> int
Returns the number of KV heads per GPU.
Source code in vllm/config/model.py
get_num_layers ¶
get_num_layers(parallel_config: ParallelConfig) -> int
get_num_layers_by_block_type ¶
get_num_layers_by_block_type(
parallel_config: ParallelConfig,
block_type: LayerBlockType = attention,
) -> int
Source code in vllm/config/model.py
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 |
|
get_sliding_window ¶
get_total_num_kv_heads ¶
get_total_num_kv_heads() -> int
Returns the total number of KV heads.
Source code in vllm/config/model.py
maybe_pull_model_tokenizer_for_runai ¶
Pull model/tokenizer from Object Storage to temporary directory when needed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model | str | Model name or path | required |
tokenizer | str | Tokenizer name or path | required |
Source code in vllm/config/model.py
try_get_generation_config ¶
This method attempts to retrieve the non-default values of the generation config for this model.
The generation config can contain information about special tokens, as well as sampling parameters. Which is why this method exists separately to get_diff_sampling_param
.
Returns:
Type | Description |
---|---|
dict[str, Any] | A dictionary containing the non-default generation config. |
Source code in vllm/config/model.py
validate_model_config_after ¶
validate_model_config_after() -> ModelConfig
Source code in vllm/config/model.py
validate_quantization_before classmethod
¶
verify_dual_chunk_attention_config ¶
verify_dual_chunk_attention_config(
load_config: LoadConfig,
) -> None
Source code in vllm/config/model.py
verify_with_parallel_config ¶
verify_with_parallel_config(
parallel_config: ParallelConfig,
) -> None
Source code in vllm/config/model.py
_check_valid_dtype ¶
Source code in vllm/config/model.py
_find_dtype ¶
Source code in vllm/config/model.py
_get_and_verify_dtype ¶
_get_and_verify_dtype(
model_id: str,
config: PretrainedConfig,
dtype: Union[str, dtype],
*,
is_pooling_model: bool,
revision: Optional[str] = None,
) -> dtype
Source code in vllm/config/model.py
_get_and_verify_max_len ¶
_get_and_verify_max_len(
hf_config: PretrainedConfig,
tokenizer_config: Optional[dict],
max_model_len: Optional[int],
disable_sliding_window: bool,
sliding_window: Optional[int],
spec_target_max_model_len: Optional[int] = None,
encoder_config: Optional[Any] = None,
) -> int
Get and verify the model's maximum length.
Source code in vllm/config/model.py
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 |
|
_get_head_dtype ¶
Source code in vllm/config/model.py
_is_valid_dtype ¶
_resolve_auto_dtype ¶
Source code in vllm/config/model.py
get_served_model_name ¶
If the input is a non-empty list, the first model_name in served_model_name
is taken. If the input is a non-empty string, it is used directly. For cases where the input is either an empty string or an empty list, the fallback is to use self.model
.
Source code in vllm/config/model.py
iter_architecture_defaults ¶
try_match_architecture_defaults ¶
try_match_architecture_defaults(
architecture: str,
*,
runner_type: Optional[RunnerType] = None,
convert_type: Optional[ConvertType] = None,
) -> Optional[tuple[str, tuple[RunnerType, ConvertType]]]